Skip to content
2000
Volume 21, Issue 13
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

An energetic desire to reduce the undesirable effects brought on by synthetic heterocyclic substances and to combat antimicrobial resistance has led to an increase in curiosity in using natural antimicrobial agents derived from plants, such as phenolics, catechol, pyrogallol, essential oils, L-chicoric acid, caffeic acid, catechins, coumarin, proanthocyanidins, 4-thiazolidinone, and alkaloids. The usage of naturally occurring heterocycles against Gram-positive (, . , , , and ) and Gram-negative (, , , , and ) bacteria has been the subject of increased investigation in past few decades. This review targets the use of plant-derived antimicrobials to increase the microbiological safety of food and the possible antimicrobial activity of nitrogen- and oxygen-based heterocyclic compounds. It is possible to find novel medications to treat infectious diseases and address the issues brought on by antibiotic resistance by exploring and utilising the potential of these chemicals. Additional research is desirable on the toxicological effects and potential additive and/or synergistic antimicrobial actions in order to maximise the usage of these potential natural antimicrobials in foods.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808254524231018040600
2023-10-27
2025-07-03
Loading full text...

Full text loading...

References

  1. ClarkA.M. Natural products as a resource for new drugs.Pharm. Res.19961381133114110.1023/A:1016091631721 8865302
    [Google Scholar]
  2. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.564 10515903
    [Google Scholar]
  3. Ostrosky-ZeichnerL. RexJ.H. PappasP.G. HamillR.J. LarsenR.A. HorowitzH.W. PowderlyW.G. HyslopN. KauffmanC.A. ClearyJ. ManginoJ.E. LeeJ. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States.Antimicrob. Agents Chemother.200347103149315410.1128/AAC.47.10.3149‑3154.2003 14506023
    [Google Scholar]
  4. PfallerM.A. DiekemaD.J. JonesR.N. SaderH.S. FluitA.C. HollisR.J. MesserS.A. International surveillance of bloodstream infections due to Candida species: Frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program.J. Clin. Microbiol.20013993254325910.1128/JCM.39.9.3254‑3259.2001 11526159
    [Google Scholar]
  5. CanutoM.M. RoderoF.G. Antifungal drug resistance to azoles and polyenes.Lancet Infect. Dis.20022955056310.1016/S1473‑3099(02)00371‑7 12206971
    [Google Scholar]
  6. SanglardD. OddsF.C. Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences.Lancet Infect. Dis.200222738510.1016/S1473‑3099(02)00181‑0 11901654
    [Google Scholar]
  7. CassidyA. HanleyB. Lamuela-RaventosR.M. Isoflavones, lignans and stilbenes: Origins, metabolism and potential importance to human health.J. Sci. Food Agric.20008071044106210.1002/(SICI)1097‑0010(20000515)80:7<1044::AID‑JSFA586>3.0.CO;2‑N
    [Google Scholar]
  8. EtkinN.L. Medicinal cuisines: Diet and ethopharmacology.Int. J. Pharmac.199634531332610.1076/phbi.34.5.313.13246
    [Google Scholar]
  9. SrinivasanR. KannappanA. ShiC. LinX. Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds.Mar. Drugs2021191053010.3390/md19100530 34677431
    [Google Scholar]
  10. PieroniA. Medicinal plants and food medicines in the folk traditions of the upper Lucca Province, Italy.J. Ethnopharmacol.200070323527310.1016/S0378‑8741(99)00207‑X 10837988
    [Google Scholar]
  11. Faisca PhillipsA.M. PombeiroA.J.L. Recent developments in transition metal-catalyzed cross-dehydrogenative coupling reactions of ethers and thioethers.ChemCatChem201810163354338310.1002/cctc.201800582
    [Google Scholar]
  12. BéahdyJ. Recent developments of antibiotic research and classification of antibiotics according to chemical structure.Adv. Appl. Microbiol.197418030940610.1016/S0065‑2164(08)70573‑2 4613148
    [Google Scholar]
  13. AlamgirA.N.M. AlamgirA.N.M. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles.Therapeutic Use of Medicinal Plants and Their Extracts Phytochemistry and Bioactive Compounds2018216530910.1007/978‑3‑319‑92387‑1_3
    [Google Scholar]
  14. WagnerS. HofmannA. SiedleB. TerflothL. MerfortI. GasteigerJ. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks.J. Med. Chem.20064972241225210.1021/jm051125n 16570920
    [Google Scholar]
  15. TodorovaA.K. JuettnerF. LindenA. PluessT. von PhilipsbornW. Nostocyclamide: A new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria).J. Org. Chem.199560247891789510.1021/jo00129a032
    [Google Scholar]
  16. LentzenG. KlinckR. MatassovaN. Aboul-elaF. MurchieA.I.H. Structural basis for contrasting activities of ribosome binding thiazole antibiotics.Chem. Biol.200310876977810.1016/S1074‑5521(03)00173‑X 12954336
    [Google Scholar]
  17. FabbrettiA. HeC.G. GaspariE. MaffioliS. BrandiL. SpurioR. SosioM. JabesD. DonadioS. A derivative of the thiopeptide GE2270A highly selective against propionibacterium acnes.Antimicrob. Agents Chemother.20155984560456810.1128/AAC.05155‑14 25987631
    [Google Scholar]
  18. KnerrP.J. van der DonkW.A. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry.J. Am. Chem. Soc.2013135197094709710.1021/ja4014024 23621626
    [Google Scholar]
  19. UenoM. FurukawaS. AbeF. UshiodaM. FujineK. JohkiS. HatoriH. UedaH. Suppressive effect of antibiotic siomycin on antibody production.J. Antibiot.200457959059610.7164/antibiotics.57.590 15580960
    [Google Scholar]
  20. de CarvalhoL.P. Groeger-OteroS. KreidenweissA. KremsnerP.G. MordmüllerB. HeldJ. Boromycin has rapid-onset antibiotic activity against asexual and sexual blood stages of plasmodium falciparum.Front. Cell. Infect. Microbiol.20221180229410.3389/fcimb.2021.802294 35096650
    [Google Scholar]
  21. DembitskyV.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.Lipids200540111081110510.1007/s11745‑005‑1473‑2 16459921
    [Google Scholar]
  22. OthmanL. SleimanA. Abdel-MassihR.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants.Front. Microbiol.20191091110.3389/fmicb.2019.00911 31156565
    [Google Scholar]
  23. van BergeijkD.A. TerlouwB.R. MedemaM.H. van WezelG.P. Ecology and genomics of Actinobacteria: new concepts for natural product discovery.Nat. Rev. Microbiol.2020181054655810.1038/s41579‑020‑0379‑y 32483324
    [Google Scholar]
  24. DebnathB. SinghW.S. DasM. GoswamiS. SinghM.K. MaitiD. MannaK. Role of plant alkaloids on human health: A review of biological activities.Mater. Today Chem.20189567210.1016/j.mtchem.2018.05.001
    [Google Scholar]
  25. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  26. AmirkiaV. HeinrichM. Alkaloids as drug leads: A predictive structural and biodiversity-based analysis.Phytochem. Lett.201410xlviiiliii10.1016/j.phytol.2014.06.015
    [Google Scholar]
  27. KhamenehB. IranshahyM. GhandadiM. Ghoochi AtashbeykD. Fazly BazzazB.S. IranshahiM. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus.Drug Dev. Ind. Pharm.201541698999410.3109/03639045.2014.920025 24842547
    [Google Scholar]
  28. ZandavarH. BabazadM.A. Secondary Metabolites: Alkaloids and flavonoids in medicinal plants. Herbs and Spices-New AdvancesIntechOpen202310.5772/intechopen.108030
    [Google Scholar]
  29. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo9110258 31683833
    [Google Scholar]
  30. RosalesP.F. BordinG.S. GowerA.E. MouraS. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities.Fitoterapia202014310455810.1016/j.fitote.2020.104558 32198108
    [Google Scholar]
  31. CushnieT.P.T. CushnieB. LambA.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int. J. Antimicrob. Agents201444537738610.1016/j.ijantimicag.2014.06.001 25130096
    [Google Scholar]
  32. DaiJ. DanW. ZhangY. HeM. WangJ. Design and synthesis of C modified and ring-truncated canthin-6-one analogues as effective membrane-active antibacterial agents.Bioorg. Med. Chem. Lett.201828183123312810.1016/j.bmcl.2018.06.001 30097370
    [Google Scholar]
  33. YangF.F. ShuaiM.S. GuanX. ZhangM. ZhangQ.Q. FuX.Z. LiZ.Q. WangD.P. ZhouM. YangY.Y. LiuT. HeB. ZhaoY.L. Synthesis and antibacterial activity studies in vitro of indirubin-3′-monoximes.RSC Advances20221238250682508010.1039/D2RA01035F 36199871
    [Google Scholar]
  34. CasciaroB. MangiardiL. CappielloF. RomeoI. LoffredoM.R. IazzettiA. CalcaterraA. GoggiamaniA. GhirgaF. MangoniM.L. BottaB. QuaglioD. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections.Molecules20202516361910.3390/molecules25163619 32784887
    [Google Scholar]
  35. MohtarM. JohariS.A. LiA.R. IsaM.M. MustafaS. AliA.M. BasriD.F. Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant Staphylococcus aureus (MRSA).Curr. Microbiol.200959218118610.1007/s00284‑009‑9416‑9 19475447
    [Google Scholar]
  36. CasciaroB. CalcaterraA. CappielloF. MoriM. LoffredoM. GhirgaF. MangoniM. BottaB. QuaglioD. Nigritanine as a new potential antimicrobial alkaloid for the treatment of Staphylococcus aureus: Induced Infections.Toxins (Basel)201911951110.3390/toxins11090511 31480508
    [Google Scholar]
  37. LeboldT.P. KerrM.A. Total syntheses of clausamines A-C and clausevatine D.Org. Lett.2008105997100010.1021/ol703085f 18232706
    [Google Scholar]
  38. maneerat, W.; Phakhodee, W.; Ritthiwigrom, T.; Cheenpracha, S.; Promgool, T.; Yossathera, K.; Deachathai, S.; Laphookhieo, S. Antibacterial carbazole alkaloids from clausenaharmandiana twigs.Fitoterapia20128361110111410.1016/j.fitote.2012.04.026 22579839
    [Google Scholar]
  39. AhireJ.J. KashikarM.S. MadempudiR.S. Survival and Germination of Bacillus clausii UBBC07 Spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production.Front. Microbiol.202011101010.3389/fmicb.2020.01010 32733389
    [Google Scholar]
  40. ElmaidomyA.H. ShadyN.H. AbdeljawadK.M. ElzamkanM.B. HelmyH.H. TarshanE.A. AdlyA.N. HussienY.H. SayedN.G. ZayedA. AbdelmohsenU.R. Antimicrobial potentials of natural products against multidrug resistance pathogens: A comprehensive review.RSC Adv.20221245290782910210.1039/D2RA04884A 36320761
    [Google Scholar]
  41. DanquahC.A. KakagianniE. KhondkarP. MaitraA. RahmanM. EvangelopoulosD. McHughT.D. StapletonP. MalkinsonJ. BhaktaS. GibbonsS. Analogues of disulfides from allium stipitatum demonstrate potent anti-tubercular activities through drug efflux pump and biofilm inhibition.Sci. Rep.201881115010.1038/s41598‑017‑18948‑w 29348586
    [Google Scholar]
  42. ManeeratW. PhakhodeeW. CheenprachaS. RitthiwigromT. DeachathaiS. LaphookhieoS. Clausenawallines G–K, carbazole alkaloids from Clausena wallichii twigs.Phytochemistry201388747810.1016/j.phytochem.2012.12.014
    [Google Scholar]
  43. JoshiT. JainT. MaharR. SinghS.K. SrivastavaP. ShuklaS.K. MishraD.K. BhattaR.S. BanerjeeD. KanojiyaS. Pyranocarbazoles from Murraya koenigii (L.) Spreng. as antimicrobial agents.Nat. Prod. Res.201832443043410.1080/14786419.2017.1308363 28368664
    [Google Scholar]
  44. DwivediG.R. MauryaA. YadavD.K. SinghV. KhanF. GuptaM.K. SinghM. DarokarM.P. SrivastavaS.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli.J. Biomol. Struct. Dyn.20193751307132510.1080/07391102.2018.1458654 29595093
    [Google Scholar]
  45. HerraizT. PeñaA. MateoH. HerraizM. SalgadoA. Formation, characterization, and occurrence of β-carboline alkaloids derived from α-dicarbonyl compounds and L -tryptophan.J. Agric. Food Chem.202270299143915310.1021/acs.jafc.2c03187 35819924
    [Google Scholar]
  46. DaiJ. DanW. SchneiderU. WangJ. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities.Eur. J. Med. Chem.201815762265610.1016/j.ejmech.2018.08.027 30125723
    [Google Scholar]
  47. DarabpourE. Poshtkouhian BaviA. MotamediH. Seyyed NejadS.M. Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria.EXCLI J.201110252263 29033706
    [Google Scholar]
  48. WibowoJ.T. AhmadiP. RahmawatiS.I. BayuA. PutraM.Y. KijjoaA. Marine-derived indole alkaloids and their biological and pharmacological activities.Mar. Drugs2021201310.3390/md20010003 35049859
    [Google Scholar]
  49. HussonH-P. Simple indole alkaloids including ß-carbolines and carbazoles.The Alkaloids: Chemistry and Pharmacology. BrossiA. Academic Press1985Vol. 2615110.1016/S0099‑9598(08)60192‑3
    [Google Scholar]
  50. HanY. DongW. GuoQ. LiX. HuangL. The importance of indole and azaindole scaffold in the development of antitumor agents.Eur. J. Med. Chem.202020311250610.1016/j.ejmech.2020.112506 32688198
    [Google Scholar]
  51. ManeeratW. RitthiwigromT. CheenprachaS. PromgoolT. YossatheraK. DeachathaiS. PhakhodeeW. LaphookhieoS. Bioactive carbazole alkaloids from Clausena wallichii roots.J. Nat. Prod.201275474174610.1021/np3000365 22482432
    [Google Scholar]
  52. YuH.H. KimK.J. ChaJ.D. KimH.K. LeeY.E. ChoiN.Y. YouY.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.J. Med. Food20058445446110.1089/jmf.2005.8.454 16379555
    [Google Scholar]
  53. ChoiJ.G. KangO.H. ChaeH.S. Obiang-ObounouB. LeeY.S. OhY.C. KimM.S. ShinD.W. KimJ.A. KimY.H. KwonD.Y. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus.Appl. Biochem. Biotechnol.201016082467247410.1007/s12010‑009‑8698‑5 19578993
    [Google Scholar]
  54. HamoudR. ReichlingJ. WinkM. Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria.Drug Metab. Lett.20158211912810.2174/187231280802150212100742 25692301
    [Google Scholar]
  55. TzengH.E. TsaiC.H. HoT.Y. HsiehC.T. ChouS.C. LeeY.J. TsayG.J. HuangP.H. WuY.Y. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-κB and mitogen-activated protein kinase pathways.BMC Complement. Altern. Med.201818113210.1186/s12906‑018‑2196‑7 29688864
    [Google Scholar]
  56. Rodríguez-GuzmánR. Johansmann FulksL. RadwanM. BurandtC. RossS. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.Planta Med.201177131542154410.1055/s‑0030‑1270782 21341176
    [Google Scholar]
  57. CostaR.S. LinsM.O. Le HyaricM. BarrosT.F. VelozoE.S. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus.Rev. Bras. Farmacogn.201727219519810.1016/j.bjp.2016.11.001
    [Google Scholar]
  58. ZuoG.Y. MengF.Y. HaoX.Y. ZhangY.L. WangG.C. XuG.L. Antibacterial alkaloids from chelidonium majus linn (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus.J. Pharm. Pharm. Sci.2009114909410.18433/J3D30Q 19183517
    [Google Scholar]
  59. YinS. RaoG. WangJ. LuoL. HeG. WangC. MaC. LuoX. HouZ. XuG. Roemerine improves the survival rate of septicemic BALB/c Mice by increasing the cell membrane permeability of staphylococcus aureus.PLoS One20151011e014386310.1371/journal.pone.0143863 26606133
    [Google Scholar]
  60. AvciF.G. AtasB. AksoyC.S. KurpejovicE. Gulsoy ToplanG. GurerC. GuillerminetM. OrelleC. JaultJ.M. Sariyar AkbulutB. Repurposing bioactive aporphine alkaloids as efflux pump inhibitors.Fitoterapia201913910437110.1016/j.fitote.2019.104371 31629051
    [Google Scholar]
  61. StorkG. TangP.C. CaseyM. GoodmanB. ToyotaM. Regiospecific and stereoselective syntheses of (+/-)-reserpine and (-)-reserpine.J. Am. Chem. Soc.200512746162551626210.1021/ja055744x 16287318
    [Google Scholar]
  62. AkiyamaS. CornwellM.M. KuwanoM. PastanI. GottesmanM.M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog.Mol. Pharmacol.1988332144147 2893251
    [Google Scholar]
  63. NeyfakhA.A. BidnenkoV.E. ChenL.B. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system.Proc. Natl. Acad. Sci.199188114781478510.1073/pnas.88.11.4781 1675788
    [Google Scholar]
  64. HenryJ.P. BottonD. SagneC. IsambertM.F. DesnosC. BlanchardV. Raisman-VozariR. KrejciE. MassoulieJ. GasnierB. Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules.J. Exp. Biol.1994196125126210.1242/jeb.196.1.251 7823026
    [Google Scholar]
  65. JiaW. LiC. ZhangH. LiG. LiuX. WeiJ. Prevalence of Genes of OXA-23 Carbapenemase and AdeABC Efflux pump associated with multidrug resistance of acinetobacter baumannii isolates in the icu of a comprehensive hospital of northwestern China.Int. J. Environ. Res. Public Health2015128100791009210.3390/ijerph120810079 26308027
    [Google Scholar]
  66. NeyfakhA.A. BorschC.M. KaatzG.W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.Antimicrob. Agents Chemother.199337112812910.1128/AAC.37.1.128 8431010
    [Google Scholar]
  67. VecchioneJ.J. AlexanderB.Jr SelloJ.K. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor.Antimicrob. Agents Chemother.200953114673467710.1128/AAC.00853‑09 19687245
    [Google Scholar]
  68. GodreuilS. GalimandM. GerbaudG. JacquetC. CourvalinP. LdeE.P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes.Antimicrob. Agents Chemother.200347270470810.1128/AAC.47.2.704‑708.2003 12543681
    [Google Scholar]
  69. FloydJ.L. SmithK.P. KumarS.H. FloydJ.T. VarelaM.F. LmrS. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus.Antimicrob. Agents Chemother.201054125406541210.1128/AAC.00580‑10 20855745
    [Google Scholar]
  70. GibbonsS. UdoE.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant.Phytother. Res.200014213914010.1002/(SICI)1099‑1573(200003)14:2<139::AID‑PTR608>3.0.CO;2‑8 10685116
    [Google Scholar]
  71. ShaheenA. AfridiW.A. MahboobS. SanaM. ZeeshanN. IsmatF. MirzaO. IqbalM. RahmanM. Reserpine is the new addition into the repertoire of AcrB efflux pump inhibitors.Mol. Biol.201953467468410.1134/S0026898419040128 31397441
    [Google Scholar]
  72. StermitzF.R. LorenzP. TawaraJ.N. ZenewiczL.A. LewisK. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor.Proc. Natl. Acad. Sci.20009741433143710.1073/pnas.030540597 10677479
    [Google Scholar]
  73. KhanI.A. MirzaZ.M. KumarA. VermaV. QaziG.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus.Antimicrob. Agents Chemother.200650281081210.1128/AAC.50.2.810‑812.2006 16436753
    [Google Scholar]
  74. DwivediG.R. MauryaA. YadavD.K. KhanF. DarokarM.P. SrivastavaS.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant Escherichia coli.Chem. Biol. Drug Des.201586327228310.1111/cbdd.12491 25476148
    [Google Scholar]
  75. MauryaA. DwivediG.R. DarokarM.P. SrivastavaS.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli.Chem. Biol. Drug Des.201381448449010.1111/cbdd.12103 23290001
    [Google Scholar]
  76. GenestK. A direct densitometric method on thin-layer plates for the determination of lysergic acid amide, isolysergic acid amide and clavine alkaloids in morning glory seeds.J. Chromatogr. A196519353153910.1016/S0021‑9673(01)99495‑6 5864081
    [Google Scholar]
  77. MauryaA. VermaR.K. SrivastavaS.K. Quantitative determination of bioactive alkaloids lysergol and chanoclavine in Ipomoea muricata by reversed-phase high-performance liquid chromatography.Biomed. Chromatogr.20122691096110010.1002/bmc.1753 22120837
    [Google Scholar]
  78. BayazeidO. NemutluE. EylemC.C. İlhanM. Küpeli-AkkolE. KarahanH. Kelicen-UğurP. ErsozT. YalçınF.N. Neuroactivity of the naturally occurring aporphine alkaloid, roemerine.Nat. Prod. Res.202135246147615210.1080/14786419.2020.1830395 33025828
    [Google Scholar]
  79. MoritaY. NakashimaK. NishinoK. KotaniK. TomidaJ. InoueM. KawamuraY. Berberine is a novel type efflux inhibitor which attenuates the mexxy-mediated aminoglycoside resistance in pseudomonas aeruginosa.Front. Microbiol.20167122310.3389/fmicb.2016.01223 27547203
    [Google Scholar]
  80. TegosG. StermitzF.R. LomovskayaO. LewisK. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials.Antimicrob. Agents Chemother.200246103133314110.1128/AAC.46.10.3133‑3141.2002 12234835
    [Google Scholar]
  81. DasS. KumarG.S. RayA. MaitiM. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures.J. Biomol. Struct. Dyn.200320570371310.1080/07391102.2003.10506887 12643773
    [Google Scholar]
  82. BhadraK. MaitiM. KumarG.S. Berberine–DNA complexation: New insights into the cooperative binding and energetic aspects.Biochim. Biophys. Acta, Gen. Subj.2008178091054106110.1016/j.bbagen.2008.05.005 18549823
    [Google Scholar]
  83. YadavR.C. KumarG.S. BhadraK. GiriP. SinhaR. PalS. MaitiM. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study.Bioorg. Med. Chem.200513116517410.1016/j.bmc.2004.09.045 15582461
    [Google Scholar]
  84. DomadiaP.N. BhuniaA. SivaramanJ. SwarupS. DasguptaD. Berberine targets assembly of Escherichia coli cell division protein FtsZ.Biochemistry200847103225323410.1021/bi7018546 18275156
    [Google Scholar]
  85. BoberekJ.M. StachJ. GoodL. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine.PLoS One2010510e1374510.1371/journal.pone.0013745 21060782
    [Google Scholar]
  86. SchwartzbergL. OsswaldS.S. ElstonD.M. Botanical Briefs: Bloodroot (Sanguinaria canadensis).Cutis2021108421221410.12788/cutis.0345 34847001
    [Google Scholar]
  87. BeuriaT.K. SantraM.K. PandaD. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling.Biochemistry20054450165841659310.1021/bi050767+ 16342949
    [Google Scholar]
  88. W Obiang-ObounouB. KangO.H. ChoiJ.G. KeumJ.H. KimS.B. MunS.H. ShinD.W. Woo KimK. ParkC.B. KimY.G. HanS.H. KwonD.Y. The mechanism of action of sanguinarine against methicillin-resistant Staphylococcus aureus.J. Toxicol. Sci.201136327728310.2131/jts.36.277 21628956
    [Google Scholar]
  89. Obiang-ObounouB.W. KangO.H. ChoiJ.G. KeumJ.H. KimS.B. MunS.H. ShinD.W. ParkC.B. KimY.G. HanS.H. LeeJ.H. KwonD.Y. In vitro potentiation of ampicillin, oxacillin, norfloxacin, ciprofloxacin, and vancomycin by sanguinarine against methicillin-resistant Staphylococcus aureus.Foodborne Pathog. Dis.20118886987410.1089/fpd.2010.0759 21524196
    [Google Scholar]
  90. ParhiA. LuS. KelleyC. KaulM. PilchD.S. LaVoieE.J. Antibacterial activity of substituted dibenzo[a,g]quinolizin-7-ium derivatives.Bioorg. Med. Chem. Lett.201222226962696610.1016/j.bmcl.2012.08.123 23058886
    [Google Scholar]
  91. HamoudR. ReichlingJ. WinkM. Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria.J. Pharm. Pharmacol.201567226427310.1111/jphp.12326 25495516
    [Google Scholar]
  92. AL-AniI. ZimmermannS. ReichlingJ. WinkM. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.Phytomedicine201522224525510.1016/j.phymed.2014.11.019 25765829
    [Google Scholar]
  93. HamoudR. ZimmermannS. ReichlingJ. WinkM. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli.Phytomedicine201421444344710.1016/j.phymed.2013.10.016 24262063
    [Google Scholar]
  94. ZuoG.Y. LiY. WangT. HanJ. WangG.C. ZhangY.L. PanW.D. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA).Molecules201116129819982610.3390/molecules16129819 22117171
    [Google Scholar]
  95. SharmaS. KumarM. SharmaS. NargotraA. KoulS. KhanI.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis.J. Antimicrob. Chemother.20106581694170110.1093/jac/dkq186 20525733
    [Google Scholar]
  96. MirzaZ.M. KumarA. KaliaN.P. ZargarA. KhanI.A. Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus.J. Med. Microbiol.201160101472147810.1099/jmm.0.033167‑0 21680766
    [Google Scholar]
  97. BhardwajR.K. GlaeserH. BecquemontL. KlotzU. GuptaS.K. FrommM.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4.J. Pharmacol. Exp. Ther.2002302264565010.1124/jpet.102.034728 12130727
    [Google Scholar]
  98. SinghJ. DubeyR.K. AtalC.K. Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: Evidence that piperine lowers the endogeneous UDP-glucuronic acid content.J. Pharmacol. Exp. Ther.19862362488493 3080587
    [Google Scholar]
  99. PanX. BlighS.W.A. SmithE. Quinolone alkaloids from Fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus.Phytother. Res.201428230530710.1002/ptr.4987 24497124
    [Google Scholar]
  100. HochfellnerC. EvangelopoulosD. ZlohM. WubeA. GuzmanJ.D. McHughT.D. KunertO. BhaktaS. BucarF. Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine.J. Appl. Microbiol.2015118486487210.1111/jam.12753 25604161
    [Google Scholar]
  101. HamasakiN. IshiiE. TominagaK. TezukaY. NagaokaT. KadotaS. KurokiT. YanoI. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu-Yu), against Helicobacter pylori in vitro.Microbiol. Immunol.200044191510.1111/j.1348‑0421.2000.tb01240.x 10711594
    [Google Scholar]
  102. TominagaK. HiguchiK. HamasakiN. HamaguchiM. TakashimaT. TanigawaT. WatanabeT. FujiwaraY. TezukaY. NagaokaT. KadotaS. IshiiE. KobayashiK. ArakawaT. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori.J. Antimicrob. Chemother.200250454755210.1093/jac/dkf159 12356800
    [Google Scholar]
  103. GuzmanJ.D. WubeA. EvangelopoulosD. GuptaA. HüfnerA. BasavannacharyaC. RahmanM.M. ThomaschitzC. BauerR. McHughT.D. NobeliI. PrietoJ.M. GibbonsS. BucarF. BhaktaS. Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics.J. Antimicrob. Chemother.20116681766177210.1093/jac/dkr203 21622974
    [Google Scholar]
  104. GçkerH. KusC. ArchA.U. Synthesis and antimicrobial activity of some new 2-[(1H-benzimidazol-2-yl)methyl]-5-nitro-1H-benzimidazole derivatives.Pharm.1995328425430
    [Google Scholar]
  105. DesaiN.C. DodiyaA.M. MakwanaA.H. Antimicrobial screening of novel synthesized benzimidazole nucleus containing 4-oxo-thiazolidine derivatives.Med. Chem. Res.20122192320232810.1007/s00044‑011‑9752‑8
    [Google Scholar]
  106. HuL. KullyM.L. BoykinD.W. AboodN. Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents.Bioorg. Med. Chem. Lett.200919133374337710.1016/j.bmcl.2009.05.061 19481935
    [Google Scholar]
  107. Al-MohammedN. AliasY. AbdullahZ. ShakirR. TahaE. HamidA. Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides.Molecules20131810119781199510.3390/molecules181011978 24077176
    [Google Scholar]
  108. WisemanS.A. BalentineD.A. FreiB. Antioxidants in tea.Crit. Rev. Food Sci. Nutr.199737870571810.1080/10408399709527798 9447271
    [Google Scholar]
  109. ChouC. LinL.L. ChungK.T. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season.Int. J. Food Microbiol.199948212513010.1016/S0168‑1605(99)00034‑3 10426448
    [Google Scholar]
  110. OtakeS. MakimuraM. KurokiT. NishiharaY. HirasawaM. Anticaries effects of polyphenolic compounds from Japanese green tea.Caries Res.199125643844310.1159/000261407 1667297
    [Google Scholar]
  111. YodaY. HuZ.Q. ShimamuraT. ZhaoW-H. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate.J. Infect. Chemother.2004101555810.1007/s10156‑003‑0284‑0 14991521
    [Google Scholar]
  112. MabeK. YamadaM. OguniI. TakahashiT. In vitro and in vivo activities of tea catechins against Helicobacter pylori.Antimicrob. Agents Chemother.19994371788179110.1128/AAC.43.7.1788 10390246
    [Google Scholar]
  113. HirasawaM. TakadaK. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans.J. Antimicrob. Chemother.200453222522910.1093/jac/dkh046 14688042
    [Google Scholar]
  114. JodoinJ. DemeuleM. BéliveauR. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols.Biochim. Biophys. Acta Mol. Cell Res.200215421-314915910.1016/S0167‑4889(01)00175‑6 11853888
    [Google Scholar]
  115. BlancoA.R. La Terra MulèS. BabiniG. GarbisaS. EneaV. RuscianoD. (−)Epigallocatechin-3-gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine.Biochim. Biophys. Acta, Gen. Subj.200316201-3273281, 273-28110.1016/S0304‑4165(03)00007‑212595099
    [Google Scholar]
  116. HigdonJ.V. FreiB. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions.Crit. Rev. Food Sci. Nutr.20034318914310.1080/10408690390826464 12587987
    [Google Scholar]
  117. ParkB.J. ParkJ.C. TaguchiH. FukushimaK. HyonS.H. TakatoriK. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts.Biochem. Biophys. Res. Commun.2006347240140510.1016/j.bbrc.2006.06.037 16831406
    [Google Scholar]
  118. TaguriT. TanakaT. KounoI. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure.Biol. Pharm. Bull.200629112226223510.1248/bpb.29.2226 17077519
    [Google Scholar]
  119. IkigaiH. NakaeT. HaraY. ShimamuraT. Bactericidal catechins damage the lipid bilayer.Biochim. Biophys. Acta Biomembr.19931147113213610.1016/0005‑2736(93)90323‑R 8466924
    [Google Scholar]
  120. Sudano RoccaroA. BlancoA.R. GiulianoF. RuscianoD. EneaV. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells.Antimicrob. Agents Chemother.20044861968197310.1128/AAC.48.6.1968‑1973.2004 15155186
    [Google Scholar]
  121. ZhaoW.H. HuZ.Q. HaraY. ShimamuraT. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus.Antimicrob. Agents Chemother.20024672266226810.1128/AAC.46.7.2266‑2268.2002 12069986
    [Google Scholar]
  122. ZhaoW.H. HuZ.Q. OkuboS. HaraY. ShimamuraT. Mechanism of Synergy between Epigallocatechin Gallate and β-Lactams against Methicillin-Resistant Staphylococcus aureus.Antimicrob. Agents Chemother.20014561737174210.1128/AAC.45.6.1737‑1742.2001 11353619
    [Google Scholar]
  123. ChungK.T. WeiC.I. JohnsonM.G. Are tannins a double-edged sword in biology and health?Trends Food Sci. Technol.19989416817510.1016/S0924‑2244(98)00028‑4
    [Google Scholar]
  124. HoriY. SatoS. HataiA. Antibacterial activity of plant extracts from azuki beans (Vigna angularis) in vitro.Phytother. Res.200620216216410.1002/ptr.1826 16444673
    [Google Scholar]
  125. AmarowiczR. PeggR.B. BautistaD.A. Antibacterial activity of green tea polyphenols against Escherichia coliK 12.Nahrung2000441606210.1002/(SICI)1521‑3803(20000101)44:1<60::AID‑FOOD60>3.0.CO;2‑L 10703004
    [Google Scholar]
  126. Puupponen-PimiäR. NohynekL. MeierC. KähkönenM. HeinonenM. HopiaA. Oksman-CaldenteyK.M. Antimicrobial properties of phenolic compounds from berries.J. Appl. Microbiol.200190449450710.1046/j.1365‑2672.2001.01271.x 11309059
    [Google Scholar]
  127. HowellA.B. VorsaN. MarderosianA.D. FooL.Y. Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries.N. Engl. J. Med.1998339151085108610.1056/NEJM199810083391516 9767006
    [Google Scholar]
  128. (a TaylorR.S.L. EdelF. ManandharN.P. TowersG.H.N. Screening of selected medicinal plants of Nepal for antimicrobial activities.J. Ethnopharmacol.19995097 82
    [Google Scholar]
  129. (b NelsonK.E. PellA.N. DoaneP.H. Giner-ChavezB.I. SchofieldP. Chemical and Biological Assays to Evaluate Bacterial Inhibition by Tannins.J. Chem. Ecol.19972341175119410.1023/B:JOEC.0000006394.06574.f4
    [Google Scholar]
  130. JonesG.A. McAllisterT.A. MuirA.D. ChengK.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria.Appl. Environ. Microbiol.19946041374137810.1128/aem.60.4.1374‑1378.1994 16349244
    [Google Scholar]
  131. DixonR.A. XieD.Y. SharmaS.B. ProanthocyanidinsA. Proanthocyanidins: A final frontier in flavonoid research?New Phytol.2005165192810.1111/j.1469‑8137.2004.01217.x 15720617
    [Google Scholar]
  132. SchötzK. NöldnerM. Mass spectroscopic characterisation of oligomeric proanthocyanidins derived from an extract of Pelargonium sidoides roots (EPs® 7630) and pharmacological screening in CNS models.Phytomedicine2007146323910.1016/j.phymed.2006.11.019 17218089
    [Google Scholar]
  133. McRoseD.L. LiJ. NewmanD.K. The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads.Proc. Natl. Acad. Sci.202312014e221795112010.1073/pnas.2217951120 36996105
    [Google Scholar]
  134. VogelA. Gilbert’s.Ann. Phys. Phys. Chem.182064216116610.1002/andp.18200640205
    [Google Scholar]
  135. SmythT. RamachandranV.N. SmythW.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins.Int. J. Antimicrob. Agents200933542142610.1016/j.ijantimicag.2008.10.022 19155158
    [Google Scholar]
  136. Brglez MojzerE. Knez HrnčičM. ŠkergetM. KnezŽ. BrenU. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects.Molecules201621790110.3390/molecules21070901 27409600
    [Google Scholar]
  137. GeissmanT.A. Flavonoid compounds, tannins, lignins, and related compounds.Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents FlorkinM. StotzE.H. Elsevier1963926510.1016/B978‑1‑4831‑9718‑0.50018‑7
    [Google Scholar]
  138. FerrazzanoG. AmatoI. IngenitoA. ZarrelliA. PintoG. PollioA. Plant polyphenols and their anti-cariogenic properties: A review.Molecules20111621486150710.3390/molecules16021486 21317840
    [Google Scholar]
  139. AldulaimiO. General overview of phenolics from plant to laboratory, good antibacterials or not.Pharmacogn. Rev.2017112212312710.4103/phrev.phrev_43_16 28989246
    [Google Scholar]
  140. MarcheseA. BarbieriR. CoppoE. OrhanI.E. DagliaM. NabaviS.F. IzadiM. AbdollahiM. NabaviS.M. AjamiM. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  141. MendoncaA. Jackson-DavisA. MoutiqR. Thomas-PopoE. Use of natural antimicrobials of plant origin to improve the microbiological safety of foods.Food Feed Saf. Syst. Anal.2018249272
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808254524231018040600
Loading
/content/journals/lddd/10.2174/0115701808254524231018040600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test