Skip to content
2000
Volume 21, Issue 17
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

This study aimed to assess the combinational antidiabetic effect of catechin and metformin in streptozotocin (STZ)-induced diabetic rats.

Methods

Wistar rats were chosen and divided into five groups (n=6). STZ at the dose of 55 mg/kg was used intraperitoneally for the induction of diabetes. The combination of catechin (CTN) and metformin (MET) was administered to diabetic rats. The changes in fasting blood sugar, body weight, Hb, HbA1c, creatinine, lipid profiles (TC, HDL, LDL, and TG), biochemical parameters (SGOT, SGPT, and ALP), and endogenous antioxidant parameters (SOD, GSH, and catalase) were assessed. Histopathological study of the β-cells in islets of the pancreas, kidney tubules, and liver cells was conducted in all groups.

Results

The result showed a significant reduction ( < 0.001) in blood sugar in the CTN and MET-treated group compared to the control group. The combination of CTN (50 mg/kg) and MET (22.5 mg/kg) significantly restored the creatinine levels and urine volumes, SGOT, SGPT, and ALP, compared to a single administration dose. The abnormal lipid profile levels (TC, LDL, TG, and HDL) and antioxidant enzymes (SOD, GSH, catalase) in diabetic control rats were restored to average levels in a significant manner. Histopathological results revealed significant alterations, including hypertrophy of islets and mild degeneration, renal necrosis, and inflammation of hepatocytes.

Conclusion

The findings indicate that a combination of therapy (CTN+MET) improved the protective effect of the pancreas, kidney, and liver, suggesting that the combination shows a potential anti-diabetic effect.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808304505240628103332
2024-07-10
2025-06-22
Loading full text...

Full text loading...

References

  1. ChenJ. LiX. LiuH. ZhongD. YinK. LiY. ZhuL. XuC. LiM. WangC. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis.Diabet. Med.2023407e1503110.1111/dme.15031 36537855
    [Google Scholar]
  2. LiJ.M. LiX. ChanL.W.C. HuR. ZhengT. LiH. YangS. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice.Diabetologia202366122368238610.1007/s00125‑023‑05992‑7 37615690
    [Google Scholar]
  3. SheetzM.J. KingG.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications.JAMA2002288202579258810.1001/jama.288.20.2579 12444865
    [Google Scholar]
  4. MakindeE.A. RadenahmadN. AdekoyaA.E. OlatunjiO.J. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin-induced diabetes in rats.J. Food Biochem.2020446e1323910.1111/jfbc.13239 32281660
    [Google Scholar]
  5. XiongD. HuW. HanX. CaiY. Rhein inhibited ferroptosis and EMT to attenuate diabetic nephropathy by regulating the rac1/NOX1/β-catenin Axis.Frontiers in Bioscience-Landmark202328510010.31083/j.fbl2805100 37258467
    [Google Scholar]
  6. ZhangC. GeH. ZhangS. LiuD. JiangZ. LanC. LiL. FengH. HuR. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage.Neurol. Ther.20211021001101310.1007/s40120‑021‑00279‑8 34515953
    [Google Scholar]
  7. LuoM. CaoQ. WangD. TanR. ShiY. ChenJ. ChenR. TangG. ChenL. MeiZ. XiaoZ. The impact of diabetes on postoperative outcomes following spine surgery: A meta-analysis of 40 cohort studies with 2.9 million participants.Int. J. Surg.202210410678910.1016/j.ijsu.2022.106789 35918006
    [Google Scholar]
  8. GuoW. ZhangZ. LiL. LiangX. WuY. WangX. MaH. ChengJ. ZhangA. TangP. WangC.Z. WanJ.Y. YaoH. YuanC.S. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes.Pharmacol. Res.202218210635510.1016/j.phrs.2022.106355 35842183
    [Google Scholar]
  9. YaoH ZhangA LiD WuY WangCZ WanJY YuanCS Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. BMJ2024384e076410
    [Google Scholar]
  10. KaurR. AfzalM. KazmiI. AhamdI. AhmedZ. AliB. AhmadS. AnwarF. Polypharmacy (herbal and synthetic drug combination): A novel approach in the treatment of type-2 diabetes and its complications in rats.J. Nat. Med.201367366267110.1007/s11418‑012‑0720‑5 23151907
    [Google Scholar]
  11. ChangC.L.T. LinY. BartolomeA.P. ChenY.C. ChiuS.C. YangW.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds.Evid. Based Complement. Alternat. Med.2013201313310.1155/2013/378657 23662132
    [Google Scholar]
  12. LiangD. CaiX. GuanQ. OuY. ZhengX. LinX. Burden of type 1 and type 2 diabetes and high fasting plasma glucose in Europe, 1990-2019: A comprehensive analysis from the global burden of disease study 2019.Front. Endocrinol. (Lausanne)202314130743210.3389/fendo.2023.1307432 38152139
    [Google Scholar]
  13. XiaoD. GuoY. LiX. YinJ.Y. ZhengW. QiuX.W. XiaoL. LiuR.R. WangS.Y. GongW.J. ZhouH.H. LiuZ.Q. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients.Int. J. Endocrinol.201620161710.1155/2016/4350712 26977146
    [Google Scholar]
  14. HouY. XiangJ. WangB. DuanS. SongR. ZhouW. TanS. HeB. Pathogenesis and comprehensive treatment strategies of sarcopenia in elderly patients with type 2 diabetes mellitus.Front. Endocrinol. (Lausanne)202414126365010.3389/fendo.2023.1263650 38260146
    [Google Scholar]
  15. EgbunaC. AwuchiC.G. KushwahaG. RudrapalM. Patrick-IwuanyanwuK.C. SinghO. OdohU.E. KhanJ. JeevanandamJ. KumarasamyS. ChukwubeV.O. NarayananM. PalaiS. GămanM.A. UcheC.Z. OgajiD.S. EzeoforN.J. MtewaA.G. Patrick-IwuanyanwuC.C. KeshS.S. ShivamalluC. SaravananK. TijjaniH. AkramM. IfemejeJ.C. OlisahM.C. ChikwenduC.J. Bioactive compounds effective against type 2 diabetes mellitus: A systematic review.Curr. Top. Med. Chem.202121121067109510.2174/18734294MTE1ENjAgx 33966619
    [Google Scholar]
  16. CollinsQ.F. LiuH.Y. PiJ. LiuZ. QuonM.J. CaoW. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5q-AMP-activated protein kinase.J. Biol. Chem.200728241301433014910.1074/jbc.M702390200 17724029
    [Google Scholar]
  17. SpencerJ.P.E. Abd El MohsenM.M. Rice-EvansC. Cellular uptake and metabolism of flavonoids and their metabolites: Implications for their bioactivity.Arch. Biochem. Biophys.2004423114816110.1016/j.abb.2003.11.010 14989269
    [Google Scholar]
  18. MaheshwariN. MahmoodR. Protective effect of catechin on pentachlorophenol-induced cytotoxicity and genotoxicity in isolated human blood cells.Environ. Sci. Pollut. Res. Int.20202712138261384310.1007/s11356‑020‑07969‑0 32036526
    [Google Scholar]
  19. MatsumotoN. IshigakiF. IshigakiA. IwashinaH. HaraY. Reduction of blood glucose levels by tea catechin.Biosci. Biotechnol. Biochem.199357452552710.1271/bbb.57.525
    [Google Scholar]
  20. FuM. ShenW. GaoW. NamujiaL. YangX. CaoJ. SunL. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase.Bioorg. Chem.202111510523510.1016/j.bioorg.2021.105235 34388484
    [Google Scholar]
  21. StrobelP. AllardC. Perez-AcleT. CalderonR. AldunateR. LeightonF. Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes.Biochem. J.2005386347147810.1042/BJ20040703 15469417
    [Google Scholar]
  22. NiD. AiZ. Munoz-SandovalD. SureshR. EllisP.R. YuqiongC. SharpP.A. ButterworthP.J. YuZ. CorpeC.P. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins.FASEB J.202034899951001010.1096/fj.202000057RR 32564472
    [Google Scholar]
  23. LeeY.E. YooS.H. ChungJ.O. ParkM.Y. HongY.D. ParkS.H. ParkT.S. ShimS.M. Hypoglycemic effect of soluble polysaccharide and catechins from green tea on inhibiting intestinal transport of glucose.J. Sci. Food Agric.2020100103979398610.1002/jsfa.10442 32342987
    [Google Scholar]
  24. TakahashiM. OzakiM. TsubosakaM. KimH.K. SasakiH. MatsuiY. HibiM. OsakiN. MiyashitaM. ShibataS. Effects of timing of acute and consecutive catechin ingestion on postprandial glucose metabolism in mice and humans.Nutrients202012256510.3390/nu12020565 32098219
    [Google Scholar]
  25. WolframS. RaederstorffD. PrellerM. WangY. TeixeiraS.R. RieggerC. WeberP. Epigallocatechin gallate supplementation alleviates diabetes in rodents.J. Nutr.2006136102512251810.1093/jn/136.10.2512 16988119
    [Google Scholar]
  26. KweonB. KimD.U. OhJ.Y. ParkS.J. BaeG.S. Catechin hydrate ameliorates cerulein induced chronic pancreatitis via the inactivation of TGF β/Smad2 signaling.Mol. Med. Rep.202328520810.3892/mmr.2023.13095 37732516
    [Google Scholar]
  27. HanM.K. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage.Exp. Mol. Med.200335213613910.1038/emm.2003.19 12754418
    [Google Scholar]
  28. RowleyT.J.IV BitnerB.F. RayJ.D. LathenD.R. SmithsonA.T. DallonB.W. PlowmanC.J. BikmanB.T. HansenJ.M. DorenkottM.R. GoodrichK.M. YeL. O’KeefeS.F. NeilsonA.P. TessemJ.S. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.J. Nutr. Biochem.201749304110.1016/j.jnutbio.2017.07.015 28863367
    [Google Scholar]
  29. BrimsonJ.M. PrasanthM.I. KumareeK.K. ThitilertdechaP. MalarD.S. TencomnaoT. PrasansuklabA. Tea plant (Camellia sinensis): A current update on use in diabetes, obesity, and cardiovascular disease.Nutrients20221513710.3390/nu15010037 36615695
    [Google Scholar]
  30. AnagaN. LekshmyK. PurushothamanJ. (+)-Catechin mitigates impairment in insulin secretion and beta cell damage in methylglyoxal-induced pancreatic beta cells.Mol. Biol. Rep.202451143410.1007/s11033‑024‑09338‑3 38520585
    [Google Scholar]
  31. ItoA. MatsuiY. TakeshitaM. KatashimaM. GotoC. KurikiK. Gut microbiota-mediated associations of green tea and catechin intakes with glucose metabolism in individuals without type 2 diabetes mellitus: A four-season observational study with mediation analysis.Arch. Microbiol.2023205519110.1007/s00203‑023‑03522‑y 37059897
    [Google Scholar]
  32. NagaoT. MeguroS. HaseT. OtsukaK. KomikadoM. TokimitsuI. YamamotoT. YamamotoK. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes.Obesity (Silver Spring)200917231031710.1038/oby.2008.505 19008868
    [Google Scholar]
  33. LinY.S. TsaiY.J. TsayJ.S. LinJ.K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves.J. Agric. Food Chem.20035171864187310.1021/jf021066b 12643643
    [Google Scholar]
  34. DrzewoskiJ. HanefeldM. The current and potential therapeutic use of metformin—the good old drug.Pharmaceuticals (Basel)202114212210.3390/ph14020122 33562458
    [Google Scholar]
  35. YuY. WangL. NiS. LiD. LiuJ. ChuH.Y. ZhangN. SunM. LiN. RenQ. ZhuoZ. ZhongC. XieD. LiY. ZhangZ.K. ZhangH. LiM. ZhangZ. ChenL. PanX. XiaW. ZhangS. LuA. ZhangB.T. ZhangG. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation.Nat. Commun.2022131424110.1038/s41467‑022‑31997‑8 35869074
    [Google Scholar]
  36. AlbasherG. AlwahaibiM. Abdel-DaimM.M. AlkahtaniS. AlmeerR. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats.Environ. Sci. Pollut. Res. Int.20202732405254053610.1007/s11356‑020‑09997‑2 32666453
    [Google Scholar]
  37. PernicovaI. KorbonitsM. Metformin—mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.201410314315610.1038/nrendo.2013.256 24393785
    [Google Scholar]
  38. WangC. WangS. WangZ. HanJ. JiangN. QuL. XuK. Andrographolide regulates H3 histone lactylation by interfering with p300 to alleviate aortic valve calcification.Br. J. Pharmacol.2024181121843185610.1111/bph.16332 38378175
    [Google Scholar]
  39. LiT. ProvidenciaR. MuN. YinY. ChenM. WangY. LiuM. YuL. GuC. MaH. Association of metformin monotherapy or combined therapy with cardiovascular risks in patients with type 2 diabetes mellitus.Cardiovasc. Diabetol.20212013010.1186/s12933‑020‑01202‑5 33516224
    [Google Scholar]
  40. NiuM.M. GuoH.X. ShangJ.C. MengX.C. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4–2.J. Agric. Food Chem.20237149197911980310.1021/acs.jafc.3c04916 38031933
    [Google Scholar]
  41. RathD. KarB. PattnaikG. BhuktaP. Synergistic Effect of Naringin and Glimepiride in Streptozotocin-induced Diabetic Rats.Curr. Diabetes Rev.2024204e17082321993810.2174/1573399820666230817154835 37592777
    [Google Scholar]
  42. DrabkinD.L. AustinJ.H. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood.J. Biol. Chem.193298271973310.1016/S0021‑9258(18)76122‑X
    [Google Scholar]
  43. ChenJ.C. MarstersR. WielandR.G. Diabetic ketosis. Interpretation of elevated serum glutamic-oxaloacetic transaminase (SGOT) by multi-channel chemical analysis.Diabetes1970191073073110.2337/diab.19.10.730 4990781
    [Google Scholar]
  44. BiswasM. KarB. BhattacharyaS. KumarR.B.S. GhoshA.K. HaldarP.K. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats.Pharm. Biol.201149433534010.3109/13880209.2010.516755 21281245
    [Google Scholar]
  45. TanS.Y. Mei WongJ.L. SimY.J. WongS.S. Mohamed ElhassanS.A. TanS.H. Ling LimG.P. Rong TayN.W. AnnanN.C. BhattamisraS.K. CandasamyM. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.008 30641727
    [Google Scholar]
  46. LiuL. ZhouY. ZhaoX. YangX. WanX. AnZ. ZhangH. TianJ. GeC. SongX. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Diabetic Kidney Disease in Rats by Inhibiting Apoptosis and Inflammation.Frontiers in Bioscience-Landmark202328920310.31083/j.fbl2809203 37796685
    [Google Scholar]
  47. YangW. DingN. LuoR. ZhangQ. LiZ. ZhaoF. ZhangS. ZhangX. ZhouT. WangH. WangL. HuS. WangG. FengH. HuR. Exosomes from young healthy human plasma promote functional recovery from intracerebral hemorrhage via counteracting ferroptotic injury.Bioact. Mater.20232711410.1016/j.bioactmat.2023.03.007 37006825
    [Google Scholar]
  48. DashJ.R. PattnaikG. GhoshG. RathG. KarB. Protective effect of epicatechin in diabetic-induced peripheral neuropathy: A review.J. Appl. Pharm. Sci.20231315663
    [Google Scholar]
  49. RajkumarL. SrinivasanN. BalasubramanianK. GovindarajuluP. Increased degradation of dermal collagen in diabetic rats.Indian J. Exp. Biol.1991291110811083 1816088
    [Google Scholar]
  50. FuruseM. KimuraC. MabayoR.T. TakahashiH. OkumuraJ.I. Dietary sorbose prevents and improves hyperglycemia in genetically diabetic mice.J. Nutr.19931231596510.1093/jn/123.1.59 8421231
    [Google Scholar]
  51. KumarR.B.S. KarB. DolaiN. BalaA. HaldarP.K. Evaluation of antihyperglycemic and antioxidant properties of Streblus asper Lour against streptozotocin–induced diabetes in rats.Asian Pac. J. Trop. Dis.20122213914310.1016/S2222‑1808(12)60032‑2
    [Google Scholar]
  52. DashJ.R. PattnaikG. GhoshG. RathG. KarB. An Overview of the Therapeutic Efficacy of (-)-Epicatechin in the Management of Diabetes Mellitus.Nat. Prod. J.2024143e31082322057610.2174/2210315514666230831151545
    [Google Scholar]
  53. YazdanparastR. ArdestaniA. JamshidiS. Experimental diabetes treated with Achillea santolina: Effect on pancreatic oxidative parameters.J. Ethnopharmacol.20071121131810.1016/j.jep.2007.01.030 17336007
    [Google Scholar]
  54. ZhengJ. YueR. YangR. WuQ. WuY. HuangM. ChenX. LinW. HuangJ. ChenX. JiangY. YangB. LiaoY. Visualization of zika virus infection via a light-initiated bio-orthogonal cycloaddition labeling strategy.Front. Bioeng. Biotechnol.20221094051110.3389/fbioe.2022.940511 35875483
    [Google Scholar]
  55. DashS. SahooN. PattnaikG. GhoshG. RathG. BhattacharyaS. KarB. Antihyperglycemic Effect of Annona squamosa Leaf and Oleanolic Acid Combination in Diabetic Albino Rats.Curr. Trends Biotechnol. Pharm.202317310041012
    [Google Scholar]
  56. ZhengX.X. XuY.L. LiS.H. LiuX.X. HuiR. HuangX.H. Green tea intake lowers fasting serum total and LDL cholesterol in adults: A meta-analysis of 14 randomized controlled trials.Am. J. Clin. Nutr.201194260161010.3945/ajcn.110.010926 21715508
    [Google Scholar]
  57. EnglishE. MilosevichE.T. JohnW.G. In vitro determination of hemoglobin A1c for diabetes diagnosis and management: Technology update.Pathol. Lab. Med. Int.20142131
    [Google Scholar]
  58. NazirN. ZahoorM. UllahR. EzzeldinE. MostafaG.A.E. Curative effect of catechin isolated from Elaeagnus umbellata Thunb. berries for diabetes and related complications in streptozotocin-induced diabetic rats model.Molecules202026113710.3390/molecules26010137 33396845
    [Google Scholar]
  59. Ueda-WakagiM. NagayasuH. YamashitaY. AshidaH. Green tea ameliorates hyperglycemia by promoting the translocation of glucose transporter 4 in the skeletal muscle of diabetic rodents.Int. J. Mol. Sci.20192010243610.3390/ijms20102436 31100973
    [Google Scholar]
  60. ThirumalaiT. TherasaS.V. ElumalaiE.K. DavidE. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat.Asian Pac. J. Trop. Biomed.20111432332510.1016/S2221‑1691(11)60052‑X 23569784
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808304505240628103332
Loading
/content/journals/lddd/10.2174/0115701808304505240628103332
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Catechin; diabetes mellitus; endogenous antioxidant; MET; metformin; STZ
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test