Skip to content
2000
Volume 21, Issue 15
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Peroxisome proliferator-activated receptor-gamma (PPAR-γ) plays a crucial role in regulating lipid and glucose metabolism, cancer, and inflammation, making it an attractive target for drug development. Meanwhile, β-Carotene, known for its antioxidant, anticancer and anti-inflammatory properties, holds promise for modulating PPAR-γ activity. Understanding their interaction is crucial.

Objective

This study aims to explore the therapeutic potential of β-carotene in modulating PPAR-γ activity by investigating their binding interactions.

Methods

Screening of bioactive compounds from PubChem was conducted using GlideXP to identify potential PPAR-γ (PDB: 2PRG) ligands. During this screening, both protein and bioactive compounds were prepared following established protocols. Subsequently, the compounds were docked into the ligand binding domain (LBD) of the protein using XP docking. Rosiglitazone was used as an internal control. β-Carotene emerged as a lead based on Lipinski’s rule, docking score, free energy, and LBD interactions. Molinspiration analysis assessed its drug likeness. Molecular dynamics (MD) simulations utilizing Desmond with OPLS 2005 force field were employed to examine the dynamics and stability of the PPAR-γ/β-carotene complex.

Results

β-carotene had strong hydrophobic interactions with specific residues within the ligand-binding domain of PPAR-γ. The calculated binding affinity (-9.07 kcal/mol) indicated a strong interaction between β-carotene and PPAR-γ, suggesting that β-carotene may modulate the activity of PPAR-γ. On a time scale of 100 ns, the MD simulations provided insights into the conformational changes, flexibility, and intermolecular interactions within the complex.

Conclusion

docking and dynamics simulation analyses show that PPAR-γ and β-carotene can form a stable complex, suggesting potential implications for metabolic modulation.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808267878231026044212
2023-10-31
2024-12-29
Loading full text...

Full text loading...

References

  1. Rodríguez-GarcíaC. Sánchez-QuesadaC. Martínez-RamírezM.J. GaforioJ.J. PPARγ gene as a possible link between acquired and congenital lipodystrophy and its modulation by dietary fatty acids.Nutrients20221422474210.3390/nu14224742 36432429
    [Google Scholar]
  2. BrumI.S.C. MafraD. MoreiraL.S.G. TeixeiraK.T.R. Stockler-PintoM.B. CardozoL.F.M.F. BorgesN.A. Consumption of oils and anthocyanins may positively modulate PPAR-γ expression in chronic noncommunicable diseases: A systematic review.Nutr. Res.2022105667610.1016/j.nutres.2022.06.004 35905655
    [Google Scholar]
  3. Hernandez-QuilesM. BroekemaM.F. KalkhovenE. PPARgamma in metabolism, immunity, and cancer: Unified and diverse mechanisms of action.Front. Endocrinol.20211262411210.3389/fendo.2021.624112 33716977
    [Google Scholar]
  4. YanaseT. YashiroT. TakitaniK. KatoS. TaniguchiS. TakayanagiR. NawataH. Differential expression of PPAR γ1 and γ2 isoforms in human adipose tissue.Biochem. Biophys. Res. Commun.1997233232032410.1006/bbrc.1997.6446 9144532
    [Google Scholar]
  5. SchaiffW.T. BarakY. SadovskyY. The pleiotropic function of PPARγ in the placenta.Mol. Cell. Endocrinol.20062491-2101510.1016/j.mce.2006.02.009 16574314
    [Google Scholar]
  6. JainN. BhansaliS. KurpadA.V. HawkinsM. SharmaA. KaurS. RastogiA. BhansaliA. Effect of a Dual PPAR α/γ agonist on insulin sensitivity in patients of type 2 diabetes with hypertriglyceridemia- randomized double-blind placebo-controlled trial.Sci. Rep.2019911901710.1038/s41598‑019‑55466‑3 31831868
    [Google Scholar]
  7. LalS. ShekherA. Puneet NarulaA.S. AbrahamseH. GuptaS.C. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities.Pharmacol. Res.202116310530210.1016/j.phrs.2020.105302 33246167
    [Google Scholar]
  8. HeudoblerD. RechenmacherM. LükeF. VogelhuberM. PukropT. HerrW. GhibelliL. GernerC. ReichleA. Peroxisome Proliferator-Activated Receptors (PPAR)γ agonists as master modulators of tumor tissue.Int. J. Mol. Sci.20181911354010.3390/ijms19113540 30424016
    [Google Scholar]
  9. MrowkaP. Glodkowska-MrowkaE. PPARγ agonists in combination cancer therapies.Curr. Cancer Drug Targets202020319721510.2174/1568009619666191209102015 31814555
    [Google Scholar]
  10. ChiT. WangM. WangX. YangK. XieF. LiaoZ. WeiP. PPAR-γ modulators as current and potential cancer treatments.Front. Oncol.20211173777610.3389/fonc.2021.737776 34631571
    [Google Scholar]
  11. ZhaoW. ShiG. GuH. NguyenB.N. Role of PPARγ in the nutritional and pharmacological actions of carotenoids.Res. Rep. Biochem.20161310.2147/RRBC.S83258
    [Google Scholar]
  12. ZhangX. ZhaoW. HuL. ZhaoL. HuangJ. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells.Arch. Biochem. Biophys.201151219610610.1016/j.abb.2011.05.004 21620794
    [Google Scholar]
  13. CuiY. LuZ. BaiL. ShiZ. ZhaoW. ZhaoB. β-Carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor γ expression and reactive oxygen species production in MCF-7 cancer cells.Eur. J. Cancer200743172590260110.1016/j.ejca.2007.08.015 17911009
    [Google Scholar]
  14. BaeS. LimJ.W. KimH. β-carotene inhibits expression of matrix metalloproteinase-10 and invasion in Helicobacter pylori-infected gastric epithelial cells.Molecules2021266156710.3390/molecules26061567 33809289
    [Google Scholar]
  15. MorrisG.M. Lim-WilbyM. Molecular docking.Methods Mol. Biol.200844336538210.1007/978‑1‑59745‑177‑2_19
    [Google Scholar]
  16. BenderB.J. GahbauerS. LuttensA. LyuJ. WebbC.M. SteinR.M. FinkE.A. BaliusT.E. CarlssonJ. IrwinJ.J. ShoichetB.K. A practical guide to large-scale docking.Nat. Protoc.202116104799483210.1038/s41596‑021‑00597‑z 34561691
    [Google Scholar]
  17. AsiamahI. Applications of molecular docking in natural products-based drug discovery.Scientific African202320
    [Google Scholar]
  18. Joseph-McCarthyD. BaberJ.C. FeyfantE. ThompsonD.C. HumbletC. Lead optimization via high-throughput molecular docking.Curr. Opin. Drug Discov. Devel.2007103264274 17554852
    [Google Scholar]
  19. GusevF. GutkinE. KurnikovaM.G. IsayevO. Active learning guided drug design lead optimization based on relative binding free energy modeling.J. Chem. Inf. Model.202363258359410.1021/acs.jcim.2c01052 36599125
    [Google Scholar]
  20. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  21. MazumderR. KaushikK.K. DebnathA. PatelM. A brief study on drug repurposing: New way of boosting drug discovery.Lett. Drug Des. Discov.202320326427810.2174/1570180819666220901170016
    [Google Scholar]
  22. AlaviA. SharmaV. Role of docking in anticancer drug discovery.Lett. Drug Des. Discov.202320101490151110.2174/1570180820666221111151104
    [Google Scholar]
  23. StanzioneF. GiangrecoI. ColeJ.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem.20216027334310.1016/bs.pmch.2021.01.004
    [Google Scholar]
  24. ZhengL. Molecular dynamics and simulation. Encyclopedia of Bioinformatics and Computational Biology201955056610.1016/B978‑0‑12‑809633‑8.20284‑7
    [Google Scholar]
  25. SakanoT. MahamoodM.I. YamashitaT. FujitaniH. Molecular dynamics analysis to evaluate docking pose prediction.Biophys. Physicobiol.201613018119410.2142/biophysico.13.0_181 27924273
    [Google Scholar]
  26. MangatH.K. RaniM. PathakR.K. YadavI.S. UtrejaD. ChhunejaP.K. ChhunejaP. Virtual screening, molecular dynamics and binding energy-MM-PBSA studies of natural compounds to identify potential EcR inhibitors against Bemisia tabaci Gennadius.PLoS One2022171e026154510.1371/journal.pone.0261545 35061725
    [Google Scholar]
  27. KawasakiH. SomaN. KretsingerR.H. Molecular dynamics study of the changes in conformation of calmodulin with calcium binding and/or target recognition.Sci. Rep.2019911068810.1038/s41598‑019‑47063‑1 31337841
    [Google Scholar]
  28. BassaniD. MoroS. Past, present, and future perspectives on computer-aided drug design methodologies.Molecules2023289390610.3390/molecules28093906 37175316
    [Google Scholar]
  29. BochevarovA.D. HarderE. HughesT.F. GreenwoodJ.R. BradenD.A. PhilippD.M. RinaldoD. HallsM.D. ZhangJ. FriesnerR.A. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences.Int. J. Quantum Chem.2013113182110214210.1002/qua.24481
    [Google Scholar]
  30. JacobsonM.P. FriesnerR.A. XiangZ. HonigB. On the role of the crystal environment in determining protein side-chain conformations.J. Mol. Biol.2002320359760810.1016/S0022‑2836(02)00470‑9 12096912
    [Google Scholar]
  31. TranP-T. Discovery of 1H-indazole-6-amine derivatives as anticancer agents: Simple but effective.Lett. Drug Des. Discov.202320558158810.2174/1570180819666220512144819
    [Google Scholar]
  32. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o 17034125
    [Google Scholar]
  33. SchrodingerLLC. The PyMOL Molecular Graphics System, Version 1.82015
    [Google Scholar]
  34. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  35. SubramaniP.A. ShaikF.B. MichaelR.D. PanatiK. NaralaV.R. Thiamine: A natural Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activator.Lett. Drug Des. Discov.2022191088889610.2174/1570180819666220127121403
    [Google Scholar]
  36. BanksJ.L. BeardH.S. CaoY. ChoA.E. DammW. FaridR. FeltsA.K. HalgrenT.A. MainzD.T. MapleJ.R. MurphyR. PhilippD.M. RepaskyM.P. ZhangL.Y. BerneB.J. FriesnerR.A. GallicchioE. LevyR.M. Integrated Modeling Program, Applied Chemical Theory (IMPACT).J. Comput. Chem.200526161752178010.1002/jcc.20292 16211539
    [Google Scholar]
  37. MetibemuD.S. OgungbeI.V. Carotenoids in drug discovery and medicine: Pathways and molecular targets implicated in human diseases.Molecules20222718600510.3390/molecules27186005 36144741
    [Google Scholar]
  38. The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: Design, methods, participant characteristics, and compliance.Ann. Epidemiol.19944111010.1016/1047‑2797(94)90036‑1 8205268
    [Google Scholar]
  39. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers.N. Engl. J. Med.1994330151029103510.1056/NEJM199404143301501 8127329
    [Google Scholar]
  40. HagymásiK. EgresiA. LengyelG. Antioxidánsok-antioxidánssokk: tények és kérdések, 2015.Orv. Hetil.2015156471884188710.1556/650.2015.30302 26568100
    [Google Scholar]
  41. CorbiG. AliS. IntrieriM. ModaferriS. CalabreseV. DavinelliS. ScapagniniG. Association between beta-carotene supplementation and mortality: A systematic review and meta-analysis of randomized controlled trials.Front. Med.2022987231010.3389/fmed.2022.872310 35928292
    [Google Scholar]
  42. ShareckM. RousseauM.C. KoushikA. SiemiatyckiJ. ParentM.E. Inverse association between dietary intake of selected carotenoids and Vitamin C and risk of lung cancer.Front. Oncol.201772310.3389/fonc.2017.00023 28293540
    [Google Scholar]
  43. YangJ. QianS. NaX. ZhaoA. Association between dietary and supplemental antioxidants intake and lung cancer risk: Evidence from a cancer screening trial.Antioxidants202312233810.3390/antiox12020338 36829901
    [Google Scholar]
  44. RohiniA. AgrawalN. KumarH. NathV. KumarV. Norbixin, an apocarotenoid derivative activates PPARγ in cardiometabolic syndrome: Validation by in silico and in vivo experimental assessment.Life Sci.20182096977
    [Google Scholar]
  45. ZhaoH. GuH. ZhangH. LiJ.H. ZhaoW.E. PPARγ-dependent pathway in the growth-inhibitory effects of K562 cells by carotenoids in combination with rosiglitazone.Biochim. Biophys. Acta, Gen. Subj.20141840154555510.1016/j.bbagen.2013.09.005 24036327
    [Google Scholar]
  46. LoboG.P. AmengualJ. LiH.N.M. GolczakM. BonetM.L. PalczewskiK. von LintigJ. β,β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner.J. Biol. Chem.201028536278912789910.1074/jbc.M110.132571 20573961
    [Google Scholar]
  47. BohnT. DesmarchelierC. ElS.N. KeijerJ. van SchothorstE. RühlR. BorelP. β-Carotene in the human body: Metabolic bioactivation pathways-from digestion to tissue distribution and excretion.Proc. Nutr. Soc.2019781688710.1017/S0029665118002641 30747092
    [Google Scholar]
  48. MatriscianoF. PinnaG. The strategy of targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the treatment of neuropsychiatric disorders.Adv. Exp. Med. Biol.20231411513535
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808267878231026044212
Loading
/content/journals/lddd/10.2174/0115701808267878231026044212
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): binding affinity; desmond; docking; glide; molecular dynamics; PPAR-γ; β-carotene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test