Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Gastrointestinal (GI) disorders are a kind of common, but complicated disease that may be triggered by many factors. In Asia, many traditional Chinese herbs are prominent in treating GI disorders, but the pharmacological mechanism still remains vague or unknown due to the multiple-component characteristics of traditional Chinese medicine (TCM).

Objective

In order to investigate the therapy mechanism of traditional Chinese medicine (TCM) for Gastrointestinal (GI) diseases, a typical TCM prescription, Houpusanwu Decoction, for the treatment of ileus, a severe GI disease, is used as a probe presently.

Methods

We performed data mining on all components in Houpusanwu Decoction (HD), established a corresponding component database, and then conducted ADME screening of potentially active compounds in the database. Next, we identify potential targets of HD candidate compounds, followed by the establishment of a series of pharmacological networks. Finally, we conducted SP analysis and mechanism analysis.

Results

Through pathway analysis, we found that HD treats ileus mainly through four pathways, ., GI motility-related Calcium, inflammation-related SCF/c-kit and p38/MAPK, and thrombosis and diabetes-related JAK2/STAT3 signaling pathways, which indicated that HD is a typical prescription with multichannel and multifunction of TCM characteristics.

Conclusion

This study not only expounds the pathogenesis of ileus and, at the same time systematically illuminates the curative mechanism of HD, but also provides a novel SP method to explore the therapeutic mechanism of TCM in treating complicated GI diseases.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808340416241231063038
2025-01-10
2025-06-22
Loading full text...

Full text loading...

References

  1. GoreR.M. SilversR.I. ThakrarK.H. WenzkeD.R. MehtaU.K. NewmarkG.M. BerlinJ.W. Bowel obstruction.Radiol. Clin. North Am.20155361225124010.1016/j.rcl.2015.06.008 26526435
    [Google Scholar]
  2. ZhangX. GuQ. CaiZ. Observation of incomplete intestinal obstruction treated by Houpu Sanwu decoction.Hebei J. Traditi Chin. Med.201234852853
    [Google Scholar]
  3. SuW.J. HuangX. QinE. JiangL. RenP. Pharmacokinetics of honokiol in rat after oral administration of cortex of magnolia officinalis and its compound preparation houpu sanwu decoction.Zhong Yao Cai2008312255258 18619273
    [Google Scholar]
  4. KouJ. YU, Z.; Gong, S. The actions of xiaochengqi decoction.Houpusanwu Deco. Houpud. Deco. China Tradit. Patent Med.20042615759
    [Google Scholar]
  5. ZhangJ. LiY. ChenX. PanY. ZhangS. WangY. Systems pharmacology dissection of multi-scale mechanisms of action for herbal medicines in stroke treatment and prevention.PLoS One201498e10250610.1371/journal.pone.0102506 25093322
    [Google Scholar]
  6. LiS. SunY. SunY. A comparative study of systems pharmacology and gene chip technology for predicting targets of a traditional chinese medicine formula in primary liver cancer treatment.Front. Pharmacol.20221376886210.3389/fphar.2022.768862 35308212
    [Google Scholar]
  7. WangX. WangY. ZhengL. ChenJ. Molecular dynamics simulation in RNA interference.Curr. Med. Chem.201421171968197510.2174/0929867321666131218100234 24350843
    [Google Scholar]
  8. ZhouW. HuangC. LiY. DuanJ. WangY. YangL. A systematic identification of multiple toxin–target interactions based on chemical, genomic and toxicological data.Toxicology201330417318410.1016/j.tox.2012.12.012 23313661
    [Google Scholar]
  9. HuangC. ZhengC. LiY. WangY. LuA. YangL. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines.Brief. Bioinform.201415571073310.1093/bib/bbt035 23736100
    [Google Scholar]
  10. WangX. XuX. TaoW. LiY. WangY. YangL. A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease.Evid. Based Complement. Alternat. Med.2012201251903110.1155/2012/519031
    [Google Scholar]
  11. YaoY. ZhangX. WangZ. ZhengC. LiP. HuangC. TaoW. XiaoW. WangY. HuangL. YangL. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction.J. Ethnopharmacol.2013150261963810.1016/j.jep.2013.09.018 24064232
    [Google Scholar]
  12. LiB. XuX. WangX. YuH. LiX. TaoW. WangY. YangL. A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease.Int. J. Mol. Sci.20121310135011352010.3390/ijms131013501 23202964
    [Google Scholar]
  13. NonakaG. MinamiM. NishiokaI. Studies on rhubarb (Rhei rhizoma). III. Stilbene glycosides.Chem. Pharm. Bull.19772592300230510.1248/cpb.25.2300 589726
    [Google Scholar]
  14. ZhuangT. GuX. ZhouN. DingL. YangL. ZhouM. Hepatoprotection and hepatotoxicity of Chinese herb Rhubarb (Dahuang): How to properly control the “General (Jiang Jun)” in Chinese medical herb.Biomed. Pharmacother.202012711022410.1016/j.biopha.2020.110224 32559851
    [Google Scholar]
  15. LuoH. WuH. YuX. ZhangX. LuY. FanJ. TangL. WangZ. A review of the phytochemistry and pharmacological activities of Magnoliae officinalis cortex.J. Ethnopharmacol.201923641244210.1016/j.jep.2019.02.041 30818008
    [Google Scholar]
  16. PoivreM. DuezP. Biological activity and toxicity of the chinese herb magnolia officinalis rehder & e. wilson (houpo) and its constituents.J. Zhejiang Univ. Sci. B201718319421410.1631/jzus.B1600299 28271656
    [Google Scholar]
  17. ZhangX.X. LiZ.Y. MaY.L. MaS.C. Progress in research of traditional Chinese medicine Citrus aurantium.Zhongguo Zhongyao Zazhi2015402185190 26080542
    [Google Scholar]
  18. CaiY. ChenY. FanC. Studies on Chinese drugs zhiqiao and zhishi origin investigation and merchandise identification.Zhongguo Zhongyao Zazhi1999245259262, 317 12205880
    [Google Scholar]
  19. LiX. XuX. WangJ. YuH. WangX. YangH. XuH. TangS. LiY. YangL. HuangL. WangY. YangS. A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment.PLoS One201279e4391810.1371/journal.pone.0043918 22962593
    [Google Scholar]
  20. YamanishiY. KoteraM. KanehisaM. GotoS. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework.Bioinformatics20102612i246i25410.1093/bioinformatics/btq176 20529913
    [Google Scholar]
  21. YuH. ChenJ. XuX. LiY. ZhaoH. FangY. LiX. ZhouW. WangW. WangY. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data.PLoS One201275e3760810.1371/journal.pone.0037608 22666371
    [Google Scholar]
  22. ZhangB. LiuL. ZhaoS. WangX. LiuL. LiS. Vitexicarpin acts as a novel angiogenesis inhibitor and its target network.Evid. Based Complement. Alternat. Med.2013201311310.1155/2013/278405 23476684
    [Google Scholar]
  23. LiuC. ZhongS. YangL. WuM. YeJ. ChenJ. Simultaneous determination of magnolol and honokiol by UV spectrophotometry after cloud point extraction2014
    [Google Scholar]
  24. YuanJ. WangF. LiM. ChenH. YangW. LiuY. ZhangY. Pharmacokinetic study of aurapetene after intravenous injection in rats.Chin. J. Exp. Tradit. Med. Formul.201117140143
    [Google Scholar]
  25. JuergensU.R. DethlefsenU. SteinkampG. GillissenA. RepgesR. VetterH. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial.Respir. Med.200397325025610.1053/rmed.2003.1432 12645832
    [Google Scholar]
  26. SantosF.A. RaoV.S.N. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils.Phytother. Res.200014424024410.1002/1099‑1573(200006)14:4<240:AID‑PTR573>3.0.CO;2‑X 10861965
    [Google Scholar]
  27. SavelevS. OkelloE. PerryN.S.L. WilkinsR.M. PerryE.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil.Pharmacol. Biochem. Behav.200375366166810.1016/S0091‑3057(03)00125‑4 12895684
    [Google Scholar]
  28. GhisdalP. VandenbergG. HamaideM.C. WiboM. MorelN. The diacylglycerol lipase inhibitor RHC-80267 potentiates the relaxation to acetylcholine in rat mesenteric artery by anti-cholinesterase action.Eur. J. Pharmacol.20055171-29710210.1016/j.ejphar.2005.05.036 15958263
    [Google Scholar]
  29. WengZ. PatelA.B. PanagiotidouS. TheoharidesT.C. The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells.J. Allergy Clin. Immunol.2015135410441052.e510.1016/j.jaci.2014.10.032 25498791
    [Google Scholar]
  30. ZhaoJ. TangW. WangJ. XiangJ. GongH. ChenG. Pharmacokinetic and pharmacodynamic studies of four major phytochemical components of Da-Cheng-Qi decoction to treat acute pancreatitis.J. Pharmacol. Sci.2013122211812710.1254/jphs.13037FP 23739595
    [Google Scholar]
  31. ChoiM.S. LeeS.H. ChoH.S. KimY. YunY.P. JungH.Y. JungJ.K. LeeB.C. PyoH.B. HongJ.T. Inhibitory effect of obovatol on nitric oxide production and activation of NF-κB/MAP kinases in lipopolysaccharide-treated RAW 264.7cells.Eur. J. Pharmacol.20075561-318118910.1016/j.ejphar.2006.10.054 17134693
    [Google Scholar]
  32. YeX. CaoD. SongF. FanG. WuF. Preparative separation of nine flavonoids from Pericarpium Citri Reticulatae by preparative-HPLC and HSCCC.Sep. Sci. Technol.201651580781510.1080/01496395.2015.1122634
    [Google Scholar]
  33. HoS.C. KuoC.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium).Food Chem. Toxicol.20147117618210.1016/j.fct.2014.06.014 24955543
    [Google Scholar]
  34. AruomaO.I. LandesB. BaboolallR.D. BourdonE. BhujunN.V. WagnerK.H. BahorunT. Functional benefits of citrus fruits in the management of diabetes.Prev. Med.201254Suppl.S12S1610.1016/j.ypmed.2012.02.012 22373887
    [Google Scholar]
  35. WangS. ChenP. JiangW. WuL. ChenL. FanX. WangY. ChengY. Identification of the effective constituents for anti-inflammatory activity of Ju-Zhi-Jiang-Tang, an ancient traditional Chinese medicine formula.J. Chromatogr. A2014134810512410.1016/j.chroma.2014.04.084 24813935
    [Google Scholar]
  36. NohH.J. HwangD. LeeE.S. HyunJ.W. YiP.H. KimG.S. LeeS.E. PangC. ParkY.J. ChungK.H. KimG.D. KimK.H. Anti-inflammatory activity of a new cyclic peptide, citrusin XI, isolated from the fruits of Citrus unshiu.J. Ethnopharmacol.201516310611210.1016/j.jep.2015.01.024 25625351
    [Google Scholar]
  37. AmorG.M. RedondoG.A.B. JorgeI. ZalbaG. BecaresM. RodríguezR.M.J. RodríguezC. BermeoH. DíezR.R. RiosF.J. MontezanoA.C. GonzálezM.J. VázquezJ. RedondoJ.M. TouyzR.M. GuerraS. SalaicesM. BrionesA.M. Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress.Cardiovasc. Res.2022118163250326810.1093/cvr/cvab321 34672341
    [Google Scholar]
  38. BauerA.J. BoeckxstaensG.E. Mechanisms of postoperative ileus.Neurogastroenterol. Motil.200416s2Suppl. 2546010.1111/j.1743‑3150.2004.00558.x 15357852
    [Google Scholar]
  39. ShahS. NathanL. SinghR. FuY.S. ChaudhuriG.E. 2 and not P 4 increases NO release from NANC nerves of the gastrointestinal tract: Implications in pregnancy.Am. J. Physiol. Regul. Integr. Comp. Physiol.20012805R1546R155410.1152/ajpregu.2001.280.5.R1546 11294780
    [Google Scholar]
  40. PrinsG.S. KorachK.S. The role of estrogens and estrogen receptors in normal prostate growth and disease.Steroids200873323324410.1016/j.steroids.2007.10.013 18093629
    [Google Scholar]
  41. WengT.I. WuH.Y. KuoC.W. LiuS.H. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation.Intensive Care Med.201137353354110.1007/s00134‑010‑2104‑1 21279327
    [Google Scholar]
  42. JeongS.I. KimY.S. LeeM.Y. KangJ.K. LeeS. ChoiB.K. JungK.Y. Regulation of contractile activity by magnolol in the rat isolated gastrointestinal tracts.Pharmacol. Res.200959318318810.1016/j.phrs.2008.11.008 19121392
    [Google Scholar]
  43. SakaiA. TakasuK. SawadaM. SuzukiH. Hemokinin-1 gene expression is upregulated in microglia activated by lipopolysaccharide through NF-κB and p38 MAPK signaling pathways.PLoS One201272e3226810.1371/journal.pone.0032268 22384199
    [Google Scholar]
  44. ZhangW. LiF. BaoJ. WangS. ShangG. LiJ. WangC. Regulative effects of emodin on aquaporin 2 expression in intestinal epithelial cell line LoVo.Zhong Yao Cai200831702 18826147
    [Google Scholar]
  45. BaiJ. WangJ. HanY. Thrombophilia lead to superior mesenteric vein and portal vein thrombosis complicated by intestinal obstruc-tion:analysis of diagnosis and treatment.Clin. Misdiagn. Misther.2014276264
    [Google Scholar]
  46. BonifaceK. LecronJ.C. BernardF.X. DagregorioG. GuilletG. NauF. MorelF. Keratinocytes as targets for interleukin-10-related cytokines: A putative role in the pathogenesis of psoriasis.Eur. Cytokine Netw.2005164309319 16464746
    [Google Scholar]
  47. WilsonM.R. ChoudhuryS. TakataM. Pulmonary inflammation induced by high-stretch ventilation is mediated by tumor necrosis factor signaling in mice.Am. J. Physiol. Lung Cell. Mol. Physiol.20052884L599L60710.1152/ajplung.00304.2004 15489373
    [Google Scholar]
  48. KalenkaA. FeldmannR.E.Jr OteroK. MaurerM.H. WaschkeK.F. FiedlerF. Changes in the serum proteome of patients with sepsis and septic shock.Anesth. Analg.200610361522152610.1213/01.ane.0000242533.59457.70 17122233
    [Google Scholar]
  49. ZhangE. ZhangH. LiuF. DongC. YaoY. YunZ. JianW. MaB. Estrogen exerts anti-inflammatory effects by inhibiting NF-κB pathway through binding with estrogen receptor β on synovicytes of osteoarthritis.Xibao Yu Fenzi Mianyixue Zazhi2016321216051609 27916089
    [Google Scholar]
  50. ChenL. ZhangH. Mechaniam of berberine on treating 2-dm.J. Liaoning U. Tradit. Chin. Med201315268270
    [Google Scholar]
  51. MiaoY.L. ZhangW.X. WangY.E. LiY. YueY.H. NiY. Anti-inflammatory mechanism of antipyretic and detoxifying traditional Chinese medicine.Zhongguo Shiyan Fangjixue Zazhi201824228235
    [Google Scholar]
  52. YanS. ChenX. JiaoY. LianF. TongX. Dose of dachengqi decoction for bowel obstruction in clinical practice.J. Tradit. Chin. Med.20135419531956
    [Google Scholar]
  53. MaY. MengF. JinY. ZhaoS. Chinese herbal enema plus gastrointestinal intubation for ileus: A systematic review. chin.J. Evid. Based Med.20141412541262
    [Google Scholar]
  54. ChenX. LiF. Effects of glucosamine chondroitin and baikal skullcap root on adjuvant arthritis rats’ serum PGE2.Chin. J. Lab. Diag.200511517
    [Google Scholar]
  55. LingT. ZhouK. LiJ. XuM. Effect of magnolol on the arachidonic acid metabolizing enzymes in rat neutrophils in vitro.J. China Pharm. U.200334151154
    [Google Scholar]
  56. MoonJ.E. KimD.M. KimJ.Y. Anti-inflammatory effect of Rhus verniciflua stokes extract in the murine macrophage cell line, Raw264.7.J. Korean Soc. Appl. Biol. Chem.201558448148610.1007/s13765‑015‑0065‑3
    [Google Scholar]
  57. WehnerS. StraesserS. VilzT.O. PantelisD. SieleckiT. de la CruzV.F. HirnerA. KalffJ.C. Inhibition of p38 mitogen-activated protein kinase pathway as prophylaxis of postoperative ileus in mice.Gastroenterology2009136261962910.1053/j.gastro.2008.10.017 19014943
    [Google Scholar]
  58. WangJ.S. HeY. ZhangW.J. ZhangP. HuangQ.L. HuaZ.C. Advances in studies on pharmacological effects of luteolin.Chin. Bull. Life Sci.2013256560565
    [Google Scholar]
  59. SharmaA. PaliwalG. UpadhyayN. TiwariA. Retracted article: Therapeutic stimulation of glp-1 and gip protein with dpp-4 inhibitors for type-2 diabetes treatment.J. Diabetes Metab. Disord.20151411510.1186/s40200‑015‑0143‑4 26473146
    [Google Scholar]
  60. ZhaoJ. ShangW. YuX. Research progress on anti-diabetic effect of Rheum palmatum and its ingredients.Lishizhen Med. Mater. Med. Res.201425717041706
    [Google Scholar]
  61. CaiD. YuanM. FrantzD.F. MelendezP.A. HansenL. LeeJ. ShoelsonS.E. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB.Nat. Med.200511218319010.1038/nm1166 15685173
    [Google Scholar]
  62. MengA. LingY. ZhangX. Roles of p38 MAPK and STAT3 in inhibitory effect of cholecystokinin octapeptide on LPS-induced cytokine production in rats. Chin.J. PathoPhysiol.2013290610951101
    [Google Scholar]
  63. LiuS.N. ShenZ.F. A new target for diabetes therapy: Advances in the research of glycogen synthase kinase-3 inhibitors.Yao Xue Xue Bao2007421212271231 18338632
    [Google Scholar]
  64. PawlakD. PawlakK. ChabielskaE. MałyszkoJ. TakadaA. MyśliwiecM. BuczkoW. A potent 5-hydroxytryptamine receptor (5-HT2A) antagonist, DV-7028, delays arterial thrombosis development in rats.Thromb. Res.199890625927010.1016/S0049‑3848(98)00037‑1 9700856
    [Google Scholar]
  65. VaiyapuriS. RowethH. AliM.S. UnsworthA.J. StainerA.R. FloraG.D. CrescenteM. JonesC.I. MoraesL.A. GibbinsJ.M. Pharmacological actions of nobiletin in the modulation of platelet function.Br. J. Pharmacol.2015172164133414510.1111/bph.13191 25988959
    [Google Scholar]
  66. FitzGeraldG.A. Mechanisms of platelet activation: Thromboxane A2 as an amplifying signal for other agonists.Am. J. Cardiol.1991687B11B1510.1016/0002‑9149(91)90379‑Y 1892057
    [Google Scholar]
  67. LaknerA.M. MooreC.C. GulledgeA.A. SchrumL.W. Daily genetic profiling indicates JAK/STAT signaling promotes early hepatic stellate cell transdifferentiation.World J. Gastroenterol.201016405047505610.3748/wjg.v16.i40.5047 20976841
    [Google Scholar]
  68. KimJ. YoonY. JeoungD. KimY.M. ChoeJ. Interferon-γ stimulates human follicular dendritic cell-like cells to produce prostaglandins via the JAK-STAT pathway.Mol. Immunol.201566218919610.1016/j.molimm.2015.03.003 25818476
    [Google Scholar]
  69. ZhongZ. WenZ. DarnellJ.E.Jr Stat3: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6.Science19942645155959810.1126/science.8140422 8140422
    [Google Scholar]
  70. MarreroM.B. BerceliB.A.K. SternD.M. EatonD.C. Role of the JAK/STAT signaling pathway in diabetic nephropathy.Am. J. Physiol. Renal Physiol.20062904F762F76810.1152/ajprenal.00181.2005 16527921
    [Google Scholar]
  71. SugaiT. SuzukiY. SawamuraK. FukuiN. InoueY. SomeyaT. The effect of 5-hydroxytryptamine 3A and 3B receptor genes on nausea induced by paroxetine.Pharmacogenomics J.20066535135610.1038/sj.tpj.6500382 16534507
    [Google Scholar]
  72. OntsoukaE.C. BlumJ.W. SteinerA. MeylanM. 5-Hydroxytryptamine-4 receptor messenger ribonucleic acid levels and densities in gastrointestinal muscle layers from healthy dairy cows1.J. Anim. Sci.200684123277328410.2527/jas.2006‑228 17093220
    [Google Scholar]
  73. PaulussenA.D.C. GilissenR.A.H.J. ArmstrongM. DoevendansP.A. VerhasseltP. SmeetsH.J.M. BahrS.E. HaverkampW. BreithardtG. CohenN. AerssensJ. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients.J. Mol. Med. 200482318218810.1007/s00109‑003‑0522‑z 14760488
    [Google Scholar]
  74. GalliganJ.J. VannerS. Basic and clinical pharmacology of new motility promoting agents.Neurogastroenterol. Motil.200517564365310.1111/j.1365‑2982.2005.00675.x 16185302
    [Google Scholar]
  75. SchmidtW.K. Alvimopan* (ADL 8-2698) is a novel peripheral opioid antagonist.Am. J. Surg.20011825ASuppl.27S38S10.1016/S0002‑9610(01)00784‑X 11755894
    [Google Scholar]
  76. WoodJ.D. GalliganJ.J. Function of opioids in the enteric nervous system.Neurogastroenterol. Motil.200416s2Suppl. 2172810.1111/j.1743‑3150.2004.00554.x 15357848
    [Google Scholar]
  77. CosolaC. AlbrizioM. GuaricciA.C. SalviaD.M.A. ZarrilliA. SciorsciR.L. MinoiaR. Opioid agonist/antagonist effect of naloxone in modulating rabbit jejunum contractility in vitro.J. Physiol. Pharmacol.2006573439449 17033096
    [Google Scholar]
  78. GrundyD. BoothC.E. WinchesterW. HicksG.A. Peripheral opiate action on afferent fibres supplying the rat intestine.Neurogastroenterol. Motil.200416s2Suppl. 2293710.1111/j.1743‑3150.2004.00557.x 15357849
    [Google Scholar]
  79. BeattieD.T. CheruvuM. MaiN. O’KeefeM. RabidouxJ.S. PetersonC. KaufmanE. VickeryR. The in vitro pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, ADL 08-0011 and methylnaltrexone.Naunyn Schmiedebergs Arch. Pharmacol.2007375320522010.1007/s00210‑007‑0146‑x 17340127
    [Google Scholar]
  80. LiuX. DengY. TangH. LuoH. NingL. Inhibitory activity of roemerine against pathogenic fungi and bacteria.Hubei Agr. Sci.20115026642667
    [Google Scholar]
  81. GokgozN.B. AkbulutB.S. Proteomics evidence for the activity of the putative antibacterial plant alkaloid (-)-roemerine: Mainstreaming omics-guided drug discovery.OMICS201519847848910.1089/omi.2015.0056 26230533
    [Google Scholar]
  82. ZhangW.L. YuT.Y. FengY.J. XieP.L. ZhangW. Reconstruction of Chinese materia medica - orange fruit (immature orange fruit).Jilin J. Chin. Med.2024446
    [Google Scholar]
  83. XieY. WuR. S. . The highly valuable medicinal plant for development— rhubarb. Technol. Manag., 20128
    [Google Scholar]
  84. YuanJ. Analysis of nutritional components of cortex magnoliae officinalis.Amino Acids Biot. Res.20113335859
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808340416241231063038
Loading
/content/journals/lddd/10.2174/0115701808340416241231063038
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test