Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Backgrounds

Advances in nanotechnology have revealed innovative applications in pharmaceutical sciences to solve unmet medical needs. Over the past decades, antibiotic resistance has emerged as a global concern. This catastrophic phenomenon, with a rapid increase in frequency, indicates the urgent need for the introduction of new approaches. In this respect, as a class of inorganic nanomaterials, mesoporous silica nanoparticles (MSNs) are of interest. Amongst, MCM-41 (MCM-Mobil Composition of Matter) possesses many advantages suitable for biomedical applications such as high pore volume, large surface area capacity, and controlled release properties as well as high bioavailability.

Objectives

In the current study, we aimed to develop a new drug delivery platform of ciprofloxacin (CIP) to combat antibiotic resistance practically using MSNs.

Methods

The MCM-41 nanoparticles were synthesized using surfactant as the templating agent. Afterward, drug molecules were loaded in the prepared mesoporous structure, and several experiments were conducted to assess physicochemical properties. As well, the encapsulation efficiency, release profile, and antibacterial properties were also evaluated.

Results

The CIP-loaded MCM-41 (CIP@MCM-41) nanoparticles represented good physicochemical properties. The results of the DLS method showed a particle size of 93.73 nm with a low polydispersity index (PDI) of 0.21, while SEM imaging demonstrated spherical particles with relative shape uniformity and size distribution. The encapsulation efficacy of MCM-41 MSNs for CIP was measured to be 28.7% ± 0.37 followed by negligible changes over 60 days. The release profile of CIP from prepared nanoparticles was also demonstrated to follow the zero-order kinetic model. Moreover, CIP@MCM-41 nanoparticles exhibited high antibacterial properties against test microorganisms (, , , and ).

Conclusion

The current formulation could be a promising candidate for the delivery of therapeutic agents to combat antibiotic resistance and promote public health.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808337915241015062218
2024-10-16
2025-06-20
Loading full text...

Full text loading...

References

  1. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636010.3389/fchem.2018.0036030177965
    [Google Scholar]
  2. SabirF. BaraniM. MukhtarM. RahdarA. CucchiariniM. ZafarM.N. BehlT. BungauS. Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview.Chemosensors2021946710.3390/chemosensors9040067
    [Google Scholar]
  3. MazahirF. BhogaleD. PalaiA.K. YadavA.K. Nanomedicine: Principles, properties, and regulatory issues. Smart Polymeric Nano-Constructs in Drug Delivery.Elsevier2023523565
    [Google Scholar]
  4. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  5. BhattacharyyaS. LelongG. SaboungiM.L. Recent progress in the synthesis and selected applications of MCM-41: A short review.J. Exp. Nanosci.20061337539510.1080/17458080600812757
    [Google Scholar]
  6. NakajimaE.A. OliveiraL.G. GasparriniL.J. SouzaG.E.Q. IgnacioA.A. AlvesH.J. BorbaC.E. Kinetics of dry reforming of methane catalyzed by Ni/Si-MCM-41.Int. J. Hydrogen Energy20234883323313234110.1016/j.ijhydene.2023.05.010
    [Google Scholar]
  7. PatilA. ChirmadeU.N. SlipperI. LamprouD.A. UrquhartA. DouroumisD. Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide.J. Nanomed. Nanotechnol.2011231810.4172/2157‑7439.1000111
    [Google Scholar]
  8. PopovaT. TzankovB. VoychevaC. SpassovaI. KovachevaD. TzankovS. AluaniD. TzankovaV. LambovN. Mesoporous silica MCM-41 and HMS as advanced drug delivery carriers for bicalutamide.J. Drug Deliv. Sci. Technol.20216210234010.1016/j.jddst.2021.102340
    [Google Scholar]
  9. CostaJ.A.S. JesusD.R.A. SantosD.O. ManoJ.F. RomãoL.P.C. ParanhosC.M. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials.Microp. Mesop. Mater.202029110969810.1016/j.micromeso.2019.109698
    [Google Scholar]
  10. AlamgholilooH. NazariS. AsgariE. SheikhmohammadiA. HashemzadehB. GhasemianN. BigdelooM. EhsaniA. Facile fabrication of Z-scheme TiO2/ZnO@MCM-41 heterojunctions nanostructures for photodegradation and bioactivity performance.J. Mol. Liq.202236411999010.1016/j.molliq.2022.119990
    [Google Scholar]
  11. SharmaS. SinghU.P. SinghA.P. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhydroquinoline derivatives.Polyhedron202119911510210.1016/j.poly.2021.115102
    [Google Scholar]
  12. McCarthyC.A. AhernR.J. DontireddyR. RyanK.B. CreanA.M. Mesoporous silica formulation strategies for drug dissolution enhancement: A review.Expert Opin. Drug Deliv.20161319310810.1517/17425247.2016.110016526549623
    [Google Scholar]
  13. RegiV.M. RámilaA. RealD.R.P. ParienteP.J. A new property of MCM-41: Drug delivery system.Chem. Mater.200113230831110.1021/cm0011559
    [Google Scholar]
  14. MoradiP. ZareiB. TyulaA.Y. NikoorazmM. Novel neodymium complex on MCM‐41 magnetic nanocomposite as a practical, selective, and returnable nanocatalyst in the synthesis of tetrazoles with antifungal properties in agricultural.Appl. Organomet. Chem.2023374e702010.1002/aoc.7020
    [Google Scholar]
  15. ShekalgourabiB.S.M. ShariatiniaZ. Designing photoelectrode architecture modified with mesoporous MCM-41/CeO2 composites as specific scattering layers for dye-sensitized solar cells.J. Photochem. Photobiol. Chem.202344311490410.1016/j.jphotochem.2023.114904
    [Google Scholar]
  16. SalamM.A. AminA.M.Y. SalamM.T. PawarJ.S. AkhterN. RabaanA.A. Antimicrobial resistance: A growing serious threat for global public health.Health Care20231113194610.3390/healthcare11131946
    [Google Scholar]
  17. WalshT.R. GalesA.C. LaxminarayanR. DoddP.C. Antimicrobial resistance: Addressing a global threat to humanity.CA, USAPublic Library of Science San Francisco2023e1004264
    [Google Scholar]
  18. MancusoG. MidiriA. GeraceE. BiondoC. Bacterial antibiotic resistance: The most critical pathogens.Pathogens20211010131010.3390/pathogens1010131034684258
    [Google Scholar]
  19. ChurchN.A. McKillipJ.L. Antibiotic resistance crisis: Challenges and imperatives.Biologia20217651535155010.1007/s11756‑021‑00697‑x
    [Google Scholar]
  20. JhaK.K. SainiS. RajA. Shreyasi; Bishnoi, H. The antibiotic resistance crisis.Asian J. Pharm. Res. Devel.2023115445210.22270/ajprd.v11i5.1321
    [Google Scholar]
  21. NamaziH. RakhshaeiR. HamishehkarH. KafilH.S. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing.Int. J. Biol. Macromol.20168532733410.1016/j.ijbiomac.2015.12.07626740467
    [Google Scholar]
  22. LeeH.H. AhnJ.W. KimH. Preparation of MCM-41 with high structural stability.Ceram. Int.200430681782210.1016/j.ceramint.2003.09.016
    [Google Scholar]
  23. NanZ. XueX. HouW. YanX. HanS. Fabrication of MCM-41 mesoporous silica through the self-assembly supermolecule of β-CD and CTAB.J. Solid State Chem.2007180278078410.1016/j.jssc.2006.11.011
    [Google Scholar]
  24. ZhaoX.S. LuG.Q. WhittakerA.K. MillarG.J. ZhuH.Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA.J. Phys. Chem. B1997101336525653110.1021/jp971366+
    [Google Scholar]
  25. HolmesS.M. ZholobenkoV.L. ThursfieldA. PlaistedR.J. CundyC.S. DwyerJ. In situ FTIR study of the formation of MCM-41.J. Chem. Soc., Faraday Trans.199894142025203210.1039/a801898g
    [Google Scholar]
  26. AfsharipourS. KavianipoorS. RanjbarM. BagheriA.M. NajafiM.L. BanatI.M. Fabrication and characterization of lipopeptide biosurfactant-based electrospun nanofibers for use in tissue engineering. Annal. Pharmaceu.Franç.202381696897610.1016/j.pharma.2023.08.008
    [Google Scholar]
  27. AfsharipourS. EstabraghM.A.R. NamakiA. OhadiM. MoshafiM.H. BanatI.M. DehghannoudehG. Preparation and physicochemical properties of a thermosensitive hydrogel-based lipopeptide biosurfactant.Lett. Drug Des. Discov.2024212110.2174/0115701808296878240419065845
    [Google Scholar]
  28. AlharthiS. ZioraZ.M. JanjuaT. PopatA. MoyleP.M. Formulation and biological evaluation of mesoporous silica nanoparticles loaded with combinations of sortase a inhibitors and antimicrobial peptides.Pharmaceutics202214598610.3390/pharmaceutics1405098635631572
    [Google Scholar]
  29. SchererR. PereiraJ. FirmeJ. LemosM. LemosM. Determination of ciprofloxacin in pharmaceutical formulations using hplc method with UV detection.Indian J. Pharm. Sci.201476654154425593388
    [Google Scholar]
  30. EstabraghR.M.A. PardakhtyA. AhmadzadehS. DabiriS. AfsharM.R. AbbasiF.M. Successful application of alpha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model.Adv. Pharm. Bull.202212354154910.34172/apb.2022.05835935040
    [Google Scholar]
  31. AmbrogiV. LatteriniL. MarmottiniF. PaganoC. RicciM. Mesoporous silicate MCM-41 as a particulate carrier for octyl methoxycinnamate: Sunscreen release and photostability.J. Pharm. Sci.201310251468147510.1002/jps.2347823459857
    [Google Scholar]
  32. FaroushaK. RangarajV.M. RambabuK. HaijaM.A. BanatF. Development of date seed extract encapsulated MCM-41: Characterization, release kinetics, antioxidant and antibacterial studies.Food Biosci.20235310256310.1016/j.fbio.2023.102563
    [Google Scholar]
  33. DoleteG. IlieC.I. ChircovC. PurcăreanuB. MotelicaL. MoroșanA. OpreaO.C. FicaiD. AndronescuE. DițuL.M. Synergistic antimicrobial activity of magnetite and vancomycin-loaded mesoporous silica embedded in alginate films.Gels20239429510.3390/gels904029537102906
    [Google Scholar]
  34. SapinoS. BossoO.S. ZonariD. ZattoniA. UgazioE. Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate.Int. J. Pharm.20175301-223924810.1016/j.ijpharm.2017.07.05828754510
    [Google Scholar]
  35. MadyO.Y. DoniaA.A. A new mathematic method for calculation of peppas-sahli n model constants and interpret the results in relation to zero order, higuchi, korsmeyer-peppas models and microcapsule structure image, world.J. Pharm. Res.2015421992246
    [Google Scholar]
  36. GalhanoJ. MarceloG.A. DuarteM.P. OliveiraE. Ofloxacin@Doxorubicin-Epirubicin functionalized MCM-41 mesoporous silica–based nanocarriers as synergistic drug delivery tools for cancer related bacterial infections.Bioorg. Chem.202211810547010.1016/j.bioorg.2021.10547034814085
    [Google Scholar]
  37. VenezioF.R. TatarowiczW. DiVincenzoC.A. O’KeefeJ.P. Activity of ciprofloxacin against multiply resistant strains of Pseudomonas aeruginosa, Staphylococcus epidermidis, and group JK corynebacteria.Antimicrob. Agents Chemother.198630694094110.1128/AAC.30.6.9403101589
    [Google Scholar]
  38. KangJ.Y. LeeW. NohG.M. JeongB.H. ParkI. LeeS.J. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region.Antimicrob. Resist. Infect. Control20209117710.1186/s13756‑020‑00841‑333148329
    [Google Scholar]
  39. GharaeiS. OhadiM. HassanshahianM. PorsheikhaliS. ForootanfarH. Isolation, optimization, and structural characterization of glycolipid biosurfactant produced by marine isolate Shewanella alga e B12 and evaluation of its antimicrobial and anti-biofilm activity.Appl. Biochem. Biotechnol.202219441755177410.1007/s12010‑021‑03782‑834982373
    [Google Scholar]
  40. DauT.A.N. LeV.M.H. PhamT.K.H. LeV.H. ChoS.K. NguyenT.N.U. TaT.K.H. Van TranT.T. Surface functionalization of doxorubicin loaded MCM-41 mesoporous silica nanoparticles by 3-aminopropyltriethoxysilane for selective anticancer 9 effect on A549 and A549/DOX cells.J. Electron. Mater.20215052932293910.1007/s11664‑021‑08813‑y
    [Google Scholar]
  41. BouchikhiN AdjdirM BendeddoucheKC BouazzaD MokhtarA BennabiF Enhancement of adsorption capacity of low cost mesoporous MCM-41 and their antibacterial and antifungal activities.Mat. Res. Exp.20206121250j7.
    [Google Scholar]
  42. SirotinS.V. MoskovskayaI.F. RomanovskyB.V. Synthetic strategy for Fe-MCM-41 catalyst: A key factor for homogeneous or heterogeneous phenol oxidation.Catal. Sci. Technol.20111697198010.1039/c1cy00107h
    [Google Scholar]
  43. SirotinS.V. MoskovskayaI.F. KolyaginY.G. YatsenkoA.V. RomanovskyB.V. Iron(III) chloride supported on MCM-41 molecular sieve as a catalyst for the liquid-phase oxidation of phenol.Russ. J. Phys. Chem. A. Focus Chem.201185339039610.1134/S0036024411030277
    [Google Scholar]
  44. SigamaniS. DubeyR.S.D.O.R.S. Synthesis of SIO2 nanoparticles by sol-gel method and their optical and structural properties.Rom. J. Inf. Sci. Technol.202023105112
    [Google Scholar]
  45. YanW. LiuD. TanD. YuanP. ChenM. FTIR spectroscopy study of the structure changes of palygorskite under heating.Spectrochim. Acta A Mol. Biomol. Spectrosc.2012971052105710.1016/j.saa.2012.07.08522925981
    [Google Scholar]
  46. SinghA.K. SinghS. MinochaT. YadavS.K. NarayanR. NayakU.Y. SinghS.K. AwasthiR. In vitro profiling and molecular dynamics simulation studies of berberine loaded MCM-41 mesoporous silica nanoparticles to prevent neuronal apoptosis.Nanoscale Adv.2024692469248610.1039/D3NA01142A38694466
    [Google Scholar]
  47. ArdakaniM.M. MokariZ. AlizadehZ. SarcheshmehM.H. AlibiekA.M. MirjaliliB.B.F. SalehiN. Electrochemical sensor for sensitive detection of an anticancer drug Capecitabine by modified carbon paste electrode with tetrahydrodipyrazolo pyridine derivative and Cu-MCM-41 nanoparticles.Microchem. J.202419910988710.1016/j.microc.2023.109887
    [Google Scholar]
  48. AlgahtaniM.S. AhmadM.Z. NoureinI.H. AhmadJ. Co-delivery of imiquimod and curcumin by nanoemugel for improved topical delivery and reduced psoriasis-like skin lesions.Biomolecules202010796810.3390/biom1007096832605030
    [Google Scholar]
  49. AfsharipourS. AsadiA. OhadiM. RanjbarM. ForootanfarH. JafariE. DehghannoudehG. Preparation and characterization of nano-lipopeptide biosurfactant hydrogel and evaluation of wound-healing properties.Bionanoscience20211141061106910.1007/s12668‑021‑00896‑5
    [Google Scholar]
  50. MoghadamR.N. ArefhosseiniS.R. JavadiA. LotfipurF. AnsarinM. TamiziE. NematiM. Determination of enrofloxacin and ciprofloxacin residues in five different kinds of chicken tissues by dispersive liquid-liquid microextraction coupled with HPLC.Iran. J. Pharm. Res.20181741182119030568678
    [Google Scholar]
  51. MellaertsR. JammaerJ.A.G. SpeybroeckV.M. ChenH. HumbeeckJ.V. AugustijnsP. MooterV.D.G. MartensJ.A. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen.Langmuir200824168651865910.1021/la801161g18630936
    [Google Scholar]
  52. FirmansyahF. MuhtadiW.K. IndrianiS. UlhaqM.D. AuliyaS.R. IskandarB. AgistiaN. ChabibL. Development of novel curcumin nanoemulgel: Optimisation, characterisation, and ex vivo permeation.Pharm. Educ.20222229810310.46542/pe.2022.222.98103
    [Google Scholar]
  53. TzankovaV. AluaniD. YordanovY. ValotiM. FrosiniM. SpassovaI. KovachevaD. TzankovB. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles.Drug Chem. Toxicol.202144323824910.1080/01480545.2019.157150330822164
    [Google Scholar]
  54. HuY. ZhiZ. ZhaoQ. WuC. ZhaoP. JiangH. JiangT. WangS. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol.Microp. Mesop. Mater.201214719410110.1016/j.micromeso.2011.06.001
    [Google Scholar]
  55. YuanL. TangQ. YangD. ZhangJ.Z. ZhangF. HuJ. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery.J. Phys. Chem. C2011115209926993210.1021/jp201053d
    [Google Scholar]
  56. AtiyahN.A. AlbayatiT.M. AtiyaM.A. Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy.Adv. Powder Technol.202233210341710.1016/j.apt.2021.103417
    [Google Scholar]
  57. TanA. SimovicS. DaveyA.K. RadesT. BoydB.J. PrestidgeC.A. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems.Mol. Pharm.20107252253210.1021/mp900244220063867
    [Google Scholar]
  58. AbeerM.M. RewatkarP. QuZ. TalekarM. KleitzF. SchmidR. LindénM. KumeriaT. PopatA. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules.J. Control. Release202032654455510.1016/j.jconrel.2020.07.02132687941
    [Google Scholar]
  59. ZhangW. ZhuC. XiaoF. LiuX. XieA. ChenF. DongP. LinP. ZhengC. ZhangH. GongH. WuY. PH-controlled release of antigens using mesoporous silica nanoparticles delivery system for developing a fish oral vaccine.Front. Immunol.20211264439610.3389/fimmu.2021.64439633953716
    [Google Scholar]
  60. GetovI. GetovI. Safety limitations of fluoroquinolones’ use.Maced. Pharm. Bul.202066321321410.33320/maced.pharm.bull.2020.66.03.106
    [Google Scholar]
  61. RossR.K. KinlawA.C. HerzogM.M. FunkJ.M. GerberJ.S. Fluoroquinolone antibiotics and tendon injury in adolescents.Pediatrics20211476e202003331610.1542/peds.2020‑03331633990459
    [Google Scholar]
  62. ZhangY. ChanH.F. LeongK.W. Advanced materials and processing for drug delivery: The past and the future.Adv. Drug Deliv. Rev.201365110412010.1016/j.addr.2012.10.00323088863
    [Google Scholar]
  63. RahamanS.N. PathmanapanS. SidharthanA. AnandasadagopanS.K. Vancomycin loaded amino-functionalized mcm-48 mesoporous silica nanoparticles as a promising drug carrier in bone substitutes for bacterial infection management.Appl. Biochem. Biotechnol.2023195116607663210.1007/s12010‑023‑04406‑z36892681
    [Google Scholar]
  64. MuruganB. KrishnanU.M. Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy.Int. J. Pharm.20185531-231032610.1016/j.ijpharm.2018.10.02630316004
    [Google Scholar]
  65. AsliB. AbdelkrimS. ZahraouiM. MokhtarA. HachemaouiM. BennabiF. AhmedA.B. SardiA. BoukoussaB. Catalytic reduction and antibacterial activity of MCM-41 modified by silver nanoparticles.Silicon20221418125871259810.1007/s12633‑022‑01963‑6
    [Google Scholar]
  66. RazaA. MilesJ.A. SimeF.B. RossB.P. RobertsJ.A. PopatA. KumeriaT. FalconerJ.R. PLGA encapsulated γ-cyclodextrin-meropenem inclusion complex formulation for oral delivery.Int. J. Pharm.202159712028010.1016/j.ijpharm.2021.12028033540004
    [Google Scholar]
  67. MakabentaJ.M.V. NabawyA. LiC.H. MalanS.S. PatelR. RotelloV.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021191233610.1038/s41579‑020‑0420‑132814862
    [Google Scholar]
  68. PelgriftR.Y. FriedmanA.J. Nanotechnology as a therapeutic tool to combat microbial resistance.Adv. Drug Deliv. Rev.20136513-141803181510.1016/j.addr.2013.07.01123892192
    [Google Scholar]
  69. RodríguezD.T.M. BlázquezB.E. GarcíaF.M. BonillaM.A. PérezE. CerradaM.L. Antimicrobial activity and crystallization features in bio-based composites of PLLA and MCM-41 particles either pristine or functionalized with confined ag nanowires.Polymers2023159208410.3390/polym1509208437177226
    [Google Scholar]
  70. LiC.H. ChenX. LandisR.F. GengY. MakabentaJ.M. LemniosW. GuptaA. RotelloV.M. Phytochemical-based nanocomposites for the treatment of bacterial biofilms.ACS Infect. Dis.2019591590159610.1021/acsinfecdis.9b0013431251554
    [Google Scholar]
  71. AbdelghanyS.M. QuinnD.J. IngramR.J. GilmoreB.F. DonnellyR.F. TaggartC.C. ScottC.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection.Int. J. Nanomedicine201274053406322915848
    [Google Scholar]
  72. WangY. DingX. ChenY. GuoM. ZhangY. GuoX. GuH. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections.Biomaterials201610120721610.1016/j.biomaterials.2016.06.00427294538
    [Google Scholar]
  73. BrezoiuA.M. DeaconuM. NicuI. VasileE. MitranR.A. MateiC. BergerD. Heteroatom modified MCM-41-silica carriers for Lomefloxacin delivery systems.Microp. Mesop. Mater.201927521422210.1016/j.micromeso.2018.08.031
    [Google Scholar]
  74. JinL. TengJ. HuL. LanX. XuY. ShengJ. SongY. WangM. Pepper fragrant essential oil (PFEO) and functionalized MCM‐41 nanoparticles: Formation, characterization, and bactericidal activity.J. Sci. Food Agric.201999115168517510.1002/jsfa.977631056749
    [Google Scholar]
  75. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  76. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.193617934096457
    [Google Scholar]
  77. SinghV. DhankharP. DalalV. TomarS. KumarP. In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target.J. Mol. Graph. Model.202211610826210.1016/j.jmgm.2022.10826235839717
    [Google Scholar]
  78. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. KotraG.D. KumarP. Structure-based identification of potential drugs against FMTA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  79. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in‐silico approach.Chem. Select2022742e20220172810.1002/slct.202201728
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808337915241015062218
Loading
/content/journals/lddd/10.2174/0115701808337915241015062218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test