Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Karsch (BmK) scorpion venom and its extracts are compounds found to contain a mixture of peptides with antitumor and analgesic activities. The extracts also contain polypeptides, lipids, nucleotides, mucoproteins, and other unknown substances showing potential therapeutic application. Finding medically relevant toxins, a range of peptides have been purified from BmK scorpion venom. These scorpion toxins are believed to modulate pain pathways to treat pain and cancer. This study aims to review the literature on BmK scorpion peptides with dual functions, their analgesic effects, and their mechanism of action in pain treatments and cancer. We reviewed the literature published between 1990 and 2023 from various databases and identified 68 articles suitable for our narrative review. In 1994, the first BmK scorpion peptide with an analgesic effect was purified. Since then, more analgesic peptides have been purified, including BmK AGAP, BmK AGAP-SYPU2, BmK AGP, BmK AGP-SYPU1, BmK AGP-SYPU2, BmK AS, and BmK iT2. Studies have demonstrated that these peptides bind to voltage sodium channels and inhibit the inactivation of the activated sodium channels to block neuron transmission. The analgesic activities of these peptides have been examined on different pain stimuli, resulting in strong analgesic and antitumor effects. Moreover, the antitumor activities of these peptides have been investigated and . The findings showed that the analgesic peptides may have antitumor effects. Based on their dual functions, these peptides have the potential to be developed as practical therapeutic agents for the treatment of cancer-related pain.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217299553240505162816
2024-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. LiZ. AnindithaT. GrieneB. Burden of cancer pain in developing countries: A narrative literature review.Clinicoecon. Outcomes Res.20181067569110.2147/CEOR.S181192 30464561
    [Google Scholar]
  2. BreivikH. ChernyN. CollettB. Cancer-related pain: A pan-European survey of prevalence, treatment, and patient attitudes.Ann. Oncol.20092081420143310.1093/annonc/mdp001 19244085
    [Google Scholar]
  3. JainP.N. PaiK. ChatterjeeA. The prevalence of severe pain, its etiopathological characteristics and treatment profile of patients referred to a tertiary cancer care pain clinic.Indian J. Palliat. Care201521214815110.4103/0973‑1075.156467 26009666
    [Google Scholar]
  4. SaslowD. BoetesC. BurkeW. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.CA Cancer J. Clin.2007572758910.3322/canjclin.57.2.75 17392385
    [Google Scholar]
  5. LiY. MaJ. LuG. Hydromorphone for cancer pain.Cochrane Libr.202120218CD01110810.1002/14651858.CD011108.pub3 34350974
    [Google Scholar]
  6. SinatraR. Causes and consequences of inadequate management of acute pain.Pain Med.201011121859187110.1111/j.1526‑4637.2010.00983.x 21040438
    [Google Scholar]
  7. ThapaD. RastogiV. AhujaV. Cancer pain management-current status.J. Anaesthesiol. Clin. Pharmacol.201127216216810.4103/0970‑9185.81820 21772673
    [Google Scholar]
  8. CarrD.B. GoudasL.C. BalkE.M. BlochR. IoannidisJ.P. LauJ. Evidence report on the treatment of pain in cancer patients.J. Natl. Cancer Inst. Monogr.2004200432233110.1093/jncimonographs/lgh012 15263038
    [Google Scholar]
  9. O’BrienC.P. Drug addiction and drug abuse.In: Goodman and Gilman are the pharmacological basis of therapeutics.200611607627
    [Google Scholar]
  10. NiuD.G. PengF. ZhangW. Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer.Oncotarget2015663963397610.18632/oncotarget.2894 25686831
    [Google Scholar]
  11. YangH.F. YuM. JinH.D. Fentanyl promotes breast cancer cell stemness and epithelial-mesenchymal transition by upregulating α1, 6-fucosylation via the Wnt/β-catenin signaling pathway.Front. Physiol.2017851010.3389/fphys.2017.00510 28798691
    [Google Scholar]
  12. MikaelianA.G. TraboulayE. ZhangX.M. Pleiotropic anticancer properties of scorpion venom peptides: Rhopalurus princeps venom as an anticancer agent.Drug Des. Devel. Ther.20201488189310.2147/DDDT.S231008 32161447
    [Google Scholar]
  13. FetV. SissomW.D. LoweG. BraunwalderM.E. Catalog of the scorpions of the world (1758-1998).New York Entomological Society2000
    [Google Scholar]
  14. ChenN. XuS. ZhangY. WangF. Animal protein toxins: Origins and therapeutic applications.Biophys. Rep.20184523324210.1007/s41048‑018‑0067‑x 30533488
    [Google Scholar]
  15. MullenG.R. SissomW.D. Scorpions.Medical and veterinary entomology.Academic Press201948950410.1016/B978‑0‑12‑814043‑7.00023‑6
    [Google Scholar]
  16. AmrZ.S. Abu BakerM.A. Al-SarairehM. WarrellD.A. Scorpions and scorpion sting envenoming (scorpionism) in the Arab Countries of the Middle East.Toxicon20211918310310.1016/j.toxicon.2020.12.017 33387549
    [Google Scholar]
  17. ChippauxJ.P. GoyffonM. Epidemiology of scorpionism: A global appraisal.Acta Trop.20081072717910.1016/j.actatropica.2008.05.021 18579104
    [Google Scholar]
  18. DingJ. ChuaP.J. BayB.H. GopalakrishnakoneP. Scorpion venoms as a potential source of novel cancer therapeutic compounds.Exp. Biol. Med.2014239438739310.1177/1535370213513991 24599885
    [Google Scholar]
  19. GhoshA. RoyR. NandiM. MukhopadhyayA. Scorpion venom-toxins that aid in drug development: A review.Int. J. Pept. Res. Ther.2019251273710.1007/s10989‑018‑9721‑x 32214927
    [Google Scholar]
  20. KampoS. AhmmedB. ZhouT. Scorpion venom analgesic peptide, BmK AGAP inhibits stemness and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer.Front. Oncol.201992110.3389/fonc.2019.00021 30740360
    [Google Scholar]
  21. FratiniF. CiliaG. TurchiB. FelicioliA. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review.Toxicon20171309110310.1016/j.toxicon.2017.02.020 28242227
    [Google Scholar]
  22. Lin KingJ.V. EmrickJ.J. KellyM.J.S. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain.Cell2019178613621374.e1610.1016/j.cell.2019.07.014 31447178
    [Google Scholar]
  23. WangQ.Z. ZhangJ.H. TangL. Isolation, purification and a study on the analgesic effect of the analgesic peptide from scorpion venom of Buthus martensiiKarsch.J Shenyang Coll Pharm199411273277
    [Google Scholar]
  24. ShaoJ.H. CuiY. ZhaoM.Y. WuC.F. LiuY.F. ZhangJ.H. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensiiKarsch.Peptides201453899610.1016/j.peptides.2013.10.023 24269605
    [Google Scholar]
  25. ShaoJ ZhangR GeX YangB ZhangJ. Analgesic peptides in Buthus martensiiKarsch: A traditional Chinese animal medicine.2007224550
    [Google Scholar]
  26. WangY. WangL. CuiY. Purification, characterization and functional expression of a new peptide with an analgesic effect from Chinese scorpion Buthus martensiiKarsch (BmK AGP‐SYPU1).Biomed. Chromatogr.201125780180710.1002/bmc.1519 20945457
    [Google Scholar]
  27. ZhangR. YangZ. LiuY.F. CuiY. ZhangJ.H. Purification, characterization and cDNA cloning of an analgesic peptide from the Chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2).Mol. Biol.2011456956962 22295565
    [Google Scholar]
  28. GuanR.J. WangC.G. WangM. WangD.C. A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.20011549191810.1016/S0167‑4838(01)00241‑2 11566364
    [Google Scholar]
  29. GuanR.J. WangM. WangD. WangD.C. A new insect neurotoxin AngP1 with analgesic effect from the scorpion Buthus martensiiKarsch: purification and characterization.J. Pept. Res.2001581273510.1034/j.1399‑3011.2001.00869.x 11454167
    [Google Scholar]
  30. LiY.J. TanZ.Y. JiY.H. The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels.Neurosci. Res.200038325726410.1016/S0168‑0102(00)00164‑4
    [Google Scholar]
  31. ValdiviaH.H. MartinB.M. RamírezA.N. FletcherP.L. PossaniL.D. Isolation and pharmacological characterization of four novel Na+ channel-blocking toxins from the scorpion Centruroides noxius Hoffmann.J. Biochem.199411661383139110.1093/oxfordjournals.jbchem.a124691 7706233
    [Google Scholar]
  32. ZhaoY.S. ZhangR. XuY. The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: A molecular dynamics simulation.J. Mol. Model.20131931295129910.1007/s00894‑012‑1666‑y 23179767
    [Google Scholar]
  33. LiC.L. LiuX.F. LiG.X. Antinociceptive Effects of AGAP, a Recombinant Neurotoxic Polypeptide: Possible Involvement of the Tetrodotoxin-Resistant Sodium Channels in Small Dorsal Root Ganglia Neurons.Front. Pharmacol.2016749610.3389/fphar.2016.00496 28066245
    [Google Scholar]
  34. HmedB. SerriaH.T. MounirZ.K. Scorpion peptides: potential use for new drug development.J. Toxicol.2013201311510.1155/2013/958797 23843786
    [Google Scholar]
  35. BosmansF. TytgatJ. Voltage-gated sodium channel modulation by scorpion α-toxins.Toxicon200749214215810.1016/j.toxicon.2006.09.023 17087986
    [Google Scholar]
  36. MaR. CuiY. ZhouY. Location of the analgesic domain in Scorpion toxin BmK AGAP by mutagenesis of disulfide bridges.Biochem. Biophys. Res. Commun.2010394233033410.1016/j.bbrc.2010.02.179 20206129
    [Google Scholar]
  37. JiangF. HuaL.M. JiaoY.L. Activation of mammalian target of rapamycin contributes to pain nociception induced in rats by BmK I, a sodium channel-specific modulator.Neurosci. Bull.2014301213210.1007/s12264‑013‑1377‑0 24132796
    [Google Scholar]
  38. LiZ. HuP. WuW. WangY. Peptides with therapeutic potential in the venom of the scorpion Buthus martensiiKarsch.Peptides2019115435010.1016/j.peptides.2019.02.009 30858089
    [Google Scholar]
  39. DengL. ZhangH.X. WangY. Site-directed mutagenesis of BmK AGP-SYPU1: The role of two conserved Tyr (Tyr5 and Tyr42) in analgesic activity.Protein J.201433215716410.1007/s10930‑014‑9547‑0 24554422
    [Google Scholar]
  40. MengX. XuY. ZhaoM. The functional property changes of muscular Nav1. 4 and cardiac Nav1. 5 induced by scorpion toxin BmK AGP-SYPU1 mutants Y42F and Y5F.Biochemistry201554192988299610.1021/acs.biochem.5b00067 25919575
    [Google Scholar]
  41. MengX. XuY. WangF. The roles of conserved aromatic residues (Tyr5 and Tyr42) in interaction of scorpion toxin BmK AGP-SYPU1 with human Na v 1.7.Int. J. Biol. Macromol.20179910511110.1016/j.ijbiomac.2017.01.020 28065753
    [Google Scholar]
  42. CuiY. WangT. HaoZ. ZhangJ. ZhaoY. Methionine 58 is a key residue in the modulation of BmK scorpion toxin AGP-SYPU2 activity through in silico and in vivo studies.J. Biomol. Struct. Dyn.20224072955296210.1080/07391102.2020.1848626 33228478
    [Google Scholar]
  43. ZhangR. CuiY. ZhangX. Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2.BMB Rep.2010431280180610.5483/BMBRep.2010.43.12.801 21189156
    [Google Scholar]
  44. ChenJ. FengX.H. ShiJ. The anti-nociceptive effect of BmK AS, a scorpion active polypeptide, and the possible mechanism on specifically modulating voltage-gated Na+ currents in primary afferent neurons.Peptides20062792182219210.1016/j.peptides.2006.03.026 16716457
    [Google Scholar]
  45. ZhuM.M. TaoJ. TanM. YangH. JiY.H. U‐shaped dose‐dependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage‐gated sodium channels.Br. J. Pharmacol.200915881895190310.1111/j.1476‑5381.2009.00471.x 19912232
    [Google Scholar]
  46. LiY.J. LiuY. JiY.H. BmK AS: New scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage‐gated sodium channels.J. Neurosci. Res.200061554154810.1002/1097‑4547(20000901)61:5<541:AID‑JNR9>3.0.CO;2‑# 10956424
    [Google Scholar]
  47. JiY.H. LiY.J. ZhangJ.W. Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch.Toxicon199937351953610.1016/S0041‑0101(98)00190‑1 10080355
    [Google Scholar]
  48. TanZ.Y. MaoX. XiaoH. ZhaoZ.Q. JiY.H. Buthus martensi Karsch agonist of skeletal-muscle RyR-1, a scorpion active polypeptide: antinociceptive effect on rat peripheral nervous system and spinal cord, and inhibition of voltage-gated Na+ currents in dorsal root ganglion neurons.Neurosci. Lett.20012972656810.1016/S0304‑3940(00)01642‑6 11121871
    [Google Scholar]
  49. TanZ.Y. XiaoH. MaoX. WangC.Y. ZhaoZ.Q. JiY.H. The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na+ channels.Neuropharmacology200140335235710.1016/S0028‑3908(00)00168‑4 11166328
    [Google Scholar]
  50. LiY.J. JiY.H. Binding characteristics of BmK I, an α‐like scorpion neurotoxic polypeptide, on cockroach nerve cord synaptosomes.J. Pept. Res.200056419520010.1034/j.1399‑3011.2000.00750.x 11083058
    [Google Scholar]
  51. HeH. LiuZ. DongB. Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2.PLoS One201161e1451010.1371/journal.pone.0014510 21264295
    [Google Scholar]
  52. RuanJ.P. MaoQ.H. LuW.G. Inhibition of spinal MAPKs by scorpion venom peptide BmK AGAP produces a sensory-specific analgesic effect.Mol. Pain20181410.1177/1744806918761238 29424271
    [Google Scholar]
  53. RichardS.A. KampoS. SackeyM. HechavarriaM.E. BuunaaimA.D.B. The pivotal potentials of scorpion Buthus martensiiKarsch-analgesic-antitumor peptide in pain management and cancer.Evid. Based Complement. Alternat. Med.2020202011010.1155/2020/4234273 33178316
    [Google Scholar]
  54. LiuY.F. MaR.L. WangS.L. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensiikarsch in Escherichia coli.Protein Expr. Purif.200327225325810.1016/S1046‑5928(02)00609‑5 12597884
    [Google Scholar]
  55. CuiY. GuoG.L. LiuY.F. Construction of three different recombinant scorpion fusion proteins with bifunctional activity.Indian J. Biochem. Biophys.2011483141147 21793303
    [Google Scholar]
  56. KampoS. CuiY. YuJ. Scorpion Venom peptide, AGAP inhibits TRPV1 and potentiates the analgesic effect of lidocaine.Heliyon2021712e0856010.1016/j.heliyon.2021.e08560 35005265
    [Google Scholar]
  57. KampoS. AnabahW.T. BayorF. WilfredS-A. Scorpion venom component; BmK AGAP potentiates the analgesic effects of lidocaine during sciatic nerve block.Venoms and Toxins20233e130623217925
    [Google Scholar]
  58. KampoS. AnabahT.W. DoudouN.R. KwakyeA.K. WenQ.P. Scorpion venom component: AGAP exhibits local anaesthetic effects and attenuates nociceptive pain.South African J Anaesth Analg202329413614110.36303/SAJAA.2966
    [Google Scholar]
  59. DoudouN.R. KampoS. LiuY. Monitoring the early antiproliferative effect of the analgesic-antitumor peptide, BmK AGAP on breast cancer using intravoxel incoherent motion with a reduced distribution of four b-values.Front. Physiol.20191070810.3389/fphys.2019.00708 31293432
    [Google Scholar]
  60. CaoQ. LuW. CaiX. In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumor-analgesic peptide produced in Escherichia coli.Biotechnol. Lett.201537122461246610.1007/s10529‑015‑1936‑8 26303431
    [Google Scholar]
  61. GuY. LiuS.L. JuW.Z. LiC.Y. CaoP. Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells.Oncol. Lett.20135248348810.3892/ol.2012.1049 23420047
    [Google Scholar]
  62. ZhaoY. CaiX. YeT. Analgesic‐antitumor peptide inhibits proliferation and migration of SHG‐44 human malignant glioma cells.J. Cell. Biochem.201111292424243410.1002/jcb.23166 21538480
    [Google Scholar]
  63. WangY. SongY.B. YangG.Z. Arginine residues in the C-terminal and their relationship with the analgesic activity of the toxin from the Chinese scorpion Buthus martensiiKarsch (BmK AGP-SYPU1).Appl. Biochem. Biotechnol.2012168224725510.1007/s12010‑012‑9768‑7 22869257
    [Google Scholar]
  64. UzairB. Bint-e-IrshadS. KhanB.A. Scorpion venom peptides as a potential source for human drug candidates.Protein Pept. Lett.201825770270810.2174/0929866525666180614114307 29921194
    [Google Scholar]
  65. WangC.Y. TanZ.Y. ChenB. ZhaoZ.Q. JiY.H. Antihyperalgesia effect of BmK IT2, a depressant insect-selective scorpion toxin in rat by peripheral administration.Brain Res. Bull.200053333533810.1016/S0361‑9230(00)00355‑5 11113589
    [Google Scholar]
  66. FengY.J. FengQ. TaoJ. ZhaoR. JiY.H. Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain.J. Venom. Anim. Toxins Incl. Trop. Dis.2015211424910.1186/s40409‑015‑0043‑6 26491429
    [Google Scholar]
  67. JiY.H. HattoriH. XuK. TerakawaS. Molecular characteristics of four new depressant insect neurotoxins purified from venom of] Buthus martensi Karsch by HPLC.Sci. China B Chem. Life Sci. Earth Sci.1994378955963 7993579
    [Google Scholar]
  68. ChaiZ. BaiZ. LiuT. PangX. JiY. The binding of BmK IT2 on mammal and insect sodium channels by surface plasmon resonance assay.Pharmacol. Res.2006542859010.1016/j.phrs.2006.02.009 16616856
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217299553240505162816
Loading
/content/journals/jctv/10.2174/0126661217299553240505162816
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test