Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The clinical applications of platinum-based anticancer drugs are largely compromised by side effects and drug resistance. Therefore, novel platinum-based anticancer drugs with improved injected or oral therapeutic index and low resistance need to be developed.

Objective

This study aimed at the synthesis and anticancer activity testing of Pt(IV) prodrugs containing α-furancarboxylate as an axial ligand. This would pave the way for obtaining novel Pt(IV) prodrugs with better anticancer activity by comparing the anticancer activity with their parent platinum(II) complexes.

Methods

In this study, synthesis, cytoxicity assay, and anticancer activity evaluation of three Pt(IV) complexes, -[Pt(NH)(OH)(α-furancarboxylato)Cl] (), -[Pt(NH)(OH)(α-furancarboxylato)(1,1'-cylobutanedicarboxylato)] (), and [Pt(,diaminocyclohexane)(OH)(α-furancarboxylato)(CO)] (), were carried out.

Results

Three Pt(IV) complexes exhibited considerable cytoxicity against the tested human cancer cells (MCF-7, A549 and HCT116), which was found to be slightly lower than the corresponding Pt(II) drugs. However, and displayed comparable antitumor efficacy to cisplatin and oxaliplatin in the murine S180 sarcoma model after intraperitoneal administration. More importantly, the intragastric administration test indicated the antitumor efficacy of to be much greater than oxaliplatin.

Conclusion

has shown excellent oral antitumor activity and it could be administrated in an oral dosage form.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808257585231016055814
2023-10-20
2025-06-22
Loading full text...

Full text loading...

References

  1. LiuX.M. LiZ. HeX.R. LiuR.P. MaZ.Y. QiaoX. WangS.Q. XuJ.Y. Dual-targeting of the aromatase binding domain of heme and androstenedione by Pt(IV) prodrugs: A new treatment for postmenopausal breast cancer.Inorg. Chem. Front.20229143470348310.1039/D2QI00900E
    [Google Scholar]
  2. LiZ. XuQ. LinX. YuK. LinL. LiuY. YuZ. LiuT. LuoD. Integrating of lipophilic platinum(IV) prodrug into liposomes for cancer therapy on patient-derived xenograft model.Chin. Chem. Lett.20223341875187910.1016/j.cclet.2021.10.077
    [Google Scholar]
  3. KellandL. The resurgence of platinum-based cancer chemotherapy.Nat. Rev. Cancer20077857358410.1038/nrc2167 17625587
    [Google Scholar]
  4. MaL. LiL. ZhuG. Platinum-containing heterometallic complexes in cancer therapy: Advances and perspectives.Inorg. Chem. Front.20229112424245310.1039/D2QI00205A
    [Google Scholar]
  5. KostovaI. Platinum complexes as anticancer agents.Recent Patents Anticancer Drug Discov.20061112210.2174/157489206775246458 18221023
    [Google Scholar]
  6. UrienS. BrainE. BugatR. PivotX. LochonI. VanM.L.V. VauzelleF. LokiecF. Pharmacokinetics of platinum after oral or intravenous cisplatin: A phase 1 study in 32 adult patients.Cancer Chemother. Pharmacol.2005551556010.1007/s00280‑004‑0852‑8 15258698
    [Google Scholar]
  7. OehlsenM.E. QuY. FarrellN. Reaction of polynuclear platinum antitumor compounds with reduced glutathione studied by multinuclear (1H, 1H-15N gradient heteronuclear single-quantum coherence, and 195Pt) NMR spectroscopy.Inorg. Chem.200342185498550610.1021/ic030045b 12950196
    [Google Scholar]
  8. YanJ. ZhangY. ZhengL. WuY. WangT. JiangT. LiuX. PengD. LiuY. LiuZ. Let‐7i miRNA and platinum loaded nano‐graphene oxide platform for detection/reversion of drug resistance and synergetic chemical‐photothermal inhibition of cancer cell.Chin. Chem. Lett.202233276777210.1016/j.cclet.2021.08.018
    [Google Scholar]
  9. ZhouJ. KangY. ChenL. WangH. LiuJ. ZengS. YuL. The drug-resistance mechanisms of five platinum-based antitumor agents.Front. Pharmacol.20201134335910.3389/fphar.2020.00343 32265714
    [Google Scholar]
  10. ZhongY. JiaC. ZhangX. LiaoX. YangB. CongY. PuS. GaoC. Targeting drug delivery system for platinum(IV)-Based antitumor complexes.Eur. J. Med. Chem.202019411222910.1016/j.ejmech.2020.112229 32222677
    [Google Scholar]
  11. JohnstoneT.C. SuntharalingamK. LippardS.J. Third row transition metals for the treatment of cancer.Philos. Trans. R Soc. A201537320140185
    [Google Scholar]
  12. JaliliS. MaddahM. SchofieldJ. Molecular dynamics simulation and free energy analysis of the interaction of platinum-based anti-cancer drugs with DNA.J. Theor. Comput. Chem.2016156165005410.1142/S0219633616500541
    [Google Scholar]
  13. ZhaoC.L. QiaoX. LiuX.M. SongX.Q. ZouY.H. LiD.Q. YuX.W. BaoW.G. XuJ.Y. Rapid DNA interstrand cross-linking of Pt(IV) compound.Eur. J. Pharmacol.202292517498510.1016/j.ejphar.2022.174985 35489419
    [Google Scholar]
  14. NajjarA. RajabiN. KaramanR. Recent approaches to platinum(IV) prodrugs: A variety of strategies for enhanced delivery and efficacy.Curr. Pharm. Des.201723162366237610.2174/1381612823666170201161037 28155621
    [Google Scholar]
  15. DengZ. WangN. LiuY. XuZ. WangZ. LauT.C. ZhuG. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism.J. Am. Chem. Soc.2020142177803781210.1021/jacs.0c00221 32216337
    [Google Scholar]
  16. KasparkovaJ. KostrhunovaH. NovakovaO. KřikavováR. VančoJ. TrávníčekZ. BrabecV. A photoactivatable platinum(IV) complex targeting genomic DNA and histone deacetylases.Angew. Chem. Int. Ed.20155448144781448210.1002/anie.201506533 26458068
    [Google Scholar]
  17. JohnstoneT.C. SuntharalingamK. LippardS.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs.Chem. Rev.201611653436348610.1021/acs.chemrev.5b00597 26865551
    [Google Scholar]
  18. WilsonJ.J. LippardS.J. Synthetic methods for the preparation of platinum anticancer complexes.Chem. Rev.201411484470449510.1021/cr4004314 24283498
    [Google Scholar]
  19. KennyR.G. MarmionC.J. Toward multi-targeted platinum and ruthenium drugs: A new paradigm in cancer drug treatment regimens.Chem. Rev.201911921058113710.1021/acs.chemrev.8b00271 30640441
    [Google Scholar]
  20. ShiY. LiuS.A. KerwoodD.J. GoodismanJ. DabrowiakJ.C. Pt(IV) complexes as prodrugs for cisplatin.J. Inorg. Biochem.2012107161410.1016/j.jinorgbio.2011.10.012 22169035
    [Google Scholar]
  21. TolanD. GandinV. MorrisonL. El-NahasA. MarzanoC. MontagnerD. ErxlebenA. Oxidative stress induced by Pt(IV) pro-drugs based on the cisplatin scaffold and indole carboxylic acids in axial position.Sci. Rep.2016612936710.1038/srep29367 27404565
    [Google Scholar]
  22. WexselblattE. GibsonD. What do we know about the reduction of Pt(IV) pro-drugs?J. Inorg. Biochem.201211722022910.1016/j.jinorgbio.2012.06.013 22877926
    [Google Scholar]
  23. WexselblattE. YavinE. GibsonD. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions.Angew. Chem. Int. Ed.201352236059606210.1002/anie.201300640 23686723
    [Google Scholar]
  24. DharS. GuF.X. LangerR. FarokhzadO.C. LippardS.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles.Proc. Natl. Acad. Sci.200810545173561736110.1073/pnas.0809154105 18978032
    [Google Scholar]
  25. DharS. KolishettiN. LippardS.J. FarokhzadO.C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo.Proc. Natl. Acad. Sci.201110851850185510.1073/pnas.1011379108 21233423
    [Google Scholar]
  26. HambleyT.W. BattleA.R. DeaconG.B. LawrenzE.T. FallonG.D. GatehouseB.M. WebsterL.K. RainoneS. Modifying the properties of platinum(IV) complexes in order to increase biological effectiveness.J. Inorg. Biochem.1999771-231210.1016/S0162‑0134(99)00133‑6 10626347
    [Google Scholar]
  27. ReithoferM.R. BytzekA.K. ValiahdiS.M. KowolC.R. GroesslM. HartingerC.G. JakupecM.A. GalanskiM.S. KepplerB.K. Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes.J. Inorg. Biochem.20111051465110.1016/j.jinorgbio.2010.09.006 21134601
    [Google Scholar]
  28. MiQ. ShuS. YangC. GaoC. ZhangX. LuoX. BaoC. ZhangX. NiuJ. Current status for oral platinum (IV) anticancer drug development.Int. J. Med. Phys. Clin. Eng. Radiat. Oncol.20187223124710.4236/ijmpcero.2018.72020
    [Google Scholar]
  29. HarstrickA. CasperJ. GubaR. WilkeH. PoliwodaH. SchmollH.J. Comparison of the antitumor activity of cisplatin, carboplatin, and iproplatin against established human testicular cancer cell lines in vivo and in vitro.Cancer19896310791083
    [Google Scholar]
  30. BednarskiP.J. MackayF.S. SadlerP.J. Photoactivatable platinum complexes.Anticancer. Agents Med. Chem.200771759310.2174/187152007779314053 17266506
    [Google Scholar]
  31. BraddockP.D. ConnorsT.A. JonesM. KhokharA.R. MelzackD.H. TobeM.L. Structure and activity relationships of platinum complexes with anti-tumour activity.Chem. Biol. Interact.197511314516110.1016/0009‑2797(75)90095‑2 1157188
    [Google Scholar]
  32. LebwohlD. CanettaR. Clinical development of platinum complexes in cancer therapy: An historical perspective and an update.Eur. J. Cancer199834101522153410.1016/S0959‑8049(98)00224‑X 9893623
    [Google Scholar]
  33. ChoyH. ParkC. YaoM. Current status and future prospects for satraplatin, an oral platinum analogue.Clin. Cancer Res.20081461633163810.1158/1078‑0432.CCR‑07‑2176 18347164
    [Google Scholar]
  34. DoshiG. SonpavdeG. SternbergC.N. Clinical and pharmacokinetic evaluation of satraplatin.Expert Opin. Drug Metab. Toxicol.20128110311110.1517/17425255.2012.636352 22098065
    [Google Scholar]
  35. ŽákF. TuránekJ. KroutilA. SovaP. MistrA. PoulováA. MikolinP. ŽákZ. KašnáA. ZáluskáD. NečaJ. ŠindlerováL. KozubíkA. Platinum(IV) complex with adamantylamine as nonleaving amine group: Synthesis, characterization, and in vitro antitumor activity against a panel of cisplatin-resistant cancer cell lines.J. Med. Chem.200447376176310.1021/jm030858+ 14736257
    [Google Scholar]
  36. SovaP. MistrA. KroutilA. ZakF. PouckovaP. ZadinovaM. Preclinical anti-tumor activity of a new oral platinum(IV) drug LA-12.Anticancer Drugs200516665365710.1097/00001813‑200507000‑00010 15930894
    [Google Scholar]
  37. FadzenC.M. WolfeJ.M. ZhouW. ChoC.F. von SpreckelsenN. HutchinsonK.T. LeeY.C. ChioccaE.A. LawlerS.E. YilmazO.H. LippardS.J. PenteluteB.L. A platinum(IV) prodrug-perfluoroaryl macrocyclic peptide conjugate enhances platinum uptake in the brain.J. Med. Chem.202063136741674710.1021/acs.jmedchem.0c00022 32410451
    [Google Scholar]
  38. NovohradskyV. PracharovaJ. KasparkovaJ. ImbertiC. BridgewaterH.E. SadlerP.J. BrabecV. Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug.Inorg. Chem. Front.20207214150415910.1039/D0QI00991A 34540235
    [Google Scholar]
  39. YangT. ZhangS.R. YuanH. WangY. CaiL.X. ChenH.H. WangX.Y. SongD.F. WangX.Y. Platinum-based TREM2 inhibitor suppresses tumors by remodeling the immune suppressive microenvironment.Angew. Chem. Int. Ed.202362e20221333710.1002/anie.202213337 36259513
    [Google Scholar]
  40. YuanS. ZhuY. DaiY. WangY. JinD. LiuM. TangL. ArnesanoF. NatileG. LiuY. 19F NMR Allows the investigation of the fate of platinum(IV) prodrugs in physiological conditions.Angew. Chem. Int. Ed.2022614e20211425010.1002/anie.202114250 34800083
    [Google Scholar]
  41. ChenF. XuG. TianW. GouS. Breakdown of chemo-immune resistance by a TDO2-targeted Pt(IV) prodrug via attenuating endogenous Kyn-AhR-AQP4 metabolic circuity and TLS-promoted genomic instability.Biochem. Pharmacol.202119311478510.1016/j.bcp.2021.114785 34562469
    [Google Scholar]
  42. XuZ. WangZ. DengZ. ZhuG. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs.Coord. Chem. Rev.202144221399110.1016/j.ccr.2021.213991
    [Google Scholar]
  43. SedaghatT. EbrahimiY. CarlucciL. ProserpioD.M. NobakhtV. MotamediH. DayerM.R. Diorganotin(IV) complexes with 2-furancarboxylic acid hydrazone derivative of benzoylacetone: Synthesis, X-ray structure, antibacterial activity, DNA cleavage and molecular docking.J. Organomet. Chem.201579422323010.1016/j.jorganchem.2015.06.034
    [Google Scholar]
  44. GilmoreC.J. MallinsonP.R. SpeakmanJ.C. Structure of 2-furoic acid, C5H4O3: A redetermination.Acta Crystallogr. C19833981111111310.1107/S010827018300757X
    [Google Scholar]
  45. NikiforovaM.E. LutsenkoI.A. KiskinM.A. NelyubinaY.V. PrimakovP.V. BekkerO.B. KhoroshilovA.V. EremenkoI.L. Coordination polymer of Ba2+ with 2-furoic acid anions: Synthesis, structure, and thermal properties.Russ. J. Inorg. Chem.20216691343134910.1134/S0036023621090102
    [Google Scholar]
  46. VarbanovH.P. ValiahdiS.M. KowolC.R. JakupecM.A. GalanskiM.S. KepplerB.K. Novel tetracarboxylatoplatinum(IV) complexes as carboplatin prodrugs.Dalton Trans.20124147144041441510.1039/C2DT31366A 22886297
    [Google Scholar]
  47. HarrapK.R. MurrerB.A. GiandomenicoC. MorganS.E. KellandL.R. JonesM. GoddardP.M. SchurigJ. Ammine/amine platinum IV dicarboxylates: A novel class of complexes which circumvent intrinsic cisplatin resistance.Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy.New YorkPlenum Press199139139910.1007/978‑1‑4899‑0738‑7_36
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808257585231016055814
Loading
/content/journals/lddd/10.2174/0115701808257585231016055814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test