Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

This perspective focuses on the hyper-permeable vasculature, contributing to the passive accumulation of drugs or NP-drug combinations through the paracellular and/or transcellular pathways. This unique, cardinal, pathological feature of the vasculature in solid tumors is a major determinant for the entry of anti-cancer macromolecules, with longer drug retention, attributable to imperfections in the lymphatic drainage system. However, the desmoplastic reaction, another challenge in terms of drug delivery, is attributable to the collagen-dense, heterogeneous accumulation of stromal components in the Tumour Microenvironment (TME). Thus, the consequent increases in the Interstitial Fluid Pressure (IFP) have been determined by experimental and computational techniques. This back-flow can contribute to decrements in the drug/NP-drug conjugate reaching the tumour site, warranting strategies to be adopted that can lower this pressure. However, the translational potential of the EPR-effect-mediated drug delivery in humans is limited. The tumour-specific, spatiotemporal differences in the EPR effect require human-relevant tumour models as well as their analysis based on advanced imaging, including MRI-based studies. This development, validation, and refinement of an iterative strategy can lead to the optimization of such customized models for personalised, tailor-made medicine.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808306902240604071741
2024-06-12
2025-06-22
Loading full text...

Full text loading...

References

  1. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  2. ChenN. BrachmannC. LiuX. PierceD.W. DeyJ. KerwinW.S. LiY. ZhouS. HouS. CarletonM. KlinghofferR.A. PalmisanoM. ChopraR. Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration.Cancer Chemother. Pharmacol.201576469971210.1007/s00280‑015‑2833‑5 26231955
    [Google Scholar]
  3. WinklerJ. Abisoye-OgunniyanA. MetcalfK.J. WerbZ. Concepts of extracellular matrix remodelling in tumour progression and metastasis.Nat. Commun.2020111512010.1038/s41467‑020‑18794‑x 33037194
    [Google Scholar]
  4. MeaneyC. StapletonS. KohandelM. Predicting intratumoral fluid pressure and liposome accumulation using physics informed deep learning.Sci. Rep.20231312054810.1038/s41598‑023‑47988‑8 37996509
    [Google Scholar]
  5. HansenA.E. PetersenA.L. HenriksenJ.R. BoerresenB. RasmussenP. ElemaD.R. RosenschöldP.M. KristensenA.T. KjærA. AndresenT.L. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes.ACS Nano2015976985699510.1021/acsnano.5b01324 26022907
    [Google Scholar]
  6. XuW. YangS. LuL. XuQ. WuS. ZhouJ. LuJ. FanX. MengN. DingY. ZhengX. LuW. Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs.J. Control. Release202335453855310.1016/j.jconrel.2023.01.026 36641120
    [Google Scholar]
  7. CaoS. ZhangW. PanH. HuangZ. GuoM. ZhangL. XuX. SawP.E. Bioactive lipid-nanoparticles with inherent self-therapeutic and anti-angiogenic properties for cancer therapy.Acta Biomater.202315750051010.1016/j.actbio.2022.12.022 36535568
    [Google Scholar]
  8. PeiP. ChenL. FanR. ZhouX.R. FengS. LiuH. GuoQ. YinH. ZhangQ. SunF. PengL. WeiP. HeC. QiaoR. WangZ. LuoS.Z. Computer-aided design of lasso-like self-assembling anticancer peptides with multiple functions for targeted self-delivery and cancer treatments.ACS Nano2022169137831379910.1021/acsnano.2c01014 36099446
    [Google Scholar]
  9. ShimM.K. YangS. ParkJ. YoonJ.S. KimJ. MoonY. ShimN. JoM. ChoiY. KimK. Preclinical development of carrier-free prodrug nanoparticles for enhanced antitumor therapeutic potential with less toxicity.J. Nanobiotechnology202220143610.1186/s12951‑022‑01644‑x 36195911
    [Google Scholar]
  10. MoonY. ShimM.K. ChoiJ. YangS. KimJ. YunW.S. ChoH. ParkJ.Y. KimY. SeongJ.K. KimK. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death.Theranostics20221251999201410.7150/thno.69119 35265195
    [Google Scholar]
  11. LiK. ZangX. MengX. LiY. XieY. ChenX. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment.Drug Deliv.202229197098510.1080/10717544.2022.2055225 35343862
    [Google Scholar]
  12. AugustinH.G. KohG.Y. Antiangiogenesis: Vessel regression, vessel normalization, or both?Cancer Res.2022821151710.1158/0008‑5472.CAN‑21‑3515 34983784
    [Google Scholar]
  13. BiancacciI. De LorenziF. TheekB. BaiX. MayJ.N. ConsolinoL. BauesM. MoeckelD. GremseF. von StillfriedS. El ShafeiA. BenderskiK. Azadkhah ShalmaniA. WangA. MomohJ. PeñaQ. BuhlE.M. BuyelJ. HenninkW. KiesslingF. MetselaarJ. ShiY. LammersT. Monitoring EPR effect dynamics during nanotaxane treatment with theranostic polymeric micelles.Adv. Sci.2022910210374510.1002/advs.202103745 35072358
    [Google Scholar]
  14. WangD. YueJ. CaoQ. LiuJ. YangL. ShenW. ZhangW. LiuJ. ICG-loaded and 125 I-labeled theranostic nanosystem for multimodality imaging-navigated phototherapy of breast cancer.Biomater. Sci.202211124826210.1039/D2BM01551J 36440665
    [Google Scholar]
  15. LiuY. YeZ. YangW. HuY. ZhaoY. LiZ. XuB. ChenD. TuJ. ShenY. A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy.J. Control. Release202234512013710.1016/j.jconrel.2022.03.010 35276301
    [Google Scholar]
  16. XieH. ZhangC. LiT. HuL. ZhangJ. GuoH. LiuZ. PengD. LiZ. WuW. GaoJ. BiZ. WangJ. ZhangP. KwokR.T.K. LamJ.W.Y. GuoZ. XiL. LiK. TangB.Z. Fast delivery of multifunctional NIR‐II theranostic nanoaggregates enabled by the photoinduced thermoacoustic process.Adv. Sci. (Weinh.)20231019230110410.1002/advs.202301104 37088786
    [Google Scholar]
  17. BaiL. YiW. ChenJ. WangB. TianY. ZhangP. ChengX. SiJ. HouX. HouJ. Two-stage targeted bismuthene-based composite nanosystem for multimodal imaging guided enhanced hyperthermia and inhibition of tumor recurrence.ACS Appl. Mater. Interfaces20221422250502506410.1021/acsami.2c01128 35608833
    [Google Scholar]
  18. NajdianA. AmanlouM. BeikiD. Bitarafan-RajabiA. MirzaeiM. Shafiee ArdestaniM. Amino-modified-silica-coated gadolinium-copper nanoclusters, conjugated to AS1411 aptamer and radiolabeled with technetium-99 m as a novel multimodal imaging agent.Bioorg. Chem.202212510582710.1016/j.bioorg.2022.105827 35569188
    [Google Scholar]
  19. ZhangH. XuJ. GaoB. WangH. HuangJ. ZhouJ. YangR. YanF. PengY. Synergistic cascade strategy based on modifying tumor microenvironment for enhanced breast cancer therapy.Front. Pharmacol.20211275084710.3389/fphar.2021.750847 34867360
    [Google Scholar]
  20. MillerM.A. GaddeS. PfirschkeC. EngblomC. SprachmanM.M. KohlerR.H. YangK.S. LaughneyA.M. WojtkiewiczG. KamalyN. BhonagiriS. PittetM.J. FarokhzadO.C. WeisslederR. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle.Sci. Transl. Med.20157314314ra18310.1126/scitranslmed.aac6522 26582898
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808306902240604071741
Loading
/content/journals/lddd/10.2174/0115701808306902240604071741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test