Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Diabetic nephropathy, a complex microvascular complication of diabetes, poses substantial health and economic challenges globally. ZWD, known for its multi-component composition, has demonstrated potential therapeutic effects in DN, yet its molecular mechanisms require further elucidation to support its clinical application.

Aim

This study aimed to comprehensively investigate the active components, target molecules, and molecular mechanisms of Zhenwu Decoction (ZWD), a Traditional Chinese Medicine (TCM) formula, in the treatment of diabetic nephropathy (DN), with a focus on its anti-inflammatory effects through the modulation of the PDE3A-mediated cAMP-PKA-NFκB axis.

Objective

The primary objective was to identify the active components of ZWD, their targets, and the underlying molecular pathways through which ZWD exerts its therapeutic effects on DN, specifically focusing on the modulation of inflammation in renal cells under high glucose conditions.

Methods

A combined approach of network pharmacology, single-cell transcriptomics, and molecular docking analyses was employed to investigate the active components, target molecules, and underlying mechanisms of ZWD in treating DN. A high-glucose-induced HK-2 cell model was established to simulate DN conditions. Cell viability was assessed using the CCK-8 assay, while quantitative real-time PCR (qPCR) and Western blotting were employed to quantify gene expression and protein levels, respectively.

Results

Our analysis uncovered 141 active components in ZWD, which targeted 171 proteins involved in pathways related to hypoxia response, neuroactive ligand-receptor interaction, urotensin II signaling, and other pathways implicated in diabetes and vascular diseases. Among these, 75 overlapping genes were pinpointed as potential therapeutic targets of ZWD for DN. Protein-protein interaction networks revealed three functional clusters of targets potentially associated with oxidative stress responses, lipid metabolism, and hormonal regulation. Cell-type specific analyses showed differential expression of these targets in DN, particularly in proximal tubular epithelial cells. Notably, through molecular docking, we discovered a strong binding affinity between PDE3A and beta-sitosterol. experiments confirmed that ZWD extract modulated PDE3A expression, leading to the suppression of the PKA/AMPK/NF-κB axis and attenuation of high glucose-induced inflammation in HK-2 cells.

Conclusion

This study identified that Zhenwu Decoction (ZWD) suppressed high glucose-induced inflammation in renal cells by inhibiting the PDE3A-mediated cAMP-PKA-NFκB axis, highlighting the potential of ZWD as an effective adjunct therapy for diabetic nephropathy and paving the way for innovative anti-inflammatory treatments.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808339442241223062505
2025-01-10
2025-06-20
The full text of this item is not currently available.

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  2. DeFronzoR.A. ReevesW.B. AwadA.S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors.Nat. Rev. Nephrol.202117531933410.1038/s41581‑021‑00393‑8 33547417
    [Google Scholar]
  3. JiangG. LukA.O. TamC.H.T. OzakiR. LimC.K.P. ChowE.Y.K. LauE.S. KongA.P.S. FanB. LeeK.F. SiuS.C. HuiG. TsangC.C. LauK.P. LeungJ.Y. TsangM. KamG. LauI.T. LiJ.K. YeungV.T. LauE. LoS. FungS. ChengY.L. ChowC.C. TangN.L.S. HuangY. LanH. OramR.A. SzetoC.C. SoW.Y. ChanJ.C.N. MaR.C.W. Clinical predictors and long-term impact of acute kidney injury on progression of diabetic kidney disease in chinese patients with type 2 diabetes.Diabetes202271352052910.2337/db21‑0694 35043149
    [Google Scholar]
  4. GuoY. WangM. MouJ. ZhaoZ. YangJ. ZhuF. PeiG. ZhuH. WangY. XuG. ZengR. YaoY. Pretreatment of Huaiqihuang extractum protects against cisplatin-induced nephrotoxicity.Sci. Rep.201881733310.1038/s41598‑018‑25610‑6 29743526
    [Google Scholar]
  5. ZhangX. ChengY. ZhouQ. HuangH. DongY. YangY. ZhaoM. HeQ. The effect of chinese traditional medicine huaiqihuang (hqh) on the protection of nephropathy.Oxid. Med. Cell. Longev.2020202011010.1155/2020/2153912 32655761
    [Google Scholar]
  6. LvX. ZhouM. LiuX. XiangQ. YuR. Efficacy and safety of zhenwu decoction in the treatment of diabetic nephropathy: a systematic review and meta-analysis.Evid. Based Complement. Alternat. Med.2022202211310.1155/2022/2133705 36387355
    [Google Scholar]
  7. JinY.Q. ChenG.S. BaiM. ZhaoZ. ChenY.X. TianM.Y. ChenJ.L. WangQ.S. LiuZ.H. [Mechanism of Zhenwu Decoction in improving renal inflammatory injury in mice with DN of spleen-kidney Yang deficiency syndrome by regulating ROCK/IKK/NF-κB pathway]. Zhongguo Zhongyao Zazhi,2023481850415048 37802846
    [Google Scholar]
  8. LiuZ. ShangQ. LiH. FangD. LiZ. HuangY. ZhangM. KoK.M. ChenJ. Exploring the possible mechanism(s) underlying the nephroprotective effect of Zhenwu Decoction in diabetic kidney disease: An integrated analysis.Phytomedicine202311915498810.1016/j.phymed.2023.154988 37523837
    [Google Scholar]
  9. YanB. DingZ. ZhangW. CaiG. HanH. MaY. CaoY. WangJ. ChenS. AiY. Multiple PDE3A modulators act as molecular glues promoting PDE3A-SLFN12 interaction and induce SLFN12 dephosphorylation and cell death.Cell Chem. Biol.2022296958969.e510.1016/j.chembiol.2022.01.006 35104454
    [Google Scholar]
  10. ShuT. ZhouY. YanC. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection.Vascul. Pharmacol.202415410727810.1016/j.vph.2024.107278 38262506
    [Google Scholar]
  11. FleischmannD. HarloffM. Maslanka FigueroaS. SchlossmannJ. GoepferichA. Targeted delivery of soluble guanylate cyclase (sgc) activator cinaciguat to renal mesangial cells via virus-mimetic nanoparticles potentiates anti-fibrotic effects by cgmp-mediated suppression of the tgf-β pathway.Int. J. Mol. Sci.2021225255710.3390/ijms22052557 33806499
    [Google Scholar]
  12. ThompsonC.S. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors.World J. Diabetes20134412412910.4239/wjd.v4.i4.124 23961322
    [Google Scholar]
  13. HuL. ChenY. ZhouX. HoekM. CoxJ. LinK. LiuY. BlumenscheinW. GreinJ. SwaminathG. Effects of soluble guanylate cyclase stimulator on renal function in ZSF-1 model of diabetic nephropathy.PLoS One2022171e026100010.1371/journal.pone.0261000 35085251
    [Google Scholar]
  14. LiuY. WangS. JinG. GaoK. WangS. ZhangX. ZhouK. CaiY. ZhouX. ZhaoZ. Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway.Phytomedicine202311815491510.1016/j.phymed.2023.154915 37392674
    [Google Scholar]
  15. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  16. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  17. WilsonP.C. WuH. KiritaY. UchimuraK. LedruN. RennkeH.G. WellingP.A. WaikarS.S. HumphreysB.D. The single-cell transcriptomic landscape of early human diabetic nephropathy.Proc. Natl. Acad. Sci. USA201911639196191962510.1073/pnas.1908706116 31506348
    [Google Scholar]
  18. BrownleeM. The pathobiology of diabetic complications: a unifying mechanism.Diabetes20055461615162510.2337/diabetes.54.6.1615 15919781
    [Google Scholar]
  19. Navarro-GonzálezJ.F. Mora-FernándezC. The role of inflammatory cytokines in diabetic nephropathy.J. Am. Soc. Nephrol.200819343344210.1681/ASN.2007091048 18256353
    [Google Scholar]
  20. DebD.K. BaoR. LiY.C. Critical role of the cAMP‐PKA pathway in hyperglycemia‐induced epigenetic activation of fibrogenic program in the kidney.FASEB J.20173152065207510.1096/fj.201601116R 28148567
    [Google Scholar]
  21. RezaeeA. RahmanianP. NematiA. SohrabifardF. KarimiF. ElahiniaA. RanjbarpazukiA. LashkarboloukiR. DezfulianS. ZandiehM.A. SalimimoghadamS. NabaviN. RashidiM. TaheriazamA. HashemiM. HushmandiK. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies.Heliyon2024109e2987110.1016/j.heliyon.2024.e29871 38707342
    [Google Scholar]
  22. BrewsterU.C. PerazellaM.A. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease.Am. J. Med.2004116426327210.1016/j.amjmed.2003.09.034 14969655
    [Google Scholar]
  23. McGuireD.K. ShihW.J. CosentinoF. CharbonnelB. CherneyD.Z.I. Dagogo-JackS. PratleyR. GreenbergM. WangS. HuyckS. GantzI. TerraS.G. MasiukiewiczU. CannonC.P. Association of sglt2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis.JAMA Cardiol.20216214815810.1001/jamacardio.2020.4511 33031522
    [Google Scholar]
  24. SatoA. HayashiK. NaruseM. SarutaT. Effectiveness of aldosterone blockade in patients with diabetic nephropathy.Hypertension2003411646810.1161/01.HYP.0000044937.95080.E9 12511531
    [Google Scholar]
  25. García-GarcíaP.M. Getino-MeliánM.A. Domínguez-PimentelV. Navarro-GonzálezJ.F. Inflammation in diabetic kidney disease.World J. Diabetes20145443144310.4239/wjd.v5.i4.431 25126391
    [Google Scholar]
  26. LewisE.J. HunsickerL.G. BainR.P. RohdeR.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.N. Engl. J. Med.1993329201456146210.1056/NEJM199311113292004 8413456
    [Google Scholar]
  27. ZinmanB. WannerC. LachinJ.M. FitchettD. BluhmkiE. HantelS. MattheusM. DevinsT. JohansenO.E. WoerleH.J. BroedlU.C. InzucchiS.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa1504720 26378978
    [Google Scholar]
  28. ZhangX. ZhangJ. RenY. SunR. ZhaiX. Unveiling the pathogenesis and therapeutic approaches for diabetic nephropathy: insights from panvascular diseases.Front. Endocrinol. (Lausanne)202415136848110.3389/fendo.2024.1368481 38455648
    [Google Scholar]
  29. XueR. XiaoH. KumarV. LanX. MalhotraA. SinghalP. ChenJ. The molecular mechanism of renal tubulointerstitial inflammation promoting diabetic nephropathy.Int. J. Nephrol. Renovasc. Dis.20231624125210.2147/IJNRD.S436791 38075191
    [Google Scholar]
  30. GharibA. AskaryA. AlmehmadiM. EtewaR. AlthobaitiB. AllamH. ElsayyadL. ShafieA. Vitamin d and hypoxiainducible factor (hif-1α) serum levels as markers for progression of nephropathy in type 2 diabetic patients. Clin. Lab., 2022, 68(04/2022)
  31. WangY. ZhouM. ZhuQ. ZhangC. WangL. LiS. HuZ. [HIF-1α activation induces cholesterol homeostasis dysfunction to accelerate progression of diabetic nephropathy in rats]. Nan Fang Yi Ke Da Xue Xue Bao,2023431017821788 37933655
    [Google Scholar]
  32. LiX. JiangH. XuL. LiuY. TangJ. ShiJ. YuX. WangX. DuL. LuQ. LiC. LiuY. YinX. Sarsasapogenin restores podocyte autophagy in diabetic nephropathy by targeting GSK3β signaling pathway.Biochem. Pharmacol.202119211467510.1016/j.bcp.2021.114675 34252407
    [Google Scholar]
  33. LiuX. DucasaG.M. MallelaS.K. KimJ.J. MolinaJ. MitrofanovaA. WilbonS.S. GeM. FontanellaA. PedigoC. SantosJ.V. NelsonR.G. DrexlerY. ContrerasG. Al-AliH. MerscherS. FornoniA. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome.Kidney Int.20209851275128510.1016/j.kint.2020.06.040 32739420
    [Google Scholar]
  34. KawakitaE. KoyaD. KanasakiK. Cd26/dpp-4: type 2 diabetes drug target with potential influence on cancer biology.Cancers (Basel)2021139219110.3390/cancers13092191 34063285
    [Google Scholar]
  35. Al TuhaifiT. ZhongJ. YangH.C. FogoA.B. Effects of dipeptidyl peptidase-4 inhibitor and angiotensin-converting enzyme inhibitor on experimental diabetic kidney disease.Lab. Invest.2024104210030510.1016/j.labinv.2023.100305 38109999
    [Google Scholar]
  36. ZengL. ChanG.C.K. NgJ.K.C. FungW.W.S. ChowK.M. SzetoC.C. The effect of Dipeptidyl peptidase 4 (DPP-4) inhibitors on hemoglobin level in diabetic kidney disease: A retrospective cohort study.Medicine (Baltimore)202310232e3453810.1097/MD.0000000000034538 37565855
    [Google Scholar]
  37. RosenbergM.L. YaneffA. FerradásG.M. Villafañe TapiaM.P. DavioC.A. GoetteN.P. VlachovskyS.G. PeroniR.N. OddoE.M. AzurmendiP.J. Total and extracellular vesicle camp contents in urine are associated with autosomal dominant polycystic kidney disease (adpkd) progression.Life (Basel)2023139181710.3390/life13091817 37763221
    [Google Scholar]
  38. ZhangW. SunR. ZhongH. TangN. LiuY. ZhaoY. ZhangT. HeF. CaSR participates in the regulation of vascular tension in the mesentery of hypertensive rats via the PLC IP3/AC V/cAMP/RAS pathway.Mol. Med. Rep.20192054433444810.3892/mmr.2019.10620 31485595
    [Google Scholar]
  39. LiQ. XiaoC. GuJ. ChenX. YuanJ. LiS. LiW. GaoD. LiL. liu, Y.; Shen, F. 6-Gingerol ameliorates alveolar hypercoagulation and fibrinolytic inhibition in LPS-provoked ARDS via RUNX1/NF-κB signaling pathway.Int. Immunopharmacol.202412811145910.1016/j.intimp.2023.111459 38181675
    [Google Scholar]
  40. PengW. XiaQ. ZhangY. CaoD. ZhengX. VEGF and EGFR signaling pathways are involved in the baicalein attenuation of OVA-induced airway inflammation and airway remodeling in mice.Respir. Res.20242511010.1186/s12931‑023‑02637‑6 38178132
    [Google Scholar]
  41. NarakiK. Ghasemzadeh RahbardarM. AjiboyeB.O. HosseinzadehH. The effect of ellagic acid on the metabolic syndrome: A review article.Heliyon2023911e2184410.1016/j.heliyon.2023.e21844 38027887
    [Google Scholar]
  42. WangQ. WangX. The effect of plant-derived low-ratio linoleic acid/α-linolenic acid on markers of glucose controls: a systematic review and meta-analysis.Int. J. Mol. Sci.202324181438310.3390/ijms241814383 37762686
    [Google Scholar]
  43. LuX. WuK. JiangS. LiY. WangY. LiH. LiG. LiuQ. ZhouY. ChenW. MaoH. Therapeutic mechanism of baicalein in peritoneal dialysis-associated peritoneal fibrosis based on network pharmacology and experimental validation.Front. Pharmacol.202314115350310.3389/fphar.2023.1153503 37266145
    [Google Scholar]
  44. YangG. YangW. JiangH. YiQ. MaW. Hederagenin inhibits high glucose‐induced fibrosis in human renal cells by suppression of NLRP3 inflammasome activation through reducing cathepsin B expression.Chem. Biol. Drug Des.202310261409142010.1111/cbdd.14332 37599208
    [Google Scholar]
  45. ZhaoZ. WuD. LvD. ZhangB. ChenL. SunY. Ellagic acid inhibits the formation of hypertrophic scars by suppressing TGF‐β/Smad signaling pathway activity.Chem. Biol. Drug Des.2023102477378110.1111/cbdd.14287 37386691
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808339442241223062505
Loading
/content/journals/lddd/10.2174/0115701808339442241223062505
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test