Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

The replication of monkeypox in the skin is critical to understanding its pathogenesis and spread. p37, a highly conserved 37 kDa peripheral membrane protein encoded by the F13L gene in is a validated target for anti-poxviral medication like tecovirimat, the first FDA-approved anti-poxviral drug that was approved in 2018. The detailed recognition mechanism of tecovirimat on p37 of monkeypox has not been fully clarified. As p37, HSV-1 gD and HSV-2 gD proteins of HSV are viral envelope glycoproteins identified as ligands for the human nectin-1 as a functional receptor of permissive cells. The use of non-damaging light for microbial inactivation (MI) has been documented for different virus like HSV, where photosensitizers (PSs) are used as light-responsive agents which could generate antiviral responses primarily by oxidation. In addition, some PSs could elicit antiviral responses in a light-independent way by interacting within the viral-cell recognition sites.

Objective

This paper aims to evaluate the formation of complexes between the latest structural data available on the range of monkeypox and HSV-1/2 envelope proteins with the approved PSs protoporphyrin IX, chlorin e6, and methylene blue.

Methods

Ligands and receptors preparation, and molecular docking analyses were performed with Chimera and the Autodock Vina Software. Molecular docking and molecular dynamics simulation (MD) analyses for a 100 ns trajectory were also performed for the p37 – Methylene blue complex.

Results

PSs studies were found to form complexes into the patch regions of recognition between HSV-1/2 gD and human receptors, while MB was found to form a complex with the p37 protein into de pocket region where tecovirimat acts. MD simulation showed stability in the interaction of MB with the pocket region of the p37 protein.

Conclusion

The molecular mechanisms of potential dual antiviral activity for these complexes were clarified showing that MI with the use of these PSs could be further evaluated for viral skin lesions produced by monkeypox and HSV.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808247788230919172400
2023-12-16
2025-01-24
Loading full text...

Full text loading...

References

  1. TommasiC. BreuerJ. The biology of varicella-zoster virus replication in the skin.Viruses202214598210.3390/v14050982
    [Google Scholar]
  2. AdlerH. GouldS. HineP. SnellL.B. WongW. HoulihanC.F. OsborneJ.C. RamplingT. BeadsworthM.B.J. DuncanC.J.A. DunningJ. FletcherT.E. HunterE.R. JacobsM. KhooS.H. NewsholmeW. PorterD. PorterR.J. RatcliffeL. SchmidM.L. SempleM.G. TunbridgeA.J. WingfieldT. PriceN.M. AbouyannisM. Al-BalushiA. AstonS. BallR. BeechingN.J. BlanchardT.J. CarlinF. DaviesG. GillespieA. HicksS.R. HoyleM-C. IlozueC. MairL. MarshallS. NearyA. NsutebuE. ParkerS. RyanH. TurtleL. SmithC. van AartsenJ. WalkerN.F. WoolleyS. ChawlaA. HartI. SmielewskaA. JoekesE. BensonC. BrindleyC. DasU. Eyton-ChongC.K. GnanalinghamC. HalfhideC. LarruB. MayellS. McBrideJ. OliverC. PaulP. RiordanA. SridharL. StoreyM. AbdulA. AbrahamsenJ. AthanB. BhaganiS. BrownC.S. CarpenterO. CropleyI. FrostK. HopkinsS. JoyceJ. LambL. LyonsA. MahunguT. MephamS. MukwairaE. RodgerA. TaylorC. WarrenS. WilliamsA. LevittD. AllenD. DixonJ. EvansA. McNicholasP. PayneB. PriceD.A. SchwabU. SykesA. TahaY. WardM. EmontsM. OwensS. BotgrosA. DouthwaiteS.T. GoodmanA. LuintelA. MacMahonE. NebbiaG. O’HaraG. ParsonsJ. SenA. StevensonD. SullivanT. TajU. van Nipsen tot Pannerden, C.; Winslow, H.; Zatyka, E.; Alozie-Otuka, E.; Beviz, C.; Ceesay, Y.; Gargee, L.; Kabia, M.; Mitchell, H.; Perkins, S.; Sasson, M.; Sehmbey, K.; Tabios, F.; Wigglesworth, N.; Aarons, E.J.; Brooks, T.; Dryden, M.; Furneaux, J.; Gibney, B.; Small, J.; Truelove, E.; Warrell, C.E.; Firth, R.; Hobson, G.; Johnson, C.; Dewynter, A.; Nixon, S.; Spence, O.; Bugert, J.J.; Hruby, D.E. Clinical features and management of human monkeypox: A retrospective observational study in the UK.Lancet Infect. Dis.20222281153116210.1016/S1473‑3099(22)00228‑6
    [Google Scholar]
  3. HraibM. JouniS. AlbitarM.M. AlaidiS. AlshehabiZ. The outbreak of monkeypox 2022: An overview.Ann. Med. Surg.20227910406910.1016/j.amsu.2022.104069
    [Google Scholar]
  4. OgoinaD. IroezinduM. JamesH.I. OladokunR. Yinka-OgunleyeA. WakamaP. Otike-odibiB. UsmanL.M. ObazeeE. ArunaO. IhekweazuC. Clinical course and outcome of human monkeypox in Nigeria.Clin. Infect. Dis.2020718e210e21410.1093/cid/ciaa143
    [Google Scholar]
  5. FineP.E.M. JezekZ. GrabB. DixonH. The transmission potential of monkeypox virus in human populations.Int. J. Epidemiol.198817364365010.1093/ije/17.3.643
    [Google Scholar]
  6. SmeeD.F. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models.Antivir. Chem. Chemother.200819311512410.1177/095632020801900302
    [Google Scholar]
  7. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008
    [Google Scholar]
  8. LuoD. CarterK.A. MirandaD. LovellJ.F. Chemophototherapy: An emerging treatment option for solid tumors.Adv. Sci.201741160010610.1002/advs.201600106
    [Google Scholar]
  9. KwiatkowskiS. KnapB. PrzystupskiD. SaczkoJ. KędzierskaE. Knap-CzopK. KotlińskaJ. MichelO. KotowskiK. KulbackaJ. Photodynamic therapy – mechanisms, photosensitizers and combinations.Biomed. Pharmacother.20181061098110710.1016/j.biopha.2018.07.049
    [Google Scholar]
  10. Nowak-StepniowskaA. PergołP. Padzik-GraczykA. Photodynamic method of cancer diagnosis and therapy--mechanisms and applications.Postepy Biochem.2013595363
    [Google Scholar]
  11. LuksieneZ. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment.Medicina20033911371150
    [Google Scholar]
  12. JuzenieneA. MoanJ. The history of PDT in Norway.Photodiagn. Photodyn. Ther.20074131110.1016/j.pdpdt.2006.11.002
    [Google Scholar]
  13. WieheA. O’BrienJ.M. SengeM.O. Trends and targets in antiviral phototherapy.Photochem. Photobiol. Sci.201918112565261210.1039/c9pp00211a
    [Google Scholar]
  14. ToméJ.P.C. SilvaE.M.P. PereiraA.M.V.M. AlonsoC.M.A. FaustinoM.A.F. NevesM.G.P.M.S. ToméA.C. CavaleiroJ.A.S. TavaresS.A.P. DuarteR.R. CaeiroM.F. ValdeiraM.L. Synthesis of neutral and cationic tripyridylporphyrin-d-galactose conjugates and the photoinactivation of HSV-1.Bioorg. Med. Chem.200715144705471310.1016/j.bmc.2007.05.005
    [Google Scholar]
  15. JendželovskáZ. JendželovskýR. KuchárováB. FedoročkoP. Hypericin in the light and in the dark: Two sides of the same coin.Front. Plant Sci.2016756010.3389/fpls.2016.00560
    [Google Scholar]
  16. AdimoolamM.G. A, V.; Nalam, M.R.; Sunkara, M.V. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20175469189919610.1039/C7TB02599H
    [Google Scholar]
  17. GuC. WuY. GuoH. ZhuY. XuW. WangY. ZhouY. SunZ. CaiX. LiY. LiuJ. HuangZ. YuanZ. ZhangR. DengQ. QuD. XieY. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2.Sci. Bull.202166992593610.1016/j.scib.2020.12.005
    [Google Scholar]
  18. DiasL.D. BlancoK.C. BagnatoV.S. COVID-19: Beyond the virus. The use of photodynamic therapy for the treatment of infections in the respiratory tract.Photodiagn. Photodyn. Ther.20203110180410.1016/j.pdpdt.2020.101804
    [Google Scholar]
  19. FloydR.A. SchneiderJ.E.Jr DittmerD.P. Methylene blue photoinactivation of RNA viruses.Antiviral Res.200461314115110.1016/j.antiviral.2003.11.004
    [Google Scholar]
  20. Guidelines on viral inacti- vation and removal procedures intended to assure the viral safety of human blood plasma products, WHO TechWorld Health Organization2004150224
    [Google Scholar]
  21. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331
    [Google Scholar]
  22. SmithG.L. VanderplasschenA. LawM. The formation and function of extracellular enveloped vaccinia virus.J. Gen. Virol.200283122915293110.1099/0022‑1317‑83‑12‑2915
    [Google Scholar]
  23. MossB. Poxviridae and their replication.Fields Virology.New YorkRaven Press2002
    [Google Scholar]
  24. BlascoR. MossB. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein.J. Virol.199165115910592010.1128/jvi.65.11.5910‑5920.1991
    [Google Scholar]
  25. GrosenbachD.W. HoneychurchK. RoseE.A. ChinsangaramJ. FrimmA. MaitiB. LovejoyC. MearaI. LongP. HrubyD.E. Oral tecovirimat for the treatment of smallpox.N. Engl. J. Med.20183791445310.1056/NEJMoa1705688
    [Google Scholar]
  26. ZhengL. MengJ. LinM. LvR. ChengH. ZouL. SunJ. LiL. RenR. WangS. Structure prediction of the entire proteome of monkeypox variants.Acta Materia Medica20221210.15212/AMM‑2022‑0017
    [Google Scholar]
  27. MinasovG. InnissN.L. ShuvalovaL. AndersonW.F. SatchellK.J.F. Structure of the Monkeypox profilin-like protein A42R reveals potential function differences from cellular profilins.BioRxiv202210.1101/2022.08.07.503103
    [Google Scholar]
  28. RoperR.L. Characterization of the vaccinia virus A35R protein and its role in virulence.J. Virol.200680130631310.1128/JVI.80.1.306‑313.2006
    [Google Scholar]
  29. van EijlH. HollinsheadM. SmithG.L. The vaccinia virus A36R protein is a type ib membrane protein present on intracellular but not extracellular enveloped virus particles.Virology20002711263610.1006/viro.2000.0260
    [Google Scholar]
  30. LiuX. ZhuZ. MiaoQ. LimJ.W. LuH. Monkeypox – A danger approaching Asia.Biosci. Trends202216424524810.5582/bst.2022.01343
    [Google Scholar]
  31. LuG. ZhangN. QiJ. LiY. ChenZ. ZhengC. GaoG.F. YanJ. Crystal structure of herpes simplex virus 2 gD bound to nectin-1 reveals a conserved mode of receptor recognition.J. Virol.20148823136781368810.1128/JVI.01906‑14
    [Google Scholar]
  32. LevinM.J. WeinbergA. SchmidD.S. Herpes simplex virus and varicella-zoster virus. Microbiol. Spectr.2016434.3.49.10.1128/microbiolspec.DMIH2‑0017‑2015
    [Google Scholar]
  33. ZhangN. YanJ. LuG. GuoZ. FanZ. WangJ. ShiY. QiJ. GaoG.F. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion.Nat. Commun.20112157710.1038/ncomms1571
    [Google Scholar]
  34. IonR-M. CalinM. Comparative study of some nano- And micro - sensitizers in photodynamic inactivation of microorganisms.J. Optoelectron. Adv. Mater.2007919331938
    [Google Scholar]
  35. ZverevV.V. MakarovO.V. KhashukoevaA.Z. SvitichO.A. DobrokhotovaY.E. MarkovaE.A. In vitro studies of the antiherpetic effect of photodynamic therapy.Lasers Med. Sci.20163184985510.1007/s10103‑016‑1912‑0
    [Google Scholar]
  36. LatiefM.A. ChikamaT. ShibasakiM. SasakiT. KoJ.A. KiuchiY. SakaguchiT. ObanaA. Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro.Lasers Med. Sci.201530138338710.1007/s10103‑014‑1681‑6
    [Google Scholar]
  37. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2
    [Google Scholar]
  38. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17
    [Google Scholar]
  39. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera?A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084
    [Google Scholar]
  40. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.200931245546110.1002/jcc.21334
    [Google Scholar]
  41. Schrödinger Schrödinger Release 2022-3: Maestro.Schrödinger2021
    [Google Scholar]
  42. AdasmeM.F. LinnemannK.L. BolzS.N. KaiserF. SalentinS. HauptV.J. SchroederM. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530W53410.1093/nar/gkab294
    [Google Scholar]
  43. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256
    [Google Scholar]
  44. SchrödingerL.L.C. The PyMOL molecular graphics system.Version201518
    [Google Scholar]
  45. PrichardM.N. KernE.R. Orthopoxvirus targets for the development of new antiviral agents.Antiviral Res.201294211112510.1016/j.antiviral.2012.02.012
    [Google Scholar]
  46. MossB. Membrane fusion during poxvirus entry.Semin. Cell Dev. Biol.201660899610.1016/j.semcdb.2016.07.015
    [Google Scholar]
  47. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  48. JoS. KimT. IyerV.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.20945
    [Google Scholar]
  49. VanommeslaegheK. RamanE.P. MacKerellA.D.Jr Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic charges.J. Chem. Inf. Model.201252123155316810.1021/ci3003649
    [Google Scholar]
  50. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33
    [Google Scholar]
  51. KimS. LeeJ. JoS. BrooksC.L.III LeeH.S. Im, W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.J. Comput. Chem.201738211879188610.1002/jcc.24829
    [Google Scholar]
  52. EarlD.J. DeemM.W. Monte carlo simulations.Molecular Modeling of Proteins.Springer2008253610.1007/978‑1‑59745‑177‑2_2
    [Google Scholar]
  53. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.2408420
    [Google Scholar]
  54. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  55. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.200931467169010.1002/jcc.21367
    [Google Scholar]
  56. TurnerP.J. XMGRACE, version 5.1; Center for Coastal Land-Margin Research.Beaverton, OR 2Oregon Graduate Institute of Science Technology2005
    [Google Scholar]
  57. KrummenacherC. SupekarV.M. WhitbeckJ.C. LazearE. ConnollyS.A. EisenbergR.J. CohenG.H. WileyD.C. CarfíA. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry.EMBO J.200524234144415310.1038/sj.emboj.7600875
    [Google Scholar]
  58. LiuX. ShiD. ZhouS. LiuH. LiuH. YaoX. Molecular dynamics simulations and novel drug discovery.Expert Opin. Drug Discov.2018131233710.1080/17460441.2018.1403419
    [Google Scholar]
  59. SinyaniA. IdowuK. ShunmugamL. KumaloH.M. KhanR. A molecular dynamics perspective into estrogen receptor inhibition by selective flavonoids as alternative therapeutic options.J. Biomol. Struct. Dyn.202241911310.1080/07391102.2022.2062786
    [Google Scholar]
  60. DixitS.B. PonomarevS.Y. BeveridgeD.L. Root mean square deviation probability analysis of molecular dynamics trajectories on DNA.J. Chem. Inf. Model.20064631084109310.1021/ci0504925
    [Google Scholar]
  61. MartínezL. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis.PLoS One2015103e011926410.1371/journal.pone.0119264
    [Google Scholar]
  62. BaigM.H. SudhakarD.R. KalaiarasanP. SubbaraoN. WadhawaG. LohaniM. KhanM.K.A. KhanA.U. Insight into the effect of inhibitor resistant s130g mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study.PLoS One2014912e11245610.1371/journal.pone.0112456
    [Google Scholar]
  63. AhamadS. GuptaD. KumarV. Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations.J. Biomol. Struct. Dyn.20224062430244310.1080/07391102.2020.1839563
    [Google Scholar]
  64. GaoY. MeiY. ZhangJ.Z.H. Treatment of Hydrogen Bonds in Protein Simulations.Advanced Materials for Renewable Hydrogen Production, Storage and Utilization, InTech201510.5772/61049
    [Google Scholar]
  65. FelgenträgerA. MaischT. DoblerD. SpäthA. Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: Photophysics and antimicrobial efficiency.BioMed Res. Int.2013201311210.1155/2013/482167
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808247788230919172400
Loading
/content/journals/lddd/10.2174/0115701808247788230919172400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test