Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

The issue of snakebite continues to be a distinctive matter of public health in various regions across the globe, with a particular emphasis on India, where the ailment is widely prevalent. Snakebites in the country disproportionately affect rural and indigenous populations, resulting in some of the highest morbidity and mortality rates worldwide. Regrettably, in numerous tropical nations, the accessibility of antivenom is frequently postponed or restricted, thereby rendering antiserum the only targeted therapeutic alternative. Nevertheless, administering antiserum in isolation does not provide adequate safeguard against the adverse effects of venom-triggered hypersensitivity complications, which may be grave. Hence, this study aims to review the plant-derived bioactive compounds used to treat snakebites in India. This review compiles a list of medicinal plants and plant-derived bioactive compounds used in treating snakebites in India, which were reviewed from the available literature in public databases (PubMed, Science Direct, Springer, and Scopus). Search words used were 'bioactive compounds,' 'treatment for a snakebite,' 'antivenom and snakebite,' 'Medicinal plants for snakebite, and 'composition of snake venom'.

A list of 200 medicinal plants traditionally used in several countries for treating snake bites was obtained. Based on scientific data, we reviewed only 83 medicinal plant extracts and bioactive compounds obtained from various families, tested under and conditions to determine their neutralization potency of snakebite envenomation. In this article, we have presented a comprehensive review, judgmentally analyzed medicinal plants and their bioactive compounds for their therapeutic potential against snake envenomation, and offer a thorough discourse on diverse herbal plants employed globally for managing snakebites.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217299051240722072656
2024-08-29
2025-01-19
Loading full text...

Full text loading...

References

  1. SamuelS.P. ChinnarajuS. WilliamsH.F. Venomous snakebites: Rapid action saves lives-A multifaceted community education programme increases awareness about snakes and snakebites among the rural population of Tamil Nadu, India.PLoS Negl. Trop. Dis.20201412e000891110.1371/journal.pntd.0008911 33382715
    [Google Scholar]
  2. CarterH. GlaudasX. WhitakerR. ChandrasekharunG. HockingsK. NunoA. Venomous snakebites: Exploring social barriers and opportunities for the adoption of prevention measures.Conserv. Sci. Pract.202462e1306310.1111/csp2.13063
    [Google Scholar]
  3. PandeyD.P. Subedi PandeyG. DevkotaK. GoodeM. Public perceptions of snakes and snakebite management: implications for conservation and human health in southern Nepal.J. Ethnobiol. Ethnomed.20161212210.1186/s13002‑016‑0092‑0 27255454
    [Google Scholar]
  4. DudaR. MonteiroW.M. Giles-VernickT. Integrating lay knowledge and practice into snakebite prevention and care in central Africa, a hotspot for envenomation.Toxicon X20211110007710.1016/j.toxcx.2021.100077 34381993
    [Google Scholar]
  5. GampiniS. NassouriS. ChippauxJ.P. SemdeR. Retrospective study on the incidence of envenomation and accessibility to antivenom in burkina faso.J Veno Ani Tox Incl Trop Disea20162211510.1186/s40409‑016‑0066‑7
    [Google Scholar]
  6. KipanyulaMJ KimaroWH Snakes and snakebite envenoming in Northern Tanzania: a neglected tropical health problemJ Venom Anim Toxins Incl Trop Dis 20152113210.1186/s40409‑015‑0033‑825587248
    [Google Scholar]
  7. GopalG MuralidarS PrakashD The concept of Big Four: Road map from snakebite epidemiology to antivenom efficacy.Int J Biol Macromol2023242(Pt 112477110.1016/j.ijbiomac.2023.12477137169043
    [Google Scholar]
  8. World Health Organization, WHO., Geneva: Snakebite Envenoming: a Strategy for Prevention and Control.2019
    [Google Scholar]
  9. WarrellD.A. Venomous and poisonous animals Manson’s Tropical Infectious Diseases.Elsevier2014
    [Google Scholar]
  10. AvellaI. WüsterW. LuiselliL. Martínez-FreiríaF. Toxic Habits: An Analysis of General Trends and Biases in Snake Venom Research.Toxins (Basel)2022141288410.3390/toxins14120884 36548781
    [Google Scholar]
  11. SuraweeraW. WarrellD. WhitakerR. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study.eLife202099e5407610.7554/eLife.54076 32633232
    [Google Scholar]
  12. Mohamed Abd El-AzizT. Garcia SoaresA. StockandJ.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving.Toxins (Basel)2019111056410.3390/toxins11100564
    [Google Scholar]
  13. TednesM. SlesingerT.L. Evaluation and treatment of snake envenomations.StatPearls2024
    [Google Scholar]
  14. TuA.T. Venoms: Chemistry and molecular biology.New York, USAJohn Wiley & Sons Inc.1977
    [Google Scholar]
  15. Alape-GirónA SanzL EscolanoJ Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res20087835567110.1021/pr800332p18557640
    [Google Scholar]
  16. MenezesM.C. FurtadoM.F. Travaglia-CardosoS.R. CamargoA.C.M. SerranoS.M.T. Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings.Toxicon200647330431210.1016/j.toxicon.2005.11.007 16373076
    [Google Scholar]
  17. CasewellN.R. JacksonT.N.W. LaustsenA.H. SunagarK. Causes and consequences of snake venom variation.Trends Pharmacol. Sci.202041857058110.1016/j.tips.2020.05.006 32564899
    [Google Scholar]
  18. Alvarez-FloresM.P. FariaF. de AndradeS.A. Chudzinski-TavassiA.M. Snake Venom Components Affecting the Coagulation System.Snake Venoms Toxinology.DordrechtSpringer201610.1007/978‑94‑007‑6648‑8_31‑1
    [Google Scholar]
  19. Venom peptides - A comprehensive translational perspective in pain management.Curr Res Toxicol20219232934010.1016/j.crtox.2021.09.001
    [Google Scholar]
  20. TuA.T. Overview of Snake Venom Chemistry.Natural Toxins 2 Advances in Experimental Medicine and Biology 391.Boston, MASpringer199610.1007/978‑1‑4613‑0361‑9_3
    [Google Scholar]
  21. ZhouK. LuoW. LiuT. NiY. QinZ. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications.Toxins (Basel)20221511810.3390/toxins15010018 36668838
    [Google Scholar]
  22. KangT.S. GeorgievaD. GenovN. Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis.FEBS201127845444576
    [Google Scholar]
  23. Randy Powell.2nd edSnakes. Encyclopedia of Toxicology20055760
    [Google Scholar]
  24. AnaL. Oliveira, Matilde F. Viegas, Saulo L. da Silva, Andreimar M. Soares, Maria J. Ramos and Pedro A. Fernandes. The chemistry of snake venom and its medicinal potential.Nat. Rev. Chem.2022645146910.1038/s41570‑022‑00393‑7
    [Google Scholar]
  25. AlamJ.M. QasimR. AlamS.M. Enzymatic activities of some snake venoms from families Elapidae and Viperidae.Pak. J. Pharm. Sci.1996913741 16414774
    [Google Scholar]
  26. RanawakaU.K. LallooD.G. de SilvaH.J. Neurotoxicity in snakebite--the limits of our knowledge.PLoS Negl. Trop. Dis.201371010.1371/journal.pntd.0002302
    [Google Scholar]
  27. WarrellD.A. DavidsonN.McD. GreenwoodB.M. Poisoning by bites of the saw-scaled or carpet viper (Echis carinatus) in Nigeria.Q. J. Med.1977461813362 866568
    [Google Scholar]
  28. PatelV KongEL HamiltonRJ Rattle Snake Toxicity.2023[Internet]
    [Google Scholar]
  29. AdhikariR.B. GawarammanaI.B. De SilvaD.D.N. Clinico-epidemiology and management of Russell’s viper (Daboia russelii) envenoming in dogs in Sri Lanka.Toxicol. Rep.20196680981810.1016/j.toxrep.2019.08.006 31453112
    [Google Scholar]
  30. XiaoH. PanH. LiaoK. YangM. HuangC. Snake Venom PLA 2, a Promising Target for Broad-Spectrum Antivenom Drug Development.BioMed Res. Int.2017201711010.1155/2017/6592820 29318152
    [Google Scholar]
  31. KiniR. KohC. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites.Toxins (Basel)201681028410.3390/toxins8100284 27690102
    [Google Scholar]
  32. SlagboomJ. KoolJ. HarrisonR.A. CasewellN.R. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise.Br. J. Haematol.2017177694795910.1111/bjh.14591 28233897
    [Google Scholar]
  33. Latinović Z, Leonardi A, Koh CY, et al. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity.Toxins (Basel) 202012635810.3390/toxins1206035832485989
    [Google Scholar]
  34. NirthananS. GweeM.C.E. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on.J. Pharmacol. Sci.200494111710.1254/jphs.94.1 14745112
    [Google Scholar]
  35. SanthoshM.S. HemshekharM. SunithaK. Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy.Mini Rev. Med. Chem.201313110612310.2174/138955713804484730 22876950
    [Google Scholar]
  36. AinsworthS. MenziesS.K. CasewellN.R. HarrisonR.A. An analysis of preclinical efficacy testing of antivenoms for sub-Saharan Africa: Inadequate independent scrutiny and poor-quality reporting are barriers to improving snakebite treatment and management.PLoS Negl. Trop. Dis.2020148e000857910.1371/journal.pntd.0008579 32817682
    [Google Scholar]
  37. GutiérrezJ.M. AlbulescuL.O. ClareR.H. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming.Toxins (Basel)202113745110.3390/toxins13070451 34209691
    [Google Scholar]
  38. TangtrongchitrT. ThumtechoS. JanprasertJ. Malayan Pit Viper Envenomation and Treatment in Thailand.Ther. Clin. Risk Manag.202117171257126610.2147/TCRM.S337199 34876815
    [Google Scholar]
  39. SolanoG. CunninghamS. EdgeR.J. African polyvalent antivenom can maintain pharmacological stability and ability to neutralise murine venom lethality for decades post-expiry: evidence for increasing antivenom shelf life to aid in alleviating chronic shortages.BMJ Glob. Health20249310.1136/bmjgh‑2023‑014813
    [Google Scholar]
  40. SanzL PérezA Quesada-BernatS Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothropsbrazili Hoge.Brazilian State of Pará J Venom Anim Toxins Incl Trop Dis1954172610.1590/1678‑9199‑JVATITD‑2019‑0103
    [Google Scholar]
  41. IsbisterGK Antivenom availability, delays and use in Australia Toxicon X202281710014510.1016/j.toxcx.2022.100145
    [Google Scholar]
  42. Castillo-BeltránM.C. Hurtado-GómezJ.P. Corredor-EspinelV. Ruiz-GómezF.J. A polyvalent coral snake antivenom with broad neutralization capacity.PLoS Negl. Trop. Dis.2019133e000725010.1371/journal.pntd.0007250 30856180
    [Google Scholar]
  43. JuckettG. HancoxJ.G. Venomous snakebites in the United States: management review and update.Am. Fam. Physician200265713671374 11996419
    [Google Scholar]
  44. LambT. de HaroL. LonatiD. BrvarM. EddlestonM. Antivenom for European Vipera species envenoming.Clin. Toxicol. (Phila.)201755655756810.1080/15563650.2017.1300261 28349771
    [Google Scholar]
  45. MadhushaniU. ThakshilaP. HodgsonW.C. IsbisterG.K. SilvaA. 2021; Effect of indian polyvalent antivenom in the prevention and reversal of local myotoxicity induced by common cobra (naja naja) venom from sri lanka in vitro.Toxins (Basel)202113530810.3390/toxins13050308
    [Google Scholar]
  46. de SilvaH.A. RyanN.M. de SilvaH.J. Adverse reactions to snake antivenom, and their prevention and treatment.Br. J. Clin. Pharmacol.201681344645210.1111/bcp.12739 26256124
    [Google Scholar]
  47. LeónG. HerreraM. SeguraÁ. VillaltaM. VargasM. GutiérrezJ.M. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms.Toxicon201376637610.1016/j.toxicon.2013.09.010 24055551
    [Google Scholar]
  48. HoughtonP.J. OsibogunI.M. Flowering plants used against snakebite.J. Ethnopharmacol.199339112910.1016/0378‑8741(93)90047‑9 8331959
    [Google Scholar]
  49. DaduangS. SattayasaiN. SattayasaiJ. Screening of plants containing Naja naja siamensis cobra venom inhibitory activity using modified ELISA technique.Anal. Biochem.2005341231632510.1016/j.ab.2005.03.037 15907878
    [Google Scholar]
  50. LoboR. PunithaI.S.R. RajendranK. Preliminary study on the antisnake venom activity of alcoholic root extract of Clerodendrum viscosum (Vent.) in Naja naja Venom.Nat. Prod. Sci.2006123153156
    [Google Scholar]
  51. HoughtonP. OsibogunI. BansalS. A peptide from Schumanniophyton magnificum with anti-cobra venom activity.Planta Med.199258326326510.1055/s‑2006‑961449 1409981
    [Google Scholar]
  52. PithayanukulP. RuenraroengsakP. BavovadaR. PakmaneeN. SuttisriR. Saen-oonS. Inhibition of Naja kaouthia venom activities by plant polyphenols.J. Ethnopharmacol.200597352753310.1016/j.jep.2004.12.013 15740891
    [Google Scholar]
  53. AguiyiJ.C. GuerrantiR. PaganiR. MarinelloE. Blood chemistry of rats pretreated with Mucuna Pruriens seed aqueous extract MP101UJ after Echis carinatus venom challenge.Phytother. Res.200115871271410.1002/ptr.913 11746865
    [Google Scholar]
  54. IbrahimM.A. AliyuA.B. AbusufiyanuA. BashirM. SallauA.B. Inhibition of Naja nigricolis (Reinhardt) venom protease activity by Luffa egyptiaca (Mill) and Nicotiana rustica (Linn) extracts.Indian J. Exp. Biol.2011497552554 21800507
    [Google Scholar]
  55. KumarapppanC. JaswanthA. KumarasunderiK. Antihaemolytic and snake venom neutralizing effect of some Indian medicinal plants.Asian Pac. J. Trop. Med.20114974374710.1016/S1995‑7645(11)60185‑5
    [Google Scholar]
  56. AdzuB. AbubakarM.S. IzebeK.S. AkumkaD.D. GamanielK.S. Effect of Annona senegalensis rootbark extracts on Naja nigricotlis nigricotlis venom in rats.J. Ethnopharmacol.200596350751310.1016/j.jep.2004.09.055 15619571
    [Google Scholar]
  57. RahmyT.R. HemmaidK.Z. Prophylactic action of garlic on the histological and histochemical patterns of hepatic and gastric tissues in rats injected with a snake venom.J. Nat. Toxins2001102137165 11405277
    [Google Scholar]
  58. SalweK.J. PathakS. BrahmaneR. ManimekalaiK. PremendranS.J. Anti-cobra venom activity of plant Andrographis paniculata and its comparison with polyvalent anti-snake venom.J. Nat. Sci. Biol. Med.20112219820410.4103/0976‑9668.92326 22346236
    [Google Scholar]
  59. OdeO.J. AsuzuI.U. The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae).Toxicon200648333134210.1016/j.toxicon.2006.06.003 16890262
    [Google Scholar]
  60. UshanandiniS. NagarajuS. NayakaS.C. KumarK.H. KemparajuK. GirishK.S. The anti-ophidian properties of Anacardium occidentale bark extract.Immunopharmacol. Immunotoxicol.200931460761510.3109/08923970902911909 19874230
    [Google Scholar]
  61. TarannumS. MohamedR. VishwanathB.S. Inhibition of testicular and Vipera russelli snake venom hyaluronidase activity by Butea monosperma (Lam) Kuntze stem bark.Nat. Prod. Res.201226181708171110.1080/14786419.2011.602829 22007959
    [Google Scholar]
  62. OliveiraC.Z. MaioranoV.A. MarcussiS. Anticoagulant and antifibrinogenolytic properties of the aqueous extract from Bauhinia forficata against snake venoms.J. Ethnopharmacol.2005981-221321610.1016/j.jep.2004.12.028 15763387
    [Google Scholar]
  63. IzidoroL.F.M. RodriguesV.M. RodriguesR.S. Neutralization of some hematological and hemostatic alterations induced by neuwiedase, a metalloproteinase isolated from Bothrops neuwiedi pauloensis snake venom, by the aqueous extract from Casearia mariquitensis (Flacourtiaceae).Biochimie200385766967510.1016/S0300‑9084(03)00126‑3 14505822
    [Google Scholar]
  64. BorgesM.H. SoaresA.M. RodriguesV.M. Neutralization of proteases from Bothrops snake venoms by the aqueous extract from Casearia sylvestris (Flacourtiaceae).Toxicon200139121863186910.1016/S0041‑0101(01)00169‑6
    [Google Scholar]
  65. NazatoV.S. Rubem-MauroL. VieiraN.A.G. In vitro antiophidian properties of Dipteryx alata Vogel bark extracts.Molecules20101595956597010.3390/molecules15095956 20877202
    [Google Scholar]
  66. HassonS.S. Al-JabriA.A. SallamT.A. Al-BalushiM.S. MothanaR.A.A. Antisnake VenomActivity of Hibiscus aethiopicus L. against Echis ocellatus and Naja n.nigricollis.J. Toxicol.201020101810.1155/2010/837864 20628507
    [Google Scholar]
  67. BiondoR. SoaresA.M. BertoniB.W. FrançaS.C. PereiraA.M. Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom.Plant Cell Rep.200422854955210.1007/s00299‑003‑0722‑6 14727051
    [Google Scholar]
  68. ChandrashekaraK.T. NagarajuS. NandiniS.U. Basavaiah, Kemparaju K. Neutralization of local and systemic toxicity of Daboia russelii venom by Morus alba plant leaf extract.Phytother. Res.20092381082108710.1002/ptr.2735 19235141
    [Google Scholar]
  69. BorgesM.H. AlvesD.L.F. RaslanD.S. Neutralizing properties of Musa paradisiaca L. (Musaceae) juice on phospholipase A2, myotoxic, hemorrhagic and lethal activities of crotalidae venoms.J. Ethnopharmacol.2005981-2212910.1016/j.jep.2004.12.014 15763360
    [Google Scholar]
  70. Dal BeloC.A. ColaresA.V. LeiteG.B. Antineurotoxic activity of Galactia glaucescens against Crotalus durissus terrificus venom.Fitoterapia200879537838010.1016/j.fitote.2008.04.003 18505705
    [Google Scholar]
  71. EsmeraldinoL.E. SouzaA.M. SampaioS.V. Evaluation of the effect of aqueous extract of Croton urucurana Baillon (Euphorbiaceae) on the hemorrhagic activity induced by the venom of Bothrops jararaca, using new techniques to quantify hemorrhagic activity in rat skin.Phytomedicine200512857057610.1016/j.phymed.2004.01.012 16121517
    [Google Scholar]
  72. HoughtonP.J. SkariK.P. The effect on blood clotting of some west African plants used against snakebite.J. Ethnopharmacol.19944429910810.1016/0378‑8741(94)90075‑2 7853871
    [Google Scholar]
  73. MaioranoV.A. MarcussiS. DaherM.A.F. Antiophidian properties of the aqueous extract of Mikania glomerata.J. Ethnopharmacol.2005102336437010.1016/j.jep.2005.06.039 16084045
    [Google Scholar]
  74. TorresAM CamargoFJ RicciardiGAL RicciardiAIA DellacassaE Neutralizing effects of Nectandra angustifolia extracts against Bothrops neuwiedi snake venom.Nat Prod Commun 2011691934578X110060010.1177/1934578X110060094221941922
    [Google Scholar]
  75. da SilvaJ.O. CoppedeJ.S. FernandesV.C. Antihemorrhagic, antinucleolytic and other antiophidian properties of the aqueous extract from Pentaclethra macroloba.J. Ethnopharmacol.20051001-214515210.1016/j.jep.2005.01.063
    [Google Scholar]
  76. TorresMC das Chagas L, Pinto F, et al. Antiophidicsolanidanesteroidal alkaloids from solanum campaniforme.J. Nat. Prod.201174102168217310.1021/np200479
    [Google Scholar]
  77. UshanandiniS. NagarajuS. Harish KumarK. The anti-snake venom properties of Tamarindus indica (leguminosae) seed extract.Phytother. Res.2006201085185810.1002/ptr.1951 16847999
    [Google Scholar]
  78. ChavesF. ChacónM. BadillaB. ArévaloC. Effect of Echinacea purpurea (Asteraceae) aqueous extract on antibody response to Bothrops asper venom and immune cell response.Rev. Biol. Trop.200355111311910.15517/rbt.v55i1.6061 18457118
    [Google Scholar]
  79. MemmiA. SansaG. RjeibiI. Use of medicinal plants against scorpionic and ophidian venoms.Arch. Inst. Pasteur Tunis2007841-44955 19388583
    [Google Scholar]
  80. MeenatchisundaramS. ParameswariG. MichaelA. Studies on antivenom activity of Andrographis paniculata and Aristolochia indica plant extracts against Daboia russelli venom by in vivo and in vitro methods.Indian J. Sci. Technol.200924767910.17485/ijst/2009/v2i4.9
    [Google Scholar]
  81. AlamM.I. AuddyB. GomesA. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and Pluchea indica) root extracts.Phytother. Res.1996101586110.1002/(SICI)1099‑1573
    [Google Scholar]
  82. NúñezV. OteroR. BaronaJ. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia.Braz. J. Med. Biol. Res.200437796997710.1590/S0100‑879X2004000700005 15264003
    [Google Scholar]
  83. MendesM.M. OliveiraC.F. LopesD.S. Anti-snake venom properties of Schizolobium parahyba (Caesalpinoideae) aqueous leaves extract.Phytother. Res.200822785986610.1002/ptr.2371 18567056
    [Google Scholar]
  84. MahadeswaraswamyY.H. NagarajuS. GirishK.S. KemparajuK. Local tissue destruction and procoagulation properties of Echis carinatus venom: inhibition by Vitis vinifera seed methanol extract.Phytother. Res.200822796396910.1002/ptr.2462 18567054
    [Google Scholar]
  85. PithayanukulP. LeanpolchareanchaiJ. BavovadaR. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms.Phytother. Res.201024S1Suppl. 1S56S6210.1002/ptr.2903 19585481
    [Google Scholar]
  86. AbubakarM.S. SuleM.I. PatehU.U. AbdurahmanE.M. HarunaA.K. JahunB.M. In vitro snake venom detoxifying action of the leaf extract of Guiera senegalensis.J. Ethnopharmacol.200069325325710.1016/S0378‑8741(99)00128‑2 10722208
    [Google Scholar]
  87. AsuzuI.U. HarveyA.L. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract.Toxicon200342776376810.1016/j.toxicon.2003.10.004 14757207
    [Google Scholar]
  88. AlamM.I. GomesA. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts.J. Ethnopharmacol.2003861758010.1016/S0378‑8741(03)00049‑7 12686445
    [Google Scholar]
  89. Mohanraj Subramanian and sangameswaran Balakrishnan. Study of the acute oral toxicity of methanol extract of aerial parts from Marsilea quadrifolia Linn.J. Drug Del. Ther.20199310410910.22270/jddt.v9i3‑s.2973
    [Google Scholar]
  90. RodriguesPS de M 202310.1016/j.jep.2023.116612
  91. BorgesR.J. CardosoF.F. de CarvalhoC. Structural and functional studies of a snake venom phospholipase A2-like protein complexed to an inhibitor from Tabernaemontana catharinensis.Biochimie2023206105-15.105–115.doi.org/10.1016/j.biochi.2022.10.01110.1016/j.biochi.2022.10.011 36273763
    [Google Scholar]
  92. KiniRM GowdaTV Studies on snake venom enzymes: Part I. Purification of ATPase, a toxic component of Naja naja venom & its inhibition by potassium gymnemate.Indian J Biochem Biophys198219215246215333
    [Google Scholar]
  93. KiniR.M. GowdaT.V. Studies on snake venom enzymes: Part II--Partial characterization of ATPases from Russell’s viper (Vipera russelli) venom & their interaction with potassium gymnemate.Indian J. Biochem. Biophys.19821953423466223877
    [Google Scholar]
  94. MachiahD.K. GowdaT.V. Purification of a post-synaptic neurotoxic phospholipase A2 from Naja naja venom and its inhibition by a glycoprotein from Withania somnifera.Biochimie200688670171010.1016/j.biochi.2005.12.006 16494989
    [Google Scholar]
  95. DhananjayaB.L. GowdaT.V. D’SouzaC.J. 2010; Evidence for existence of venom 5′ nucleotidase in multiple forms through inhibition of concanavalin.A Cell Biochem. Funct.20102862062210.1016/j.bmc.2004.08.035
    [Google Scholar]
  96. ChoudharyM.I. FatimaN. AbbasiM.A. JalilS. AhmadV.U. Atta-ur-Rahman. Phenolic glycosides, a new class of human recombinant nucleotide pyrophosphatase phosphodiesterase-1 inhibitors.Bioorg. Med. Chem.200412225793579810.1016/j.bmc.2004.08.035 15558843
    [Google Scholar]
  97. FatimaN. TapondjouL.A. LontsiD. SondengamB.L. Atta-Ur-Rahman, Choudhary MI. Quinovic acid glycosides from Mitragyna stipulosa--first examples of natural inhibitors of snake venom phosphodiesterase I.Nat. Prod. Lett.200216638939310.1080/10575630290033169 12462343
    [Google Scholar]
  98. MostafaM. NaharN. MosihuzzamanM. Phosphodiesterase-I inhibitor quinovic acid glycosides from Bridelia ndellensis.Nat. Prod. Res.200620768669210.1080/14786410600661658 16901813
    [Google Scholar]
  99. SarkhelS. ChakravartyA.K. DasR. GomesA. GomesA. Snake venom neutralising factor from the root extract of Emblica officinalis Linn.Orient. Pharm. Exp. Med.2011111253310.1007/s13596‑011‑0008‑4
    [Google Scholar]
  100. ChatterjeeI. ChakravartyA.K. GomesA. Antisnake venom activity of ethanolic seed extract of Strychnos nux vomica Linn.Indian J. Exp. Biol.2004425468475 15233470
    [Google Scholar]
  101. GomesA. SahaA. ChatterjeeI. ChakravartyA.K. Viper and cobra venom neutralization by β-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae).Phytomedicine200714963764310.1016/j.phymed.2006.12.020 17293096
    [Google Scholar]
  102. ChatterjeeI. ChakravartyA.K. GomesA. Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br. J Ethnopharmacol20061061384310.1016/j.jep.2005.11.031 16426782
    [Google Scholar]
  103. KakegawaH. MatsumotoH. SatohT. Inhibitory effects of hydrangenol derivatives on the activation of hyaluronidase and their antiallergic activities.Planta Med.198854538538910.1055/s‑2006‑962477 2462259
    [Google Scholar]
  104. MahadeswaraswamyY.H. ManjulaB. DevarajaS. GirishK.S. KemparajuK. Daboia russelli venom hyaluronidase: purification, characterization and inhibition by β-3-(3-hydroxy-4-oxopyridyl) α-amino-propionic Acid.Curr. Top. Med. Chem.201111202556256510.2174/156802611797633410 21682681
    [Google Scholar]
  105. FerreiraL.A.F. HenriquesO.B. AndreoniA.A.S. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae).Toxicon199230101211121810.1016/0041‑0101(92)90437‑A 1440627
    [Google Scholar]
  106. AlamM.I. GomesA. Adjuvant effects and antiserum action potentiation by a (herbal) compound 2-hydroxy-4-methoxy benzoic acid isolated from the root extract of the Indian medicinal plant ‘sarsaparilla’ (Hemidesmus indicus R. Br.).Toxicon199836101423143110.1016/S0041‑0101(98)00076‑2 9723840
    [Google Scholar]
  107. AlamM.I. GomesA. An experimental study on evaluation of chemical antagonists induced snake venom neutralization.Indian J. Med. Res.1998107142146 9599954
    [Google Scholar]
  108. BatinaM.F.C. CintraA.C.O. VeroneseE.L.G. Inhibition of the lethal and myotoxic activities of Crotalus durissus terrificus venom by Tabernaemontana catharinensis: identification of one of the active components.Planta Med.200066542442810.1055/s‑2000‑8577 10909261
    [Google Scholar]
  109. MorsW.B. do NascimentoM.C. ParenteJ. da SilvaM.H. MeloP.A. Suarez-KurtzG. Neutralization of lethal and myotoxic activities of South American rattlesnake venom by extracts and constituents of the plant Eclipta prostrata (Asteraceae).Toxicon19892791003100910.1016/0041‑0101(89)90151‑7 2799833
    [Google Scholar]
  110. JanuárioA.H. SantosS.L. MarcussiS. Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties.Chem. Biol. Interact.2004150324325110.1016/j.cbi.2004.09.016 15560891
    [Google Scholar]
  111. AungH.T. NikaiT. KomoriY. NonogakiT. NiwaM. TakayaY. Biological and pathological studies of rosmarinic acid as an inhibitor of hemorrhagic Trimeresurus flavoviridis (habu) venom.Toxins (Basel)20102102478248910.3390/toxins2102478 22069562
    [Google Scholar]
  112. AssafimM. FerreiraM.S. FrattaniF.S. GuimarãesJ.A. MonteiroR.Q. ZingaliR.B. Counteracting effect of glycyrrhizin on the hemostatic abnormalities induced by Bothrops jararaca snake venom.Br. J. Pharmacol.2006148680781310.1038/sj.bjp.0706786 16751793
    [Google Scholar]
  113. da SilvaJ.O. FernandesR.S. TicliF.K. Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba.Toxicon200750228329110.1016/j.toxicon.2007.03.024 17517426
    [Google Scholar]
  114. BernardP. SciorT. DidierB. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors.Phytochemistry200158686587410.1016/S0031‑9422(01)00312‑0
    [Google Scholar]
  115. SamyR.P. ThwinM.M. GopalakrishnakoneP. IgnacimuthuS. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India.J. Ethnopharmacol.2008115230231210.1016/j.jep.2007.10.006 18055146
    [Google Scholar]
  116. SamyR.P. GopalakrishnakoneP. ChowV.T.K. Therapeutic application of natural inhibitors against snake venom phospholipase A2.Bioinformation201281485710.6026/97320630008048 22359435
    [Google Scholar]
  117. DharmappaK.K. MohamedR. ShivaprasadH.V. VishwanathB.S. Genistein, a potent inhibitor of secretory phospholipase A2: a new insight in down regulation of inflammation.Inflammopharmacology2010181253110.1007/s10787‑009‑0018‑8 19894024
    [Google Scholar]
  118. Da SilvaS.L. CalgarottoA.K. ChaarJ.S. MarangoniS. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA2 activity.Toxicon200852665566610.1016/j.toxicon.2008.07.011 18718481
    [Google Scholar]
  119. VinuchakkaravarthyT. KumaravelK.P. RavichandranS. VelmuruganD. Active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory phospholipase A2 through molecular docking.Bioinformation20117419920610.6026/97320630007199 22102777
    [Google Scholar]
  120. AlcarazM.J. HoultJ.R. Effects of hypolaetin-8-glucoside and related flavonoids on soybean lipoxygenase and snake venom phospholipase A2.Arch. Int. Pharmacodyn. Ther.19852781412 3938206
    [Google Scholar]
  121. DharmappaK.K. KumarR.V. NatarajuA. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2.Planta Med.200975321121510.1055/s‑0028‑1088374
    [Google Scholar]
  122. NúñezV. CastroV. MurilloR. Ponce-SotoL.A. MerfortI. LomonteB. Inhibitory effects of Piper umbellatum and Piper peltatum extracts towards myotoxic phospholipases A2 from Bothrops snake venoms: Isolation of 4-nerolidylcatechol as active principle.Phytochemistry20056691017102510.1016/j.phytochem.2005.03.026 15896371
    [Google Scholar]
  123. LindahlM. TagessonC. Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2.Inflammation199721334735610.1023/A:1027306118026 9246576
    [Google Scholar]
  124. RosasL.V. CordeiroM.S.C. CamposF.R. In vitro evaluation of the cytotoxic and trypanocidal activities of Ampelozizyphus amazonicus (Rhamnaceae).Braz. J. Med. Biol. Res.200740566367010.1590/S0100‑879X2007000500009 17464428
    [Google Scholar]
  125. NatarajA. Raghavendra GowdaC. RajeshR. VishwanathB. Group IIA secretory PLA2 inhibition by ursolic acid: a potent anti-inflammatory molecule.Curr. Top. Med. Chem.20077880180910.2174/156802607780487696 17456043
    [Google Scholar]
  126. BasavarajappaBS 1992Studies on the beneficial effects of plant isolates on Indian cobra Naja naja naja venom toxins
    [Google Scholar]
  127. HungY.C. SavaV. HongM.Y. HuangG.S. Inhibitory effects on phospholipase A2 and antivenin activity of melanin extracted from Thea sinensis Linn.Life Sci.200474162037204710.1016/j.lfs.2003.09.048 14967198
    [Google Scholar]
  128. Maleeruk Utsintonga Atchara Kaewnoib WichetLeelamanit, Arthur J. Olsond, and Opa Vajragupta. Rediocides A and G as potential antitoxins against cobra venom.Chem. Biodivers.2009161401141410.1002/cbdv.200800204
    [Google Scholar]
  129. Kadiyala GopiK. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. BBA - General Subject 20161860715184010.1016/j.bbagen.2016.03.031
    [Google Scholar]
  130. MeloP.A. PinheiroD.A. RicardoH.D. Ability of a synthetic coumestan to antagonize Bothrops snake venom activities.Toxicon2010552-348849610.1016/j.toxicon.2009.09.021 19883675
    [Google Scholar]
  131. SrimathiR SabareeshV GurunathanJ. Naringenin isolated from Citrus reticulata blanco fruit peel inhibits the toxicity of snake venom proteins - An in vitro and in vivo study.Toxicon 202222010694310.1016/j.toxicon.2022.106943 36244432
    [Google Scholar]
  132. AnaMaria Torres AnaMaria Torres, GonzaloAdrian Ojeda, Emilio Angelina, Soledad Bustillo, Nelida Peruchena, Loris Tonidandel, Roberto Larcher, Tiziana Nardin, Eduardo Dellacassa. The anti-snake activity of Nectandra angustifolia flavonoids on phospholipase A2: In vitro and in silico evaluation.J Ethnophar 2023302part A.115889 10.1016/j.jep.2022.115889
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217299051240722072656
Loading
/content/journals/jctv/10.2174/0126661217299051240722072656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test