Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

In recent years, computational approaches have tremendously guided computational medicinal chemists and research scientists to analyze protein structures, kinetics, functions, and molecular interactions of the administered drugs.

Objective

This study aimed to identify a novel inhibitor against SARS-CoV-2 using human CD26 and modeled spike protein through suitable approaches.

Methods

In this work, molecular docking and molecular dynamics simulation experiments were conducted to gain insights into the binding affinity and stability, respectively. The docked complex of CD26 with modeled spike protein showed higher binding affinity than the complex of CD26 with resolved spike protein due to the existence of strong interactions with the crucial amino acid residues of the target proteins.

Results

The results of the molecular dynamics simulation demonstrated that CD26 with the modeled spike protein docked complex showed good stability when compared with the resolved protein.

Conclusion

From this computational finding, it was also suggested that the structure was stable and would rapidly guide the discovery of potential inhibitors against COVID-19.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808322637240722052915
2024-08-19
2025-06-27
Loading full text...

Full text loading...

References

  1. WuY.C. ChenC.S. ChanY.J. The outbreak of COVID-19: An overview.J. Chin. Med. Assoc.202083321722010.1097/JCMA.0000000000000270 32134861
    [Google Scholar]
  2. ZhongN.S. ZhengB.J. LiY.M. PoonL.L.M. XieZ.H. ChanK.H. LiP.H. TanS.Y. ChangQ. XieJ.P. LiuX.Q. XuJ. LiD.X. YuenK.Y. PeirisJ.S.M. GuanY. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003.Lancet200336293931353135810.1016/S0140‑6736(03)14630‑2 14585636
    [Google Scholar]
  3. OmraniA.S. Al-TawfiqJ.A. MemishZ.A. Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction.Pathog. Glob. Health2015109835436210.1080/20477724.2015.1122852 26924345
    [Google Scholar]
  4. RossiG.A. SaccoO. MancinoE. CristianiL. MidullaF. Differences and similarities between SARS-CoV and SARS-CoV-2: Spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases.Infection202048566566910.1007/s15010‑020‑01486‑5 32737833
    [Google Scholar]
  5. RabaanA.A. SmajlovićS. TombulogluH. ĆordićS. HajdarevićA. KudićN. Al MutaiA. TurkistaniS.A. Al-AhmedS.H. Al-ZakiN.A. Al MarshoodM.J. AlfarajA.H. AlhumaidS. Al-SuhaimiE. SARS‐CoV‐2 infection and multi-organ system damage: A review.Bosn. J. Basic Med. Sci.2022231375210.17305/bjbms.2022.7762 36124445
    [Google Scholar]
  6. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  7. ZhouH. YangJ. ZhouC. ChenB. FangH. ChenS. ZhangX. WangL. ZhangL. A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV.Front. Med.2021862837010.3389/fmed.2021.628370 34950674
    [Google Scholar]
  8. EzhilanM. SureshI. NesakumarN. SARS-CoV, MERS-CoV and SARS-CoV-2: A diagnostic challenge.Measurement202116810833510.1016/j.measurement.2020.108335 33519010
    [Google Scholar]
  9. NaqviA.A.T. FatimaK. MohammadT. FatimaU. SinghI.K. SinghA. AtifS.M. HariprasadG. HasanG.M. HassanM.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach.Biochim. Biophys. Acta Mol. Basis Dis.202018661016587810.1016/j.bbadis.2020.165878 32544429
    [Google Scholar]
  10. GorkhaliR. KoiralaP. RijalS. MainaliA. BaralA. BhattaraiH.K. Structure and function of major SARS-CoV-2 and SARS-CoV proteins.Bioinform. Biol. Insights20211513210.1177/11779322211025876 34220199
    [Google Scholar]
  11. ZhangZ. NomuraN. MuramotoY. EkimotoT. UemuraT. LiuK. YuiM. KonoN. AokiJ. IkeguchiM. NodaT. IwataS. OhtoU. ShimizuT. Structure of SARS-CoV-2 membrane protein essential for virus assembly.Nat. Commun.2022131439910.1038/s41467‑022‑32019‑3 35931673
    [Google Scholar]
  12. VelusamyP. KirubaK. SuC.H. ArunV. AnbuP. GopinathS.C.B. VaseeharanB. SARS-CoV-2 spike protein: Site-specific breakpoints for the development of COVID-19 vaccines.J. King Saud Univ. Sci.202133810164810.1016/j.jksus.2021.101648 34690467
    [Google Scholar]
  13. SamyA. MaherM.A. AbdelsalamN.A. BadrE. SARS-CoV-2 potential drugs, drug targets, and biomarkers: A viral-host interaction network-based analysis.Sci. Rep.20221211193410.1038/s41598‑022‑15898‑w 35831333
    [Google Scholar]
  14. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x 34611326
    [Google Scholar]
  15. HeurichA. Hofmann-WinklerH. GiererS. LiepoldT. JahnO. PöhlmannS. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.J. Virol.20148821293130710.1128/JVI.02202‑13 24227843
    [Google Scholar]
  16. KlemannC. WagnerL. StephanM. von HörstenS. Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system.Clin. Exp. Immunol.2016185112110.1111/cei.12781 26919392
    [Google Scholar]
  17. DuJ. FuJ. ZhangW. ZhangL. ChenH. ChengJ. HeT. FuJ. Effect of DPP4/CD26 expression on SARS CoV 2 susceptibility, immune response, adenosine (derivatives m 62 A and CD) regulations on patients with cancer and healthy individuals.Int. J. Oncol.20236234110.3892/ijo.2023.5489 36799191
    [Google Scholar]
  18. RahaA.A. ChakrabortyS. HendersonJ. Mukaetova-LadinskaE. ZamanS. TrowsdaleJ. Raha-ChowdhuryR. Investigation of CD26, a potential SARS-CoV-2 receptor, as a biomarker of age and pathology.Biosci. Rep.20204012BSR2020309210.1042/BSR20203092 33205807
    [Google Scholar]
  19. OliverJ.C. SilvaE.N. SoaresL.M. ScodelerG.C. SantosA.S. CorsettiP.P. PrudêncioC.R. de AlmeidaL.A. Different drug approaches to COVID-19 treatment worldwide: An update of new drugs and drugs repositioning to fight against the novel coronavirus.Ther. Adv. Vaccines Immunother.20221012210.1177/25151355221144845 36578829
    [Google Scholar]
  20. van de VeerdonkF.L. Giamarellos-BourboulisE. PickkersP. DerdeL. LeavisH. van CrevelR. EngelJ.J. WiersingaW.J. VlaarA.P.J. Shankar-HariM. van der PollT. BontenM. AngusD.C. van der MeerJ.W.M. NeteaM.G. A guide to immunotherapy for COVID-19.Nat. Med.2022281395010.1038/s41591‑021‑01643‑9 35064248
    [Google Scholar]
  21. RahmanM.M. MasumM.H.U. WajedS. TalukderA. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges.Virusdisease202233112210.1007/s13337‑022‑00755‑1 35127995
    [Google Scholar]
  22. VankadariN. WilceJ.A. Emerging COVID-19 coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26.Emerg. Microbes Infect.20209160160410.1080/22221751.2020.1739565 32178593
    [Google Scholar]
  23. Pérez-MacedonioC.P. Flores-AlfaroE. Alarcón-RomeroL.C. Vences-VelázquezA. Castro-AlarcónN. Martínez-MartínezE. RamirezM. CD14 and CD26 from serum exosomes are associated with type 2 diabetes, exosomal Cystatin C and CD14 are associated with metabolic syndrome and atherogenic index of plasma.PeerJ202210e1365610.7717/peerj.13656 35846887
    [Google Scholar]
  24. SieversF. WilmA. DineenD. GibsonT.J. KarplusK. LiW. LopezR. McWilliamH. RemmertM. SödingJ. ThompsonJ.D. HigginsD.G. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. In: Molecula Systems Biology; School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin.: Dublin, Ireland, 201153910.1038/msb.2011.75
    [Google Scholar]
  25. BoratynG.M. SchäfferA.A. AgarwalaR. AltschulS.F. LipmanD.J. MaddenT.L. Domain enhanced lookup time accelerated BLAST.Biol. Direct2012711210.1186/1745‑6150‑7‑12 22510480
    [Google Scholar]
  26. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  27. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res200735Web ServerW407W41010.1093/nar/gkm290175177812007
    [Google Scholar]
  28. LaskowskiR.A. PDBsum new things. Nucleic Acids Res.,200937DatabaseD355D35910.1093/nar/gkn86018996896
    [Google Scholar]
  29. van ZundertG.C.P. RodriguesJ.P.G.L.M. TrelletM. SchmitzC. KastritisP.L. KaracaE. MelquiondA.S.J. van DijkM. de VriesS.J. BonvinA.M.J.J. The HADDOCK2.2 Web server: User-friendly integrative modeling of biomolecular complexes.J. Mol. Biol.2016428472072510.1016/j.jmb.2015.09.014 26410586
    [Google Scholar]
  30. AnandK. KhanF.I. SinghT. ElumalaiP. BalakumarC. PremnathD. LaiD. ChuturgoonA.A. SaravananM. Green synthesis, experimental and theoretical studies to discover novel binders of exosomal tetraspanin CD81 protein.ACS Omega2020529179731798210.1021/acsomega.0c01166 32743170
    [Google Scholar]
  31. SankarM.K.L. JeyachandranS. PandiB. Screening of inhibitors as potential remedial against Ebolavirus infection: Pharmacophore-based approach.J. Biomol. Struct. Dyn.202139239540810.1080/07391102.2020.1715260 31928158
    [Google Scholar]
  32. MuthumanickamS. IndhumathiT. BoomiP. BalajeeR. JeyakanthanJ. AnandK. RavikumarS. KumarP. SudhaA. JiangZ. In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer.J. Biomol. Struct. Dyn.20224041629163810.1080/07391102.2020.1830855 33034258
    [Google Scholar]
  33. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-21925
    [Google Scholar]
  34. KushwahaB. KushwahaN.D. PriyaM. ChandrasekaranB. ObakachiV.A. ChauhanR. KidwaiS. SinghR. GanaiA.M. KarpoormathR. Novel fluorophenyl tethered thiazole and chalcone analogues as potential anti-tubercular agents: Design, synthesis, biological and in silico evaluations.J. Mol. Struct.2023127613479110.1016/j.molstruc.2022.134791
    [Google Scholar]
  35. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals20231712210.3390/ph17010022 38256856
    [Google Scholar]
  36. JainN.K. TailangM. ChandrasekaranB. KhazalehN. ThangavelN. MakeenH.A. AlbrattyM. NajmiA. AlhazmiH.A. ZoghebiK. AlagusundaramM. JainH.K. Integrating network pharmacology with molecular docking to rationalize the ethnomedicinal use of Alchornea laxiflora (Benth.) Pax & K. Hoffm. for efficient treatment of depression.Front. Pharmacol.202415129039810.3389/fphar.2024.1290398 38505421
    [Google Scholar]
  37. GovenderY. ShalekoffS. EbrahimO. WajaZ. ChaissonR.E. MartinsonN. TiemessenC.T. Systemic DPP4/CD26 is associated with natural HIV-1 control: Implications for COVID-19 susceptibility.Clin. Immunol.202123010882410.1016/j.clim.2021.108824 34391936
    [Google Scholar]
  38. LambeirA.M. DurinxC. ScharpéS. De MeesterI. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV.Crit. Rev. Clin. Lab. Sci.200340320929410.1080/713609354 12892317
    [Google Scholar]
  39. WaumansY. BaertsL. KehoeK. LambeirA.M. De MeesterI. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis.Front. Immunol.2015638710.3389/fimmu.2015.00387 26300881
    [Google Scholar]
  40. ZakiA.M. van BoheemenS. BestebroerT.M. OsterhausA.D.M.E. FouchierR.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N. Engl. J. Med.2012367191814182010.1056/NEJMoa1211721 23075143
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808322637240722052915
Loading
/content/journals/lddd/10.2174/0115701808322637240722052915
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test