Skip to content
2000
image of A Novel Drug Delivery Platform Against Bacterial Resistance: Synthesis and Characterization of Ciprofloxacin-loaded MCM-41 Mesoporous Silica Nanoparticle

Abstract

Backgrounds

Advances in nanotechnology have revealed innovative applications in pharmaceutical sciences to solve unmet medical needs. Over the past decades, antibiotic resistance has emerged as a global concern. This catastrophic phenomenon, with a rapid increase in frequency, indicates the urgent need for the introduction of new approaches. In this respect, as a class of inorganic nanomaterials, mesoporous silica nanoparticles (MSNs) are of interest. Amongst, MCM-41 (MCM-Mobil Composition of Matter) possesses many advantages suitable for biomedical applications such as high pore volume, large surface area capacity, and controlled release properties as well as high bioavailability.

Objectives

In the current study, we aimed to develop a new drug delivery platform of ciprofloxacin (CIP) to combat antibiotic resistance practically using MSNs.

Methods

The MCM-41 nanoparticles were synthesized using surfactant as the templating agent. Afterward, drug molecules were loaded in the prepared mesoporous structure, and several experiments were conducted to assess physicochemical properties. As well, the encapsulation efficiency, release profile, and antibacterial properties were also evaluated.

Results

The CIP-loaded MCM-41 (CIP@MCM-41) nanoparticles represented good physicochemical properties. The results of the DLS method showed a particle size of 93.73 nm with a low polydispersity index (PDI) of 0.21, while SEM imaging demonstrated spherical particles with relative shape uniformity and size distribution. The encapsulation efficacy of MCM-41 MSNs for CIP was measured to be 28.7% ± 0.37 followed by negligible changes over 60 days. The release profile of CIP from prepared nanoparticles was also demonstrated to follow the zero-order kinetic model. Moreover, CIP@MCM-41 nanoparticles exhibited high antibacterial properties against test microorganisms (, , , and ).

Conclusion

The current formulation could be a promising candidate for the delivery of therapeutic agents to combat antibiotic resistance and promote public health.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808337915241015062218
2024-10-16
2024-11-26
Loading full text...

Full text loading...

References

  1. Soares S. Sousa J. Pais A. Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem. 2018 6 360 10.3389/fchem.2018.00360 30177965
    [Google Scholar]
  2. Sabir F. Barani M. Mukhtar M. Rahdar A. Cucchiarini M. Zafar M.N. Behl T. Bungau S. Nanodiagnosis and na-notreatment of cardiovascular diseases: An overview. Chemosensors 2021 9 4 67 10.3390/chemosensors9040067
    [Google Scholar]
  3. Mazahir F. Bhogale D. Palai A.K. Yadav A.K. Nanomedi-cine: Principles, properties, and regulatory issues.Smart Pol-ymeric Nano-Constructs in Drug Delivery. Elsevier 2023 523 565
    [Google Scholar]
  4. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  5. Bhattacharyya S. Lelong G. Saboungi M.L. Recent pro-gress in the synthesis and selected applications of MCM-41: A short review. J. Exp. Nanosci. 2006 1 3 375 395 10.1080/17458080600812757
    [Google Scholar]
  6. Nakajima E.A. Oliveira L.G. Gasparrini L.J. Souza G.E.Q. Ignacio A.A. Alves H.J. Borba C.E. Kinetics of dry reforming of methane catalyzed by Ni/Si-MCM-41. Int. J. Hydrogen Energy 2023 48 83 32331 32341 10.1016/j.ijhydene.2023.05.010
    [Google Scholar]
  7. Patil A. Chirmade U.N. Slipper I. Lamprou D.A. Ur-quhart A. Douroumis D. Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J. Nanomed. Nanotechnol. 2011 2 3 1 8 10.4172/2157‑7439.1000111
    [Google Scholar]
  8. Popova T. Tzankov B. Voycheva C. Spassova I. Ko-vacheva D. Tzankov S. Aluani D. Tzankova V. Lambov N. Mesoporous silica MCM-41 and HMS as advanced drug delivery carriers for bicalutamide. J. Drug Deliv. Sci. Technol. 2021 62 102340 10.1016/j.jddst.2021.102340
    [Google Scholar]
  9. Costa J.A.S. Jesus D.R.A. Santos D.O. Mano J.F. Romão L.P.C. Paranhos C.M. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microp. Mesop. Mater. 2020 291 109698 10.1016/j.micromeso.2019.109698
    [Google Scholar]
  10. Alamgholiloo H. Nazari S. Asgari E. Sheikhmohammadi A. Hashemzadeh B. Ghasemian N. Bigdeloo M. Ehsani A. Facile fabrication of Z-scheme TiO2/ZnO@MCM-41 het-erojunctions nanostructures for photodegradation and bioac-tivity performance. J. Mol. Liq. 2022 364 119990 10.1016/j.molliq.2022.119990
    [Google Scholar]
  11. Sharma S. Singh U.P. Singh A.P. Synthesis of MCM-41 supported cobalt (II) complex for the formation of polyhy-droquinoline derivatives. Polyhedron 2021 199 115102 10.1016/j.poly.2021.115102
    [Google Scholar]
  12. McCarthy C.A. Ahern R.J. Dontireddy R. Ryan K.B. Crean A.M. Mesoporous silica formulation strategies for drug dissolution enhancement: A review. Expert Opin. Drug Deliv. 2016 13 1 93 108 10.1517/17425247.2016.1100165 26549623
    [Google Scholar]
  13. Regi V.M. Rámila A. Real D.R.P. Pariente P.J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2001 13 2 308 311 10.1021/cm0011559
    [Google Scholar]
  14. Moradi P. Zarei B. Tyula A.Y. Nikoorazm M. Novel neodymium complex on MCM‐41 magnetic nanocomposite as a practical, selective, and returnable nanocatalyst in the synthesis of tetrazoles with antifungal properties in agricultur-al. Appl. Organomet. Chem. 2023 37 4 e7020 10.1002/aoc.7020
    [Google Scholar]
  15. Shekalgourabi B.S.M. Shariatinia Z. Designing photoelec-trode architecture modified with mesoporous MCM-41/CeO2 composites as specific scattering layers for dye-sensitized so-lar cells. J. Photochem. Photobiol. Chem. 2023 443 114904 10.1016/j.jphotochem.2023.114904
    [Google Scholar]
  16. Salam M.A. Amin A.M.Y. Salam M.T. Pawar J.S. Akh-ter N. Rabaan A.A. Antimicrobial resistance: A growing se-rious threat for global public health. Healthcare 2023 11 13 1946 10.3390/healthcare11131946
    [Google Scholar]
  17. Walsh T.R. Gales A.C. Laxminarayan R. Dodd P.C. Anti-microbial resistance: Addressing a global threat to humanity. CA, USA Public Library of Science San Francisco 2023 e1004264
    [Google Scholar]
  18. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021 10 10 1310 10.3390/pathogens10101310 34684258
    [Google Scholar]
  19. Church N.A. McKillip J.L. Antibiotic resistance crisis: Chal-lenges and imperatives. Biologia 2021 76 5 1535 1550 10.1007/s11756‑021‑00697‑x
    [Google Scholar]
  20. Jha K.K. Saini S. Raj A. Shreyasi; Bishnoi, H. The anti-biotic resistance crisis. Asian J. Pharm. Res. Devel. 2023 11 5 44 52 10.22270/ajprd.v11i5.1321
    [Google Scholar]
  21. Namazi H. Rakhshaei R. Hamishehkar H. Kafil H.S. An-tibiotic loaded carboxymethylcellulose/MCM-41 nanocompo-site hydrogel films as potential wound dressing. Int. J. Biol. Macromol. 2016 85 327 334 10.1016/j.ijbiomac.2015.12.076 26740467
    [Google Scholar]
  22. Lee H.H. Ahn J.W. Kim H. Preparation of MCM-41 with high structural stability. Ceram. Int. 2004 30 6 817 822 10.1016/j.ceramint.2003.09.016
    [Google Scholar]
  23. Nan Z. Xue X. Hou W. Yan X. Han S. Fabrication of MCM-41 mesoporous silica through the self-assembly su-permolecule of β-CD and CTAB. J. Solid State Chem. 2007 180 2 780 784 10.1016/j.jssc.2006.11.011
    [Google Scholar]
  24. Zhao X.S. Lu G.Q. Whittaker A.K. Millar G.J. Zhu H.Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. J. Phys. Chem. B 1997 101 33 6525 6531 10.1021/jp971366+
    [Google Scholar]
  25. Holmes S.M. Zholobenko V.L. Thursfield A. Plaisted R.J. Cundy C.S. Dwyer J. In situ FTIR study of the for-mation of MCM-41. J. Chem. Soc., Faraday Trans. 1998 94 14 2025 2032 10.1039/a801898g
    [Google Scholar]
  26. Afsharipour S. Kavianipoor S. Ranjbar M. Bagheri A.M. Najafi M.L. Banat I.M. Fabrication and characterization of lipopeptide biosurfactant-based electrospun nanofibers for use in tissue engineering. Annal. Pharmaceu. Franç. 2023 81 6 968 976 10.1016/j.pharma.2023.08.008
    [Google Scholar]
  27. Afsharipour S. Estabragh M.A.R. Namaki A. Ohadi M. Moshafi M.H. Banat I.M. Dehghannoudeh G. Preparation and physicochemical properties of a thermosensitive hydro-gel-based lipopeptide biosurfactant. Lett. Drug Des. Discov. 2024 21 21 10.2174/0115701808296878240419065845
    [Google Scholar]
  28. Alharthi S. Ziora Z.M. Janjua T. Popat A. Moyle P.M. Formulation and biological evaluation of mesoporous silica nanoparticles loaded with combinations of sortase a inhibitors and antimicrobial peptides. Pharmaceutics 2022 14 5 986 10.3390/pharmaceutics14050986 35631572
    [Google Scholar]
  29. Scherer R. Pereira J. Firme J. Lemos M. Lemos M. De-termination of ciprofloxacin in pharmaceutical formulations using hplc method with UV detection. Indian J. Pharm. Sci. 2014 76 6 541 544 25593388
    [Google Scholar]
  30. Estabragh R.M.A. Pardakhty A. Ahmadzadeh S. Dabiri S. Afshar M.R. Abbasi F.M. Successful application of al-pha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model. Adv. Pharm. Bull. 2022 12 3 541 549 10.34172/apb.2022.058 35935040
    [Google Scholar]
  31. Ambrogi V. Latterini L. Marmottini F. Pagano C. Ricci M. Mesoporous silicate MCM-41 as a particulate carrier for octyl methoxycinnamate: Sunscreen release and photostabil-ity. J. Pharm. Sci. 2013 102 5 1468 1475 10.1002/jps.23478 23459857
    [Google Scholar]
  32. Farousha K. Rangaraj V.M. Rambabu K. Haija M.A. Banat F. Development of date seed extract encapsulated MCM-41: Characterization, release kinetics, antioxidant and antibacterial studies. Food Biosci. 2023 53 102563 10.1016/j.fbio.2023.102563
    [Google Scholar]
  33. Dolete G. Ilie C.I. Chircov C. Purcăreanu B. Motelica L. Moroșan A. Oprea O.C. Ficai D. Andronescu E. Dițu L.M. Synergistic antimicrobial activity of magnetite and van-comycin-loaded mesoporous silica embedded in alginate films. Gels 2023 9 4 295 10.3390/gels9040295 37102906
    [Google Scholar]
  34. Sapino S. Bosso O.S. Zonari D. Zattoni A. Ugazio E. Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate. Int. J. Pharm. 2017 530 1-2 239 248 10.1016/j.ijpharm.2017.07.058 28754510
    [Google Scholar]
  35. Mady O.Y. Donia A.A. A new mathematic method for cal-culation of peppas-sahli n model constants and interpret the results in relation to zero order, higuchi, korsmeyer-peppas models and microcapsule structure image, world. J. Pharm. Res. 2015 4 2199 2246
    [Google Scholar]
  36. Galhano J. Marcelo G.A. Duarte M.P. Oliveira E. Ofloxa-cin@Doxorubicin-Epirubicin functionalized MCM-41 meso-porous silica–based nanocarriers as synergistic drug delivery tools for cancer related bacterial infections. Bioorg. Chem. 2022 118 105470 10.1016/j.bioorg.2021.105470 34814085
    [Google Scholar]
  37. Venezio F.R. Tatarowicz W. DiVincenzo C.A. O’Keefe J.P. Activity of ciprofloxacin against multiply resistant strains of Pseudomonas aeruginosa, Staphylococcus epidermidis, and group JK corynebacteria. Antimicrob. Agents Chemother. 1986 30 6 940 941 10.1128/AAC.30.6.940 3101589
    [Google Scholar]
  38. Kang J.Y. Lee W. Noh G.M. Jeong B.H. Park I. Lee S.J. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their muta-tions in quinolone-resistance determining region. Antimicrob. Resist. Infect. Control 2020 9 1 177 10.1186/s13756‑020‑00841‑3 33148329
    [Google Scholar]
  39. Gharaei S. Ohadi M. Hassanshahian M. Porsheikhali S. Forootanfar H. Isolation, optimization, and structural charac-terization of glycolipid biosurfactant produced by marine iso-late Shewanella alga e B12 and evaluation of its antimicrobial and anti-biofilm activity. Appl. Biochem. Biotechnol. 2022 194 4 1755 1774 10.1007/s12010‑021‑03782‑8 34982373
    [Google Scholar]
  40. Dau T.A.N. Le V.M.H. Pham T.K.H. Le V.H. Cho S.K. Nguyen T.N.U. Ta T.K.H. Van Tran T.T. Surface func-tionalization of doxorubicin loaded MCM-41 mesoporous sil-ica nanoparticles by 3-aminopropyltriethoxysilane for selec-tive anticancer 9 effect on A549 and A549/DOX cells. J. Electron. Mater. 2021 50 5 2932 2939 10.1007/s11664‑021‑08813‑y
    [Google Scholar]
  41. Bouchikhi N Adjdir M Bendeddouche KC Bouazza D Mokhtar A Bennabi F Enhancement of adsorption capacity of low cost mesoporous MCM-41 and their antibacterial and antifungal activities. Mat. Res. Exp. 2020 6 12 1250j7
    [Google Scholar]
  42. Sirotin S.V. Moskovskaya I.F. Romanovsky B.V. Synthet-ic strategy for Fe-MCM-41 catalyst: A key factor for homoge-neous or heterogeneous phenol oxidation. Catal. Sci. Technol. 2011 1 6 971 980 10.1039/c1cy00107h
    [Google Scholar]
  43. Sirotin S.V. Moskovskaya I.F. Kolyagin Y.G. Yatsenko A.V. Romanovsky B.V. Iron(III) chloride supported on MCM-41 molecular sieve as a catalyst for the liquid-phase oxidation of phenol. Russ. J. Phys. Chem. A. Focus Chem. 2011 85 3 390 396 10.1134/S0036024411030277
    [Google Scholar]
  44. Sigamani S. Dubey R.S.D.O.R.S. Synthesis of SIO2 nano-particles by sol-gel method and their optical and structural properties. Rom. J. Inf. Sci. Technol. 2020 23 105 112
    [Google Scholar]
  45. Yan W. Liu D. Tan D. Yuan P. Chen M. FTIR spectros-copy study of the structure changes of palygorskite under heating. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 97 1052 1057 10.1016/j.saa.2012.07.085 22925981
    [Google Scholar]
  46. Singh A.K. Singh S. Minocha T. Yadav S.K. Narayan R. Nayak U.Y. Singh S.K. Awasthi R. In vitro profiling and molecular dynamics simulation studies of berberine loaded MCM-41 mesoporous silica nanoparticles to prevent neuronal apoptosis. Nanoscale Adv. 2024 6 9 2469 2486 10.1039/D3NA01142A 38694466
    [Google Scholar]
  47. Ardakani M.M. Mokari Z. Alizadeh Z. Sarcheshmeh M.H. Alibiek A.M. Mirjalili B.B.F. Salehi N. Electrochem-ical sensor for sensitive detection of an anticancer drug Cape-citabine by modified carbon paste electrode with tetrahydro-dipyrazolo pyridine derivative and Cu-MCM-41 nanoparti-cles. Microchem. J. 2024 199 109887 10.1016/j.microc.2023.109887
    [Google Scholar]
  48. Algahtani M.S. Ahmad M.Z. Nourein I.H. Ahmad J. Co-delivery of imiquimod and curcumin by nanoemugel for im-proved topical delivery and reduced psoriasis-like skin le-sions. Biomolecules 2020 10 7 968 10.3390/biom10070968 32605030
    [Google Scholar]
  49. Afsharipour S. Asadi A. Ohadi M. Ranjbar M. Forootan-far H. Jafari E. Dehghannoudeh G. Preparation and charac-terization of nano-lipopeptide biosurfactant hydrogel and evaluation of wound-healing properties. Bionanoscience 2021 11 4 1061 1069 10.1007/s12668‑021‑00896‑5
    [Google Scholar]
  50. Moghadam R.N. Arefhosseini S.R. Javadi A. Lotfipur F. Ansarin M. Tamizi E. Nemati M. Determination of en-rofloxacin and ciprofloxacin residues in five different kinds of chicken tissues by dispersive liquid-liquid microextraction coupled with HPLC. Iran. J. Pharm. Res. 2018 17 4 1182 1190 30568678
    [Google Scholar]
  51. Mellaerts R. Jammaer J.A.G. Speybroeck V.M. Chen H. Humbeeck J.V. Augustijns P. Mooter V.D.G. Martens J.A. Physical state of poorly water soluble therapeutic mole-cules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen. Langmuir 2008 24 16 8651 8659 10.1021/la801161g 18630936
    [Google Scholar]
  52. Firmansyah F. Muhtadi W.K. Indriani S. Ulhaq M.D. Auliya S.R. Iskandar B. Agistia N. Chabib L. Develop-ment of novel curcumin nanoemulgel: Optimisation, charac-terisation, and ex vivo permeation. Pharm. Educ. 2022 22 2 98 103 10.46542/pe.2022.222.98103
    [Google Scholar]
  53. Tzankova V. Aluani D. Yordanov Y. Valoti M. Frosini M. Spassova I. Kovacheva D. Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous sili-ca nanoparticles. Drug Chem. Toxicol. 2021 44 3 238 249 10.1080/01480545.2019.1571503 30822164
    [Google Scholar]
  54. Hu Y. Zhi Z. Zhao Q. Wu C. Zhao P. Jiang H. Jiang T. Wang S. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microp. Mesop. Mater. 2012 147 1 94 101 10.1016/j.micromeso.2011.06.001
    [Google Scholar]
  55. Yuan L. Tang Q. Yang D. Zhang J.Z. Zhang F. Hu J. Preparation of pH-responsive mesoporous silica nanoparti-cles and their application in controlled drug delivery. J. Phys. Chem. C 2011 115 20 9926 9932 10.1021/jp201053d
    [Google Scholar]
  56. Atiyah N.A. Albayati T.M. Atiya M.A. Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. Adv. Powder Technol. 2022 33 2 103417 10.1016/j.apt.2021.103417
    [Google Scholar]
  57. Tan A. Simovic S. Davey A.K. Rades T. Boyd B.J. Prestidge C.A. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Mol. Pharm. 2010 7 2 522 532 10.1021/mp9002442 20063867
    [Google Scholar]
  58. Abeer M.M. Rewatkar P. Qu Z. Talekar M. Kleitz F. Schmid R. Lindén M. Kumeria T. Popat A. Silica nano-particles: A promising platform for enhanced oral delivery of macromolecules. J. Control. Release 2020 326 544 555 10.1016/j.jconrel.2020.07.021 32687941
    [Google Scholar]
  59. Zhang W. Zhu C. Xiao F. Liu X. Xie A. Chen F. Dong P. Lin P. Zheng C. Zhang H. Gong H. Wu Y. PH-controlled release of antigens using mesoporous silica nano-particles delivery system for developing a fish oral vaccine. Front. Immunol. 2021 12 644396 10.3389/fimmu.2021.644396 33953716
    [Google Scholar]
  60. Getov I. Getov I. Safety limitations of fluoroquinolones’ use. Maced. Pharm. Bul. 2020 66 3 213 214 10.33320/maced.pharm.bull.2020.66.03.106
    [Google Scholar]
  61. Ross R.K. Kinlaw A.C. Herzog M.M. Funk J.M. Gerber J.S. Fluoroquinolone antibiotics and tendon injury in adoles-cents. Pediatrics 2021 147 6 e2020033316 10.1542/peds.2020‑033316 33990459
    [Google Scholar]
  62. Zhang Y. Chan H.F. Leong K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013 65 1 104 120 10.1016/j.addr.2012.10.003 23088863
    [Google Scholar]
  63. Rahaman S.N. Pathmanapan S. Sidharthan A. Anan-dasadagopan S.K. Vancomycin loaded amino-functionalized mcm-48 mesoporous silica nanoparticles as a promising drug carrier in bone substitutes for bacterial infection management. Appl. Biochem. Biotechnol. 2023 195 11 6607 6632 10.1007/s12010‑023‑04406‑z 36892681
    [Google Scholar]
  64. Murugan B. Krishnan U.M. Chemoresponsive smart meso-porous silica systems – An emerging paradigm for cancer therapy. Int. J. Pharm. 2018 553 1-2 310 326 10.1016/j.ijpharm.2018.10.026 30316004
    [Google Scholar]
  65. Asli B. Abdelkrim S. Zahraoui M. Mokhtar A. Hachemaoui M. Bennabi F. Ahmed A.B. Sardi A. Bou-koussa B. Catalytic reduction and antibacterial activity of MCM-41 modified by silver nanoparticles. Silicon 2022 14 18 12587 12598 10.1007/s12633‑022‑01963‑6
    [Google Scholar]
  66. Raza A. Miles J.A. Sime F.B. Ross B.P. Roberts J.A. Popat A. Kumeria T. Falconer J.R. PLGA encapsulated γ-cyclodextrin-meropenem inclusion complex formulation for oral delivery. Int. J. Pharm. 2021 597 120280 10.1016/j.ijpharm.2021.120280 33540004
    [Google Scholar]
  67. Makabenta J.M.V. Nabawy A. Li C.H. Malan S.S. Patel R. Rotello V.M. Nanomaterial-based therapeutics for antibi-otic-resistant bacterial infections. Nat. Rev. Microbiol. 2021 19 1 23 36 10.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  68. Pelgrift R.Y. Friedman A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013 65 13-14 1803 1815 10.1016/j.addr.2013.07.011 23892192
    [Google Scholar]
  69. Rodríguez D.T.M. Blázquez B.E. García F.M. Bonilla M.A. Pérez E. Cerrada M.L. Antimicrobial activity and crystallization features in bio-based composites of PLLA and MCM-41 particles either pristine or functionalized with con-fined ag nanowires. Polymers 2023 15 9 2084 10.3390/polym15092084 37177226
    [Google Scholar]
  70. Li C.H. Chen X. Landis R.F. Geng Y. Makabenta J.M. Lemnios W. Gupta A. Rotello V.M. Phytochemical-based nanocomposites for the treatment of bacterial biofilms. ACS Infect. Dis. 2019 5 9 1590 1596 10.1021/acsinfecdis.9b00134 31251554
    [Google Scholar]
  71. Abdelghany S.M. Quinn D.J. Ingram R.J. Gilmore B.F. Donnelly R.F. Taggart C.C. Scott C.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomedicine 2012 7 4053 4063 22915848
    [Google Scholar]
  72. Wang Y. Ding X. Chen Y. Guo M. Zhang Y. Guo X. Gu H. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 2016 101 207 216 10.1016/j.biomaterials.2016.06.004 27294538
    [Google Scholar]
  73. Brezoiu A.M. Deaconu M. Nicu I. Vasile E. Mitran R.A. Matei C. Berger D. Heteroatom modified MCM-41-silica carriers for Lomefloxacin delivery systems. Microp. Mesop. Mater. 2019 275 214 222 10.1016/j.micromeso.2018.08.031
    [Google Scholar]
  74. Jin L. Teng J. Hu L. Lan X. Xu Y. Sheng J. Song Y. Wang M. Pepper fragrant essential oil (PFEO) and functional-ized MCM‐41 nanoparticles: Formation, characterization, and bactericidal activity. J. Sci. Food Agric. 2019 99 11 5168 5175 10.1002/jsfa.9776 31056749
    [Google Scholar]
  75. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicro-bial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  76. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmaco-phore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2022 40 20 9833 9847 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  77. Singh V. Dhankhar P. Dalal V. Tomar S. Kumar P. In-silico functional and structural annotation of hypothetical pro-tein from Klebsiella pneumonia: A potential drug target. J. Mol. Graph. Model. 2022 116 108262 10.1016/j.jmgm.2022.108262 35839717
    [Google Scholar]
  78. Dalal V. Dhankhar P. Singh V. Singh V. Rakhaminov G. Kotra G.D. Kumar P. Structure-based identification of potential drugs against FMTA of Staphylococcus aureus: Vir-tual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021 40 2 148 165 10.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  79. Dalal V. Kumari R. Screening and identification of natural product‐like compounds as potential antibacterial agents tar-geting FemC of Staphylococcus aureus: An in‐silico approach. Chem. Select 2022 7 42 e202201728 10.1002/slct.202201728
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808337915241015062218
Loading
/content/journals/lddd/10.2174/0115701808337915241015062218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test