Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

The continuous pursuit of novel chemotherapeutical agents with improved efficacy and reduced adverse effects remains a critical area of research despite advancements in chemotherapy. We have previously synthesized indolenine and barbituric acid zwitterion scaffolds sustainably; however, their precise chemotherapeutical properties are still lacking.

Methods

In this present work, we conducted ADMET analyses, molecular docking calculations, DNA binding studies, and cytotoxicity assays on these zwitterions.

Results and Discussion

Among the 10 zwitterions, zwitterion bearing a methoxy group demonstrated the highest drug-likeness score, low toxicity, as well as no violation of Lipinski’s rule of five and Veber’s rule. Both molecular docking calculations and DNA binding studies suggested that the minor groove of DNA is the most probable molecular target of among the others (, topoisomerase and tubulin). In addition, zwitterion exhibited selective cytotoxicity against a wide array of human cancer cell lines without noticeable effect against the normal human colon fibroblast CCD-18Co.

Conclusion

Overall, these preliminary findings from our combined computational and experimental strategy suggested that remains promising for further elaboration as a chemotherapeutic agent.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808279494231206060106
2024-01-19
2025-07-23
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. IrigarayP. BelpommeD. Cancer and the environment: Mechanisms of environmental carcinogenesis. Encyclopedia of Environmental Health. NriaguJ. 2 edOxfordElsevier2019492502
    [Google Scholar]
  3. VogelsteinB. PapadopoulosN. VelculescuV.E. ZhouS. DiazL.A.Jr KinzlerK.W. Cancer genome landscapes.Science201333961271546155810.1126/science.1235122 23539594
    [Google Scholar]
  4. TamasK. WalenkampA.M.E. de VriesE.G.E. van VugtM.A.T.M. Beets-TanR.G. van EttenB. de GrootD.J.A. HospersG.A.P. Rectal and colon cancer: Not just a different anatomic site.Cancer Treat. Rev.201541867167910.1016/j.ctrv.2015.06.007 26145760
    [Google Scholar]
  5. BensonA.B.III AjaniJ.A. CatalanoR.B. EngelkingC. KornblauS.M. MartensonJ.A.Jr McCallumR. MitchellE.P. O’DorisioT.M. VokesE.E. WadlerS. Recommended guidelines for the treatment of cancer treatment-induced diarrhea.J. Clin. Oncol.200422142918292610.1200/JCO.2004.04.132 15254061
    [Google Scholar]
  6. LeonardG.D. WrightM.A. QuinnM.G. FioravantiS. HaroldN. SchulerB. ThomasR.R. GremJ.L. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer.BMC Cancer20055111610.1186/1471‑2407‑5‑116 16168057
    [Google Scholar]
  7. OcvirkJ. CenceljS. Management of cutaneous side‐effects of cetuximab therapy in patients with metastatic colorectal cancer.J. Eur. Acad. Dermatol. Venereol.201024445345910.1111/j.1468‑3083.2009.03446.x 19793151
    [Google Scholar]
  8. AbushullaihS. SaadE.D. MunsellM. HoffP.M. Incidence and severity of hand-foot syndrome in colorectal cancer patients treated with capecitabine: A single-institution experience.Cancer Invest.200220131010.1081/CNV‑120000360 11853000
    [Google Scholar]
  9. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.107447 31756363
    [Google Scholar]
  10. BaillyC. Irinotecan: 25 years of cancer treatment.Pharmacol. Res.201914810439810.1016/j.phrs.2019.104398 31415916
    [Google Scholar]
  11. SerpeL. EllenaS. BarberoN. FogliettaF. PrandiniF. GalloM.P. LeviR. BaroloC. CanaparoR. VisentinS. Squaraines bearing halogenated moieties as anticancer photosensitizers: Synthesis, characterization and biological evaluation.Eur. J. Med. Chem.201611318719710.1016/j.ejmech.2016.02.035 26942626
    [Google Scholar]
  12. HenaryM. PannuV. OwensE.A. AnejaR. Near infrared active heptacyanine dyes with unique cancer-imaging and cytotoxic properties.Bioorg. Med. Chem. Lett.20122221242124610.1016/j.bmcl.2011.11.070 22177785
    [Google Scholar]
  13. ErkisaM. AydinlikS. CevatemreB. AztopalN. AkarR.O. CeliklerS. YilmazV.T. AriF. UlukayaE. A promising therapeutic combination for metastatic prostate cancer: Chloroquine as autophagy inhibitor and palladium(II) barbiturate complex.Biochimie202017515917210.1016/j.biochi.2020.05.010 32497551
    [Google Scholar]
  14. ShilovskikhV.V. TimralievaA.A. NesterovP.V. NovikovA.S. SitnikovP.A. KonstantinovaE.A. KokorinA.I. SkorbE.V. Melamine–barbiturate supramolecular assembly as a ph‐dependent organic radical trap material.Chemistry20202670166031661010.1002/chem.202002947 32770588
    [Google Scholar]
  15. RamleA.Q. TiekinkE.R.T. FeiC.C. JulkapliN.M. BasirunW.J. Supramolecular assembly and spectroscopic characterization of indolenine–barbituric acid zwitterions.New J. Chem.20214531221123010.1039/D0NJ04357E
    [Google Scholar]
  16. TanC.H. SimD.S.Y. HengM.P. LimS.H. LowY.Y. KamT.S. SimK.S. Evaluation of DNA Binding and Topoisomerase I Inhibitory Activities of 16′‐Decarbomethoxydihydrovoacamine from Tabernaemontana corymbosa.ChemistrySelect2020547148391484310.1002/slct.202004153
    [Google Scholar]
  17. WaltersW.P. MurckoM.A. Prediction of ‘drug-likeness’.Adv. Drug Deliv. Rev.200254325527110.1016/S0169‑409X(02)00003‑0 11922947
    [Google Scholar]
  18. TanC.H. SimD.S.Y. LimS.H. Mohd MohidinT.B. MohanG. LowY.Y. KamT.S. SimK.S. Antiproliferative and microtubule-stabilizing activities of two iboga-vobasine bisindoles alkaloids from tabernaemontana corymbosa in colorectal adenocarcinoma HT-29 cells.Planta Med.202288141325134010.1055/a‑1755‑5605 35100653
    [Google Scholar]
  19. RamleA.Q. ChanN.N.M.Y. NgM.P. TanC.H. SimK.S. TiekinkE.R.T. FeiC.C. Structural insights and cytotoxicity evaluation of benz[e]indole pyrazolyl-substituted amides.Mol. Divers.202310.1007/s11030‑023‑10662‑2 37278911
    [Google Scholar]
  20. DrewH.R. WingR.M. TakanoT. BrokaC. TanakaS. ItakuraK. DickersonR.E. Structure of a B-DNA dodecamer: Conformation and dynamics.Proc. Natl. Acad. Sci. USA19817842179218310.1073/pnas.78.4.2179 6941276
    [Google Scholar]
  21. BaruahH. WrightM.W. BierbachU. Solution structural study of a DNA duplex containing the guanine-N7 adduct formed by a cytotoxic platinum-acridine hybrid agent.Biochemistry200544166059607010.1021/bi050021b 15835895
    [Google Scholar]
  22. LöweJ. LiH. DowningK.H. NogalesE. Refined structure of αβ-tubulin at 3.5 Å resolution 1 1Edited by I. A. Wilson.J. Mol. Biol.200131351045105710.1006/jmbi.2001.5077 11700061
    [Google Scholar]
  23. WangY.R. ChenS.F. WuC.C. LiaoY.W. LinT.S. LiuK.T. ChenY.S. LiT.K. ChienT.C. ChanN.L. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry.Nucleic Acids Res.20174518108611087110.1093/nar/gkx742 28977631
    [Google Scholar]
  24. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. PeterssonG.A. NakatsujiH. LiX. CaricatoM. MarenichA.V. BloinoJ. JaneskoB.G. GompertsR. MennucciB. HratchianH.P. OrtizJ.V. IzmaylovA.F. SonnenbergJ.L. Williams DingF. LippariniF. EgidiF. GoingsJ. PengB. PetroneA. HendersonT. RanasingheD. ZakrzewskiV.G. GaoJ. RegaN. ZhengG. LiangW. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. ThrossellK. Montgomery JrJ.A. PeraltaJ.E. OgliaroF. BearparkM.J. HeydJ.J. BrothersE.N. KudinK.N. StaroverovV.N. KeithT.A. KobayashiR. NormandJ. RaghavachariK. RendellA.P. BurantJ.C. IyengarS.S. TomasiJ. CossiM. MillamJ.M. KleneM. AdamoC. CammiR. OchterskiJ.W. MartinR.L. MorokumaK. FarkasO. ForesmanJ.B. FoxD.J. Gaussian 16 Rev. B.01Wallingford, CT2016
    [Google Scholar]
  25. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  26. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  27. ShaheenS. LiaqatF. QamarS. MurtazaI. RasheedA. yousufS. IshtiaqA. AkhterZ. Single crystal structure of nitro terminated Azo Schiff base: DNA binding, antioxidant, enzyme inhibitory and photo-isomerization investigation.J. Mol. Struct.2023128413537610.1016/j.molstruc.2023.135376
    [Google Scholar]
  28. SommerL. Analytical absorption spectrophotometry in the visible and ultraviolet: the principles.Elsevier2012
    [Google Scholar]
  29. WolfeA. ShimerG.H.Jr MeehanT. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA.Biochemistry198726206392639610.1021/bi00394a013 3427013
    [Google Scholar]
  30. TanC.H. YeapJ.S.Y. LimS.H. LowY.Y. SimK.S. KamT.S. The bisindole alkaloids angustilongines m and a from alstonia penangiana induce mitochondrial apoptosis and g0/g1 cell cycle arrest in HT-29 cells through promotion of tubulin polymerization.J. Nat. Prod.20218451524153310.1021/acs.jnatprod.1c00013 33872002
    [Google Scholar]
  31. LeeS.X. TanC.H. MahW.L. WongR.C.S. CheowY.L. SimK.S. TanK.W. Synthesis of group 6 (chromium, molybdenum, and tungsten) photoCORMs as potential antimicrobial and anticancer agents.Inorg. Chim. Acta202152512049110.1016/j.ica.2021.120491
    [Google Scholar]
  32. Abdul HalimN.A. RamasamyS. TanB.C. KhalidN. YaacobJ.S. In vitro shoot regeneration and analysis of biochemical, antioxidant and anticancer properties of Ananas comosus var. MD2.Malays. J. Fundam. Appl. Sci.201814226326810.11113/mjfas.v14n2.900
    [Google Scholar]
  33. NurestriA.M.S. SimK.S. NorhanomA.W. Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) leaves.J. Biol. Sci.20099548849310.3923/jbs.2009.488.493
    [Google Scholar]
  34. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  35. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  36. JacobI.T. da Cruz FilhoI.J. AlvesJ.E.F. de Melo SouzaF. de AzevedoR.D.S. MarquesD.S.C. de Lima SouzaT.R.C. dos SantosK.L. da Rocha PittaM.G. de Melo RêgoM.J.B. OliveiraJ.F. AlmeidaS.M.V. do Carmo Alves de LimaM. Interaction study with DNA/HSA, anti-topoisomerase IIα, cytotoxicity and in vitro antiproliferative evaluations and molecular docking of indole-thiosemicarbazone compounds.Int. J. Biol. Macromol.202323412360610.1016/j.ijbiomac.2023.123606 36773880
    [Google Scholar]
  37. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  38. DiL. ObachR.S. Addressing the challenges of low clearance in drug research.AAPS J.201517235235710.1208/s12248‑014‑9691‑7 25567366
    [Google Scholar]
  39. GadaletaD. VukovićK. TomaC. LavadoG.J. KarmausA.L. MansouriK. KleinstreuerN.C. BenfenatiE. RoncaglioniA. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data.J. Cheminform.20191115810.1186/s13321‑019‑0383‑2 33430989
    [Google Scholar]
  40. NaazF. HaiderM.R. ShafiS. YarM.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.Eur. J. Med. Chem.201917131033110.1016/j.ejmech.2019.03.025 30953881
    [Google Scholar]
  41. SteinmetzM.O. ProtaA.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton.Trends Cell Biol.2018281077679210.1016/j.tcb.2018.05.001 29871823
    [Google Scholar]
  42. PommierY. LeoE. ZhangH. MarchandC. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.Chem. Biol.201017542143310.1016/j.chembiol.2010.04.012 20534341
    [Google Scholar]
  43. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.10 34322663
    [Google Scholar]
  44. PalchaudhuriR. HergenrotherP.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action.Curr. Opin. Biotechnol.200718649750310.1016/j.copbio.2007.09.006 17988854
    [Google Scholar]
  45. AliA. BhattacharyaS. DNA binders in clinical trials and chemotherapy.Bioorg. Med. Chem.201422164506452110.1016/j.bmc.2014.05.030 24947479
    [Google Scholar]
  46. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  47. SinghD. DheerD. SamykuttyA. ShankarR. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development.J. Control. Release202134013410.1016/j.jconrel.2021.10.006 34673122
    [Google Scholar]
  48. HengM.P. TanC.H. SaadH.M. SimK.S. TanK.W. Mitochondria-dependent apoptosis inducer: Testosterone-N4-ethylthiosemicarbazonate and its metal complexes with selective cytotoxicity towards human colorectal carcinoma cell line (HCT 116).Inorg. Chim. Acta202050711958110.1016/j.ica.2020.119581
    [Google Scholar]
  49. HaqI. Thermodynamics of drug–DNA interactions.Arch. Biochem. Biophys.2002403111510.1016/S0003‑9861(02)00202‑3 12061796
    [Google Scholar]
  50. ZhangY. ZhouY. ZhangH. TianL. HaoJ. YuanY. LiW. LiuY. DNA binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes.J. Inorg. Biochem.202122411158010.1016/j.jinorgbio.2021.111580 34438219
    [Google Scholar]
  51. TaheriR. HamzkanluN. RezvaniY. NiroumandS. SamandarF. Amiri-TehranizadehZ. SaberiM.R. ChamaniJ. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches.J. Mol. Liq.202236812082610.1016/j.molliq.2022.120826
    [Google Scholar]
  52. BruggisserR. DaenikenK. JundtG. SchaffnerW. Tullberg-ReinertH. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay.Planta Med.200268544544810.1055/s‑2002‑32073 12058323
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808279494231206060106
Loading
/content/journals/lddd/10.2174/0115701808279494231206060106
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test