Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Since renal ischemia-reperfusion (I/R) can lead to a serious health problem, aquaporins have important roles in preventing negative changes in electrolyte-water balance. This study aimed to determine the effect of naringin treatment on renal function and AQP1 and AQP2 levels in the kidney cortex and medulla tissues in experimental renal I/R in rats.

Materials and Methods

The study was carried out on 40 male Wistar-type rats, 8-12 weeks old. Experimental groups were formed as follows: 1) Control, 2) Sham+vehicle, 3) Renal (I/R)+vehicle, 4) Renal I/R+ Naringin (50 mg/kg/day) (3 days of administration), and 5) Renal I/R+ Naringin (100 mg/kg/day) (3 days supplementation) group. First, the left kidney was removed by nephrectomy under general anesthesia, and then the right kidney was subjected to 45 minutes of ischemia and then 72 hours of reperfusion. Naringin was given to the experimental animals by an intraperitoneal route at the beginning of the reperfusion, after 24 and 48 hours. At the end of the experiments, first of all, blood samples were taken from the heart in animals under general anesthesia, and then the animals were killed by cervical dislocation, and kidney tissue samples were taken. Osmolarity in plasma and urine and plasma creatinine levels were evaluated. AQP1 and AQP2 levels were analyzed in the kidney cortex and medulla tissues by ELISA and PCR methods.

Results

In kidney tissues, I/R led to a decrease in plasma and urinary osmolarity, AQP1 and AQP2 levels in the cortex and medulla, and an increase in urea and creatinine levels ( < 0.001). However, naringin supplementation corrected the deterioration to a certain extent.

Conclusion

The results of the study show that naringin supplementation at different doses, such as 50 or 100 mg/kg, may have protective effects on the deterioration of renal function caused by unilateral nephrectomy and I/R in rats.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808271000231120094951
2023-11-23
2024-12-29
Loading full text...

Full text loading...

References

  1. LerinkL.J.S. de KokM.J.C. MulveyJ.F. Le DévédecS.E. MarkovskiA.A. WüstR.C.I. AlwaynI.P.J. PloegR.J. SchaapherderA.F.M. BakkerJ.A. LindemanJ.H.N. Preclinical models versus clinical renal ischemia reperfusion injury: A systematic review based on metabolic signatures.Am. J. Transplant.202222234437010.1111/ajt.16868 34657378
    [Google Scholar]
  2. WeiJ. ZhangJ. WangL. JiangS. FuL. BuggsJ. LiuR. New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury.Am. J. Physiol. Renal Physiol.20193172F286F29510.1152/ajprenal.00021.2019 31116604
    [Google Scholar]
  3. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.70902 22228951
    [Google Scholar]
  4. SenerG. SehirliA.Ö. Keyer-UysalM. ArbakS. ErsoyY. YeğenB.Ç. The protective effect of melatonin on renal ischemia-reperfusion injury in the rat.J. Pineal Res.200232212012610.1034/j.1600‑079x.2002.1848.x 12071469
    [Google Scholar]
  5. BekerB.M. CorletoM.G. FieirasC. MussoC.G. Novel acute kidney injury biomarkers: Their characteristics, utility and concerns.Int. Urol. Nephrol.201850470571310.1007/s11255‑017‑1781‑x 29307055
    [Google Scholar]
  6. ShivaN. SharmaN. KulkarniY.A. MulayS.R. GaikwadA.B. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models.Life Sci.202025611786010.1016/j.lfs.2020.117860 32534037
    [Google Scholar]
  7. VerkmanA.S. Aquaporin water channels and endothelial cell function.J. Anat.2002200661762710.1046/j.1469‑7580.2002.00058.x 12162729
    [Google Scholar]
  8. TakataK. MatsuzakiT. TajikaY. Aquaporins: water channel proteins of the cell membrane.Prog. Histochem. Cytochem.200439118310.1016/j.proghi.2004.03.001 15242101
    [Google Scholar]
  9. NielsenS. SmithB.L. ChristensenE.I. KnepperM.A. AgreP. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron.J. Cell Biol.1993120237138310.1083/jcb.120.2.371 7678419
    [Google Scholar]
  10. SabolićI. ValentiG. VerbavatzJ.M. Van HoekA.N. VerkmanA.S. AusielloD.A. BrownD. Localization of the CHIP28 water channel in rat kidney.Am. J. Physiol. Cell Physiol.19922636C1225C123310.1152/ajpcell.1992.263.6.C1225 1282299
    [Google Scholar]
  11. ShinS. LeeY.J. KimE.J. LeeA.S. KangD.G. LeeH.S. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.Am. J. Chin. Med.201139588990210.1142/S0192415X11009287 21905280
    [Google Scholar]
  12. HanM. LiS. XieH. LiuQ. WangA. HuS. ZhaoX. KongY. WangW. LiC. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury.Am. J. Physiol. Renal Physiol.20213203F308F32110.1152/ajprenal.00577.2020 33427060
    [Google Scholar]
  13. ParkJ.H. KhoM.C. OhH.C. KimY.C. YoonJ.J. LeeY.J. KangD.G. LeeH.S. 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose from Galla rhois Ameliorates renal tubular injury and microvascular inflammation in acute kidney injury rats.Am. J. Chin. Med.201846478580010.1142/S0192415X18500416 29754505
    [Google Scholar]
  14. ChtourouY. GargouriB. KebiecheM. FetouiH. Naringin abrogates cisplatin-induced cognitive deficits and cholinergic dysfunction through the down-regulation of AChE expression and iNOS signaling pathways in hippocampus of aged rats.J. Mol. Neurosci.201556234936210.1007/s12031‑015‑0547‑0 25896911
    [Google Scholar]
  15. WangL. ZhangZ. WangH. Naringin attenuates cerebral ischemia-reperfusion injury in rats by inhibiting endoplasmic reticulum stress.Transl. Neurosci.202112119019710.1515/tnsci‑2020‑0170 34046215
    [Google Scholar]
  16. AsvapromtadaS. SonodaH. KinouchiM. OshikawaS. TakahashiS. HoshinoY. SinlapadeelerdkulT. Yokota-IkedaN. MatsuzakiT. IkedaM. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats.Am. J. Physiol. Renal Physiol.20183144F584F60110.1152/ajprenal.00184.2017 29357442
    [Google Scholar]
  17. KimE.J. LeeY.J. AhnY.M. LeeH. KangD.G. LeeH.S. Renoprotective effect of Alpiniae oxyphyllae Fructus on ischemia/reperfusion-induced acute renal failure.Arch. Pharm. Res.20133681004101210.1007/s12272‑013‑0117‑3 23645527
    [Google Scholar]
  18. OhkitaM. NakajimaA. UedaK. TakaokaM. KisoY. MatsumuraY. Preventive effect of flavangenol on ischemia/reperfusion-induced acute renal failure in rats.Biol. Pharm. Bull.20052891655165710.1248/bpb.28.1655 16141534
    [Google Scholar]
  19. AshtiyaniS.C. NajafiH. FirouzifarM.R. ShafaatO. Grape seed extract for reduction of renal disturbances following reperfusion in rats.Iran. J. Kidney Dis.2013712835 23314139
    [Google Scholar]
  20. AshtiyaniS.C. NajafiH. KabiriniaK. VahediE. JamebozorkyL. Oral omega-3 fatty acid for reduction of kidney dysfunction induced by reperfusion injury in rats.Iran. J. Kidney Dis.201264275283 22797097
    [Google Scholar]
  21. KangD.G. SohnE.J. MoonM.K. MunY.J. WooW.H. KimM.K. LeeH.S. Yukmijihwang-tang ameliorates ischemia/reperfusion-induced renal injury in rats.J. Ethnopharmacol.20061041-2475310.1016/j.jep.2005.08.044 16183223
    [Google Scholar]
  22. OwjiS.M. NikeghbalE. MoosaviS.M. Comparison of ischaemia–reperfusion‐induced acute kidney injury by clamping renal arteries, veins or pedicles in anaesthetized rats.Exp. Physiol.2018103101390140210.1113/EP087140 30091805
    [Google Scholar]
  23. AminiN. MalekiM. BadaviM. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review.Avicenna J. Phytomed.202212435737010.22038/ajp.2022.19620 35782769
    [Google Scholar]
  24. HuangH. van DullemenL.F.A. AkhtarM.Z. FaroM.L.L. YuZ. ValliA. DonaA. ThézénasM.L. CharlesP.D. FischerR. KaisarM. LeuveninkH.G.D. PloegR.J. KesslerB.M. Proteo-metabolomics reveals compensation between ischemic and non-injured contralateral kidneys after reperfusion.Sci. Rep.201881853910.1038/s41598‑018‑26804‑8 29867102
    [Google Scholar]
  25. AndrianovaN.V. PopkovV.A. KlimenkoN.S. TyakhtA.V. BaydakovaG.V. FrolovaO.Y. ZorovaL.D. PevznerI.B. ZorovD.B. PlotnikovE.Y. Microbiome-metabolome signature of acute kidney injury.Metabolites202010414210.3390/metabo10040142 32260384
    [Google Scholar]
  26. PanP.L. SongW. YangJ. HuangR. ChenK. GongQ.Y. ZhongJ.G. ShiH.C. ShangH.F. Gray matter atrophy in behavioral variant frontotemporal dementia: A meta-analysis of voxel-based morphometry studies.Dement. Geriatr. Cogn. Disord.2012332-314114810.1159/000338176 22722668
    [Google Scholar]
  27. ChihangaT. MaQ. NicholsonJ.D. RubyH.N. EdelmannR.E. DevarajanP. KennedyM.A. NMR spectroscopy and electron microscopy identification of metabolic and ultrastructural changes to the kidney following ischemia-reperfusion injury.Am. J. Physiol. Renal Physiol.20183142F154F16610.1152/ajprenal.00363.2017 28978534
    [Google Scholar]
  28. LeiL. WangW. JiaY. SuL. ZhouH. VerkmanA.S. YangB. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury.Biochim. Biophys. Acta Mol. Basis Dis.2017186361231124110.1016/j.bbadis.2017.03.012 28344130
    [Google Scholar]
  29. LaiH.J. ZhanY.Q. QiuY.X. LingY.H. ZhangX.Y. ChangZ.N. ZhangY.N. LiuZ.M. WenS.H. HMGB1 signaling-regulated endoplasmic reticulum stress mediates intestinal ischemia/reperfusion-induced acute renal damage.Surgery2021170123924810.1016/j.surg.2021.01.042 33745733
    [Google Scholar]
  30. RenC.C. ZhuW. WangQ.W. LuY.T. WangY. ZhangG.X. XieJ.F. WuJ.W. JiaZ.M. ZhangT. SuZ.Q. WenJ.G. The renal protect function of erythropoietin after release of bilateral ureteral obstruction in a rat model.Clin. Sci.2018132182071208510.1042/CS20180178 29959186
    [Google Scholar]
  31. Changizi AshtiyaniS. NajafiH. JalalvandiS. HosseineiF. Protective effects of Rosa canina L fruit extracts on renal disturbances induced by reperfusion injury in rats.Iran. J. Kidney Dis.201374290298 23880806
    [Google Scholar]
  32. TakaokaM. OhkitaM. KobayashiY. YubaM. MatsumuraY. Protective effect of alpha-lipoic acid against ischaemic acute renal failure in rats.Clin. Exp. Pharmacol. Physiol.200229318919410.1046/j.1440‑1681.2002.03624.x 11906481
    [Google Scholar]
  33. CaglayanC. KandemirF.M. YildirimS. KucuklerS. EserG. Rutin protects mercuric chloride‐induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats.J. Trace Elem. Med. Biol.201954697810.1016/j.jtemb.2019.04.007 31109623
    [Google Scholar]
  34. SinghD. ChopraK. The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats.Pharmacol. Res.200450218719310.1016/j.phrs.2004.01.007 15177308
    [Google Scholar]
  35. OshikawaS. SonodaH. IkedaM. Aquaporins in urinary extracellular vesicles (Exosomes).Int. J. Mol. Sci.201617695710.3390/ijms17060957 27322253
    [Google Scholar]
  36. AgreP. Aquaporin water channels (Nobel Lecture).Angew. Chem. Int. Ed.200443334278429010.1002/anie.200460804 15368374
    [Google Scholar]
  37. SonodaH. Yokota-IkedaN. OshikawaS. KannoY. YoshinagaK. UchidaK. UedaY. KimiyaK. UezonoS. UedaA. ItoK. IkedaM. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury.Am. J. Physiol. Renal Physiol.20092974F1006F101610.1152/ajprenal.00200.2009 19640902
    [Google Scholar]
  38. PastenC. AlvaradoC. RoccoJ. ContrerasL. AracenaP. LiberonaJ. SuazoC. MicheaL. IrarrázabalC.E. L -NIL prevents the ischemia and reperfusion injury involving TLR-4, GST, clusterin, and NFAT-5 in mice.Am. J. Physiol. Renal Physiol.20193164F624F63410.1152/ajprenal.00398.2018 30516425
    [Google Scholar]
  39. JungJ.S. LeeR.H. KohS.H. KimY.K. Changes in expression of sodium cotransporters and aquaporin-2 during ischemia-reperfusion injury in rabbit kidney.Ren. Fail.200022440742110.1081/JDI‑100100883 10901179
    [Google Scholar]
  40. KristensenM.L.V. Kierulf-LassenC. NielsenP.M. KragS. BirnH. NejsumL.N. NørregaardR. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney.Physiol. Rep.2016413e1286510.14814/phy2.12865 27405971
    [Google Scholar]
  41. BaeE.H. LeeK.S. LeeJ. MaS.K. KimN.H. ChoiK.C. FrøkiærJ. NielsenS. KimS.Y. KimS.Z. KimS.H. KimS.W. Effects of α-lipoic acid on ischemia-reperfusion-induced renal dysfunction in rats.Am. J. Physiol. Renal Physiol.20082941F272F28010.1152/ajprenal.00352.2007 18032550
    [Google Scholar]
  42. ShenS. JinY. LiW. LiuX. ZhangT. XiaW. WangY. MaK. Recombinant human erythropoietin pretreatment attenuates acute renal tubular injury against ischemia-reperfusion by restoring transient receptor potential channel-6 expression and function in collecting ducts.Crit. Care Med.20144210e663e67210.1097/CCM.0000000000000542 25072760
    [Google Scholar]
  43. AminiN. SarkakiA. DianatM. MardS.A. AhangarpourA. BadaviM. The renoprotective effects of naringin and trimetazidine on renal ischemia/reperfusion injury in rats through inhibition of apoptosis and downregulation of micoRNA-10a.Biomed. Pharmacother.201911210856810.1016/j.biopha.2019.01.029
    [Google Scholar]
  44. AminiN. SarkakiA. DianatM. MardS.A. AhangarpourA. BadaviM. Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation.Pharmacol. Rep.20197161059106610.1016/j.pharep.2019.06.007 31604166
    [Google Scholar]
  45. ZhangH. ZhouX. ZhongY. JiL. YuW. FangJ. YingH. LiC. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice.Biomed. Pharmacother.202215011303510.1016/j.biopha.2022.113035 35658207
    [Google Scholar]
  46. ShiR. SuW.W. ZhuZ.T. GuanM.Y. ChengK.L. FanW.Y. WeiG.Y. LiP.B. YangZ.Y. YaoH.L. Regulation effects of naringin on diesel particulate matter-induced abnormal airway surface liquid secretion.Phytomedicine20196315300410.1016/j.phymed.2019.153004 31301536
    [Google Scholar]
  47. GuL. WangF. WangY. SunD. SunY. TianT. MengQ. YinL. XuL. LuX. PengJ. LinY. SunP. Naringin protects against inflammation and apoptosis induced by intestinal ischemia–reperfusion injury through deactivation of CGAS‐STING signaling pathway.Phytother. Res.20233783495350710.1002/ptr.7824 37125528
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808271000231120094951
Loading
/content/journals/lddd/10.2174/0115701808271000231120094951
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AQP1; AQP2; creatinine; kidney I/R; naringin; rat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test