Skip to content
2000
image of Decoding MASLD and the Link between Metabolic Dysfunction and Steatotic Liver Disease: An Overview

Abstract

A metabolic illness that affects around 25% of the world's population, metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with numerous more ailments. It is associated with dementia progression, influenced by factors like brain insulin resistance, cerebrovascular dysfunction, gut dysbiosis, and neuroinflammation. Furthermore, other MASLD characteristics like systemic inflammation, vascular dysfunction, and sleep apnea are also strongly linked to cognitive dysfunction. Recent research suggests MASLD could contribute to cognitive impairment even without these factors. As dementia and MASLD share clinical characteristics and underlying metabolic risk factors, further research is needed to find effective treatments for both. This study discusses the shared pathogenic traits and mechanisms of dementia and MASLD. Additionally, this review discusses various non-medication and medication treatment strategies along with the different types of nano formulation studies for the treatment of MASLD

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906321699241004070130
2024-11-06
2025-05-30
Loading full text...

Full text loading...

References

  1. Younossi Z.M. Koenig A.B. Abdelatif D. Fazel Y. Henry L. Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016 64 1 73 84 10.1002/hep.28431 26707365
    [Google Scholar]
  2. Wong R.J. Aguilar M. Cheung R. Perumpail R.B. Harrison S.A. Younossi Z.M. Ahmed A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015 148 3 547 555 10.1053/j.gastro.2014.11.039 25461851
    [Google Scholar]
  3. Dyson J. Jaques B. Chattopadyhay D. Lochan R. Graham J. Das D. Aslam T. Patanwala I. Gaggar S. Cole M. Sumpter K. Stewart S. Rose J. Hudson M. Manas D. Reeves H.L. Hepatocellular cancer: The impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 2014 60 1 110 117 10.1016/j.jhep.2013.08.011 23978719
    [Google Scholar]
  4. Wong V.W-S. Wong G.L-H. Choi P.C-L. Chan A.W-H. Li M.K-P. Chan H-Y. Disease progression of MASLDisease: A prospective study with paired liver biopsies at 3 years. Gut 2010 59 7 969 10.1136/gut.2009.205088 20581244
    [Google Scholar]
  5. Angulo P. Kleiner D. E. Dam-Larsen S. Adams L. A. Bjornsson E. S. Charatcharoenwitthaya P. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease Gastroenterology 2015 149 2 389 397
    [Google Scholar]
  6. Lombardi R. Fargion S. Fracanzani A.L. Brain involvement in MASLDisease (MASLD): A systematic review. Dig. Liver Dis. 2019 51 9 1214 1222 10.1016/j.dld.2019.05.015 31176631
    [Google Scholar]
  7. Nichols E. Szoeke C.E.I. Vollset S.E. Abbasi N. Abd-Allah F. Abdela J. Aichour M.T.E. Akinyemi R.O. Alahdab F. Asgedom S.W. Awasthi A. Barker-Collo S.L. Baune B.T. Béjot Y. Belachew A.B. Bennett D.A. Biadgo B. Bijani A. Bin Sayeed M.S. Brayne C. Carpenter D.O. Carvalho F. Catalá-López F. Cerin E. Choi J-Y.J. Dang A.K. Degefa M.G. Djalalinia S. Dubey M. Duken E.E. Edvardsson D. Endres M. Eskandarieh S. Faro A. Farzadfar F. Fereshtehnejad S-M. Fernandes E. Filip I. Fischer F. Gebre A.K. Geremew D. Ghasemi-Kasman M. Gnedovskaya E.V. Gupta R. Hachinski V. Hagos T.B. Hamidi S. Hankey G.J. Haro J.M. Hay S.I. Irvani S.S.N. Jha R.P. Jonas J.B. Kalani R. Karch A. Kasaeian A. Khader Y.S. Khalil I.A. Khan E.A. Khanna T. Khoja T.A.M. Khubchandani J. Kisa A. Kissimova-Skarbek K. Kivimäki M. Koyanagi A. Krohn K.J. Logroscino G. Lorkowski S. Majdan M. Malekzadeh R. März W. Massano J. Mengistu G. Meretoja A. Mohammadi M. Mohammadi-Khanaposhtani M. Mokdad A.H. Mondello S. Moradi G. Nagel G. Naghavi M. Naik G. Nguyen L.H. Nguyen T.H. Nirayo Y.L. Nixon M.R. Ofori-Asenso R. Ogbo F.A. Olagunju A.T. Owolabi M.O. Panda-Jonas S. Passos V.M.A. Pereira D.M. Pinilla-Monsalve G.D. Piradov M.A. Pond C.D. Poustchi H. Qorbani M. Radfar A. Reiner R.C. Jr Robinson S.R. Roshandel G. Rostami A. Russ T.C. Sachdev P.S. Safari H. Safiri S. Sahathevan R. Salimi Y. Satpathy M. Sawhney M. Saylan M. Sepanlou S.G. Shafieesabet A. Shaikh M.A. Sahraian M.A. Shigematsu M. Shiri R. Shiue I. Silva J.P. Smith M. Sobhani S. Stein D.J. Tabarés-Seisdedos R. Tovani-Palone M.R. Tran B.X. Tran T.T. Tsegay A.T. Ullah I. Venketasubramanian N. Vlassov V. Wang Y-P. Weiss J. Westerman R. Wijeratne T. Wyper G.M.A. Yano Y. Yimer E.M. Yonemoto N. Yousefifard M. Zaidi Z. Zare Z. Vos T. Feigin V.L. Murray C.J.L. GBD 2016 Dementia Collaborators Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 18 1 88 106 10.1016/S1474‑4422(18)30403‑4 30497964
    [Google Scholar]
  8. Frisardi V. Solfrizzi V. Seripa D. Capurso C. Santamato A. Sancarlo D. Vendemiale G. Pilotto A. Panza F. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res. Rev. 2010 9 4 399 417 10.1016/j.arr.2010.04.007 20444434
    [Google Scholar]
  9. Ndumele C. Nasir K. Conceição R.D. Carvalho J.A. Blumenthal R.S. Santos R.D. Hepatic Steatosis, Obesity and the Metabolic Syndrome Are Independently and Additively Associated With Increased Systemic Inflammation. Am Heart Assoc. 2010
    [Google Scholar]
  10. Boursier J. Mueller O. Barret M. Machado M. Fizanne L. Araujo-Perez F. Guy C.D. Seed P.C. Rawls J.F. David L.A. Hunault G. Oberti F. Calès P. Diehl A.M. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016 63 3 764 775 10.1002/hep.28356 26600078
    [Google Scholar]
  11. Elliott C. Frith J. Day C.P. Jones D.E. Newton J.L. Functional impairment in alcoholic liver disease and MASLDisease is significant and persists over 3 years of follow-up. Dig. Dis. Sci. 2013 58 2383 2391 10.1007/s10620‑013‑2657‑2 23609794
    [Google Scholar]
  12. Celikbilek A. Celikbilek M. Bozkurt G. Cognitive assessment of patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2018 30 8 944 950 10.1097/MEG.0000000000001131 29608442
    [Google Scholar]
  13. Saver J.L. Cushman M. Striving for ideal cardiovascular and brain health: It is never too early or too late. JAMA 2018 320 7 645 647 10.1001/jama.2018.11002 30140858
    [Google Scholar]
  14. Le M.H. Devaki P. Ha N.B. Jun D.W. Te H.S. Cheung R.C. Prevalence of MASLDisease and risk factors for advanced fibrosis and mortality in the United States. PLoS One 2017 12 3 e0173499 10.1371/journal.pone.0173499 28346543
    [Google Scholar]
  15. Collie A. Cognition in liver disease. Liver Int. 2005 25 1 1 8 10.1111/j.1478‑3231.2005.01012.x 15698392
    [Google Scholar]
  16. Lampignano L. Donghia R. Griseta C. Lagravinese G. Sciarra S. Zupo R. Castellana F. Bortone I. Guerra V. Tirelli S. De Nucci S. Tatoli R. Lozupone M. Sborgia G. Leo A. De Pergola G. Giannelli G. Panza F. Sardone R. Liver health and dementia in an Italian older population: Findings from the salus in apulia study. Front. Aging Neurosci. 2021 13 748888 10.3389/fnagi.2021.748888 34955810
    [Google Scholar]
  17. George E.S. Sood S. Daly R.M. Tan S-Y. Is there an association between MASLDisease and cognitive function? A systematic review. BMC Geriatr. 2022 22 1 47 10.1186/s12877‑021‑02721‑w 35016619
    [Google Scholar]
  18. Seo S.W. Gottesman R.F. Clark J.M. Hernaez R. Chang Y. Kim C. Ha K.H. Guallar E. Lazo M. Nonalcoholic fatty liver disease is associated with cognitive function in adults. Neurology 2016 86 12 1136 1142 10.1212/WNL.0000000000002498 26911638
    [Google Scholar]
  19. Takahashi A. Kono S. Wada A. Oshima S. Abe K. Imaizumi H. Reduced brain activity in female patients with MASLDisease as measured by near-infrared spectroscopy. PLoS One 2017 12 4 e0174169 10.1371/journal.pone.0174169 28376101
    [Google Scholar]
  20. Shang Y. Nasr P. Ekstedt M. Widman L. Stål P. Hultcrantz R. MASLDisease does not increase dementia risk although histology data might improve risk prediction JHEP reports 2021 3 2
    [Google Scholar]
  21. Gerber Y. VanWagner L.B. Yaffe K. Terry J.G. Rana J.S. Reis J.P. MASLDisease and cognitive function in middle-aged adults: The CARDIA study. BMC Gastroenterol. 2021 21 1 1 9 10.1186/s12876‑021‑01681‑0 33407176
    [Google Scholar]
  22. Solfrizzi V. Scafato E. Custodero C. Loparco F. Ciavarella A. Panza F. Seripa D. Imbimbo B.P. Lozupone M. Napoli N. Piazzolla G. Galluzzo L. Gandin C. Baldereschi M. Di Carlo A. Inzitari D. Pilotto A. Sabbà C. Italian Longitudinal Study on Aging Working Group Liver fibrosis score, physical frailty, and the risk of dementia in older adults: The Italian Longitudinal Study on Aging. Alzheimers Dement. 2020 6 1 e12065 10.1002/trc2.12065 32864415
    [Google Scholar]
  23. Tuttolomondo A. Petta S. Casuccio A. Maida C. Corte V.D. Daidone M. Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with MASLDisease (MASLD): A case control study. Cardiovasc. Diabetol. 2018 17 1 1 12 10.1186/s12933‑018‑0670‑7 29301528
    [Google Scholar]
  24. Kjærgaard K. Mikkelsen A.C.D. Wernberg C.W. Grønkjær L.L. Eriksen P.L. Damholdt M.F. Cognitive dysfunction in MASLDisease—current knowledge, mechanisms and perspectives. J. Clin. Med. 2021 10 4 673 10.3390/jcm10040673 33572481
    [Google Scholar]
  25. Weinstein A.A. de Avila L. Paik J. Golabi P. Escheik C. Gerber L. Cognitive performance in individuals with MASLDisease and/or type 2 diabetes mellitus. Psychosomatics 2018 59 6 567 574 10.1016/j.psym.2018.06.001 30086995
    [Google Scholar]
  26. Filipović B. Marković O. Đurić V. Filipović B. Cognitive changes and brain volume reduction in patients with nonalcoholic fatty liver disease. Can. J. Gastroenterol. Hepatol. 2018 2018 1 6 10.1155/2018/9638797 29682494
    [Google Scholar]
  27. Weinstein G. Davis-Plourde K. Himali J.J. Zelber-Sagi S. Beiser A.S. Seshadri S. Non‐alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle‐aged adults: The Framingham Study. Liver Int. 2019 39 9 1713 1721 10.1111/liv.14161 31155826
    [Google Scholar]
  28. Bajaj J.S. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014 5 3 397 403 10.4161/gmic.28684 24690956
    [Google Scholar]
  29. Ahluwalia V. Betrapally N.S. Hylemon P.B. White M.B. Gillevet P.M. Unser A.B. Fagan A. Daita K. Heuman D.M. Zhou H. Sikaroodi M. Bajaj J.S. Impaired gut-liver-brain axis in patients with cirrhosis. Sci. Rep. 2016 6 1 26800 10.1038/srep26800 27225869
    [Google Scholar]
  30. Bajaj J.S. Betrapally N.S. Hylemon P.B. Heuman D.M. Daita K. White M.B. Unser A. Thacker L.R. Sanyal A.J. Kang D.J. Sikaroodi M. Gillevet P.M. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 2015 62 4 1260 1271 10.1002/hep.27819 25820757
    [Google Scholar]
  31. Miele L. Valenza V. La Torre G. Montalto M. Cammarota G. Ricci R. Mascianà R. Forgione A. Gabrieli M.L. Perotti G. Vecchio F.M. Rapaccini G. Gasbarrini G. Day C.P. Grieco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009 49 6 1877 1887 10.1002/hep.22848 19291785
    [Google Scholar]
  32. Ilan Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J. Gastroenterol. 2012 18 21 2609 2618 10.3748/wjg.v18.i21.2609 22690069
    [Google Scholar]
  33. Liu R. Kang J.D. Sartor R.B. Sikaroodi M. Fagan A. Gavis E.A. Zhou H. Hylemon P.B. Herzog J.W. Li X. Lippman R.H. Gonzalez-Maeso J. Wade J.B. Ghosh S. Gurley E. Gillevet P.M. Bajaj J.S. Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant. Hepatology 2020 71 2 611 626 10.1002/hep.30827 31220352
    [Google Scholar]
  34. Mohammed S.K. Magdy Y.M. El-Waseef D.A.A. Nabih E.S. Hamouda M.A. El-kharashi O.A. Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiol. Behav. 2020 214 112762 10.1016/j.physbeh.2019.112762 31786271
    [Google Scholar]
  35. Ng T.P. Feng L. Nyunt M.S.Z. Feng L. Gao Q. Lim M.L. Collinson S.L. Chong M.S. Lim W.S. Lee T.S. Yap P. Yap K.B. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: Follow-up of the Singapore longitudinal ageing study cohort. JAMA Neurol. 2016 73 4 456 463 10.1001/jamaneurol.2015.4899 26926205
    [Google Scholar]
  36. Vanhanen M. Koivisto K. Moilanen L. Helkala E.L. Hänninen T. Soininen H. Kervinen K. Kesäniemi Y.A. Laakso M. Kuusisto J. Association of metabolic syndrome with Alzheimer disease. Neurology 2006 67 5 843 847 10.1212/01.wnl.0000234037.91185.99 16966548
    [Google Scholar]
  37. Han E. Lee J.Y. Han K. Cho H. Kim K.J. Lee B.W. Kang E.S. Cha B.S. Younossi Z.M. Lee Y. Gamma glutamyltransferase and risk of dementia in prediabetes and diabetes. Sci. Rep. 2020 10 1 6800 10.1038/s41598‑020‑63803‑0 32322005
    [Google Scholar]
  38. Labenz C. Kostev K. Kaps L. Galle P.R. Schattenberg J.M. Incident dementia in elderly patients with nonalcoholic fatty liver disease in Germany. Dig. Dis. Sci. 2021 66 9 3179 3185 10.1007/s10620‑020‑06644‑1 33037968
    [Google Scholar]
  39. Smith E.E. Egorova S. Blacker D. Killiany R.J. Muzikansky A. Dickerson B.C. Tanzi R.E. Albert M.S. Greenberg S.M. Guttmann C.R.G. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch. Neurol. 2008 65 1 94 100 10.1001/archneurol.2007.23 18195145
    [Google Scholar]
  40. Zeltser N. Meyer I. Hernandez G.V. Trahan M.J. Fanter R.K. Abo-Ismail M. Glanz H. Strand C.R. Burrin D.G. La Frano M.R. Manjarín R. Maj M. Neurodegeneration in juvenile Iberian pigs with diet-induced nonalcoholic fatty liver disease. Am. J. Physiol. Endocrinol. Metab. 2020 319 3 E592 E606 10.1152/ajpendo.00120.2020 32744096
    [Google Scholar]
  41. Kim D-G. Krenz A. Toussaint L.E. Maurer K.J. Robinson S-A. Yan A. MASLDisease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J. Neuroinflammation 2016 13 1 18 10.1186/s12974‑015‑0467‑5 26728181
    [Google Scholar]
  42. Li M. Li X. Lu Y. Obstructive sleep apnea syndrome and metabolic diseases. Endocrinology 2018 159 7 2670 2675 10.1210/en.2018‑00248 29788220
    [Google Scholar]
  43. Musso G. Cassader M. Olivetti C. Rosina F. Carbone G. Gambino R. Association of obstructive sleep apnoea with the presence and severity of non‐alcoholic fatty liver disease. A systematic review and meta‐analysis. Obes. Rev. 2013 14 5 417 431 10.1111/obr.12020 23387384
    [Google Scholar]
  44. Savransky V. Bevans S. Nanayakkara A. Li J. Smith P.L. Torbenson M.S. Polotsky V.Y. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2007 293 4 G871 G877 10.1152/ajpgi.00145.2007 17690174
    [Google Scholar]
  45. Eriksen P.L. Soerensen M. Grønbæk H. Hamilton-Dutoit S. Vilstrup H. Thomsen K.L. MASLDisease causes dissociated changes in metabolic liver functions. Clin. Res. Hepatol. Gastroenterol. 2019 43 5 551 560 10.1016/j.clinre.2019.01.001 30770336
    [Google Scholar]
  46. Begriche K. Massart J. Robin M.A. Bonnet F. Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013 58 4 1497 1507 10.1002/hep.26226 23299992
    [Google Scholar]
  47. Aldridge D.R. Tranah E.J. Shawcross D.L. Pathogenesis of hepatic encephalopathy: Role of ammonia and systemic inflammation. J. Clin. Exp. Hepatol. 2015 5 Suppl. 1 S7 S20 10.1016/j.jceh.2014.06.004 26041962
    [Google Scholar]
  48. Häussinger D. Kircheis G. Fischer R. Schliess F. Dahl S. Hepatic encephalopathy in chronic liver disease: A clinical manifestation of astrocyte swelling and low-grade cerebral edema? J. Hepatol. 2000 32 6 1035 1038 10.1016/S0168‑8278(00)80110‑5 10898326
    [Google Scholar]
  49. Cagnin A. Kassiou M. Meikle S.R. Banati R.B. Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 2007 4 3 443 452 10.1016/j.nurt.2007.04.006 17599710
    [Google Scholar]
  50. Felipo V. Urios A. Montesinos E. Molina I. Garcia-Torres M.L. Civera M. Del Olmo J.A. Ortega J. Martinez-Valls J. Serra M.A. Cassinello N. Wassel A. Jordá E. Montoliu C. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab. Brain Dis. 2012 27 1 51 58 10.1007/s11011‑011‑9269‑3 22072427
    [Google Scholar]
  51. Higarza S.G. Arboleya S. Gueimonde M. Gómez-Lázaro E. Arias J.L. Arias N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS One 2019 14 9 e0223019 10.1371/journal.pone.0223019 31539420
    [Google Scholar]
  52. Haukeland J.W. Damås J.K. Konopski Z. Løberg E.M. Haaland T. Goverud I. Torjesen P.A. Birkeland K. Bjøro K. Aukrust P. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 2006 44 6 1167 1174 10.1016/j.jhep.2006.02.011 16618517
    [Google Scholar]
  53. Tosello-Trampont A.C. Landes S.G. Nguyen V. Novobrantseva T.I. Hahn Y.S. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J. Biol. Chem. 2012 287 48 40161 40172 10.1074/jbc.M112.417014 23066023
    [Google Scholar]
  54. Dixon L.J. Flask C.A. Papouchado B.G. Feldstein A.E. Nagy L.E. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 2013 8 2 e56100 10.1371/journal.pone.0056100 23409132
    [Google Scholar]
  55. Viscogliosi G. Andreozzi P. Chiriac I.M. Cipriani E. Servello A. Marigliano B. Ettorre E. Marigliano V. Depressive symptoms in older people with metabolic syndrome: Is there a relationship with inflammation? Int. J. Geriatr. Psychiatry 2013 28 3 242 247 10.1002/gps.3817 22639424
    [Google Scholar]
  56. Obermeier B. Daneman R. Ransohoff R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013 19 12 1584 1596 10.1038/nm.3407 24309662
    [Google Scholar]
  57. Milanski M. Degasperi G. Coope A. Morari J. Denis R. Cintra D.E. Tsukumo D.M.L. Anhe G. Amaral M.E. Takahashi H.K. Curi R. Oliveira H.C. Carvalheira J.B.C. Bordin S. Saad M.J. Velloso L.A. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: Implications for the pathogenesis of obesity. J. Neurosci. 2009 29 2 359 370 10.1523/JNEUROSCI.2760‑08.2009 19144836
    [Google Scholar]
  58. Yang Q. Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2019 67 6 1017 1035 10.1002/glia.23571 30548343
    [Google Scholar]
  59. Balzano T. Forteza J. Borreda I. Molina P. Giner J. Leone P. Urios A. Montoliu C. Felipo V. Histological features of cerebellar neuropathology in patients with alcoholic and nonalcoholic steatohepatitis. J. Neuropathol. Exp. Neurol. 2018 77 9 837 845 10.1093/jnen/nly061 30016459
    [Google Scholar]
  60. Rong L. Zou J. Ran W. Qi X. Chen Y. Cui H. Advancements in the treatment of MASLDisease (MASLD). Front. Endocrinol. 2023 13
    [Google Scholar]
  61. Akuta N. Kawamura Y. Fujiyama S. Saito S. Muraishi N. Sezaki H. Hosaka T. Kobayashi M. Kobayashi M. Arase Y. Ikeda K. Suzuki F. Suzuki Y. Kumada H. Favorable impact of long‐term SGLT2 inhibitor for NAFLD complicated by diabetes mellitus: A 5‐year follow‐up study. Hepatol. Commun. 2022 6 9 2286 2297 10.1002/hep4.2005 35581956
    [Google Scholar]
  62. Kahl S. Ofstad A.P. Zinman B. Wanner C. Schüler E. Sattar N. Inzucchi S.E. Roden M. Effects of empagliflozin on markers of liver steatosis and fibrosis and their relationship to cardiorenal outcomes. Diabetes Obes. Metab. 2022 24 6 1061 1071 10.1111/dom.14670 35166009
    [Google Scholar]
  63. Ito D. Shimizu S. Inoue K. Saito D. Yanagisawa M. Inukai K. Akiyama Y. Morimoto Y. Noda M. Shimada A. Comparison of Ipragliflozin and Pioglitazone Effects on Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes: A Randomized, 24-Week, Open-Label, Active-Controlled Trial. Diabetes Care 2017 40 10 1364 1372 10.2337/dc17‑0518 28751548
    [Google Scholar]
  64. Tobita H. Yazaki T. Kataoka M. Kotani S. Oka A. Mishiro T. Oshima N. Kawashima K. Ishimura N. Naora K. Sato S. Ishihara S. Comparison of dapagliflozin and teneligliptin in nonalcoholic fatty liver disease patients without type 2 diabetes mellitus: A prospective randomized study. J. Clin. Biochem. Nutr. 2021 68 2 173 180 10.3164/jcbn.20‑129 33879970
    [Google Scholar]
  65. Zhang X. Wong G.L.H. Yip T.C.F. Tse Y.K. Liang L.Y. Hui V.W.K. Lin H. Li G.L. Lai J.C.T. Chan H.L.Y. Wong V.W.S. Angiotensin‐converting enzyme inhibitors prevent liver‐related events in nonalcoholic fatty liver disease. Hepatology 2022 76 2 469 482 10.1002/hep.32294 34939204
    [Google Scholar]
  66. Zeng J. Acin-Perez R. Assali E.A. Martin A. Brownstein A.J. Petcherski A. Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in MASLDisease. Nat. Commun. 2023 14 1 2573 10.1038/s41467‑023‑38165‑6 37142604
    [Google Scholar]
  67. Zhao R. Zhu M. Zhou S. Feng W. Chen H. Rapamycin-loaded mPEG-PLGA nanoparticles ameliorate hepatic steatosis and liver injury in MASL disease. Front Chem. 2020 8
    [Google Scholar]
  68. Wen L. Li M. Lin X. Li Y. Song H. Chen H. AgNPs aggravated hepatic steatosis, inflammation, oxidative stress, and epigenetic changes in mice with MASLD induced by HFD. Front. Bioeng. Biotechnol. 2022 10
    [Google Scholar]
  69. Abbasi E. Vafaei S.A. Naseri N. Darini A. Azandaryani M.T. Ara F.K. Protective effects of cerium oxide nanoparticles in MASLDisease (MASLD) and carbon tetrachloride-induced liver damage in rats: Study on intestine and liver. Metabolism Open 2021 12 100151 10.1016/j.metop.2021.100151 34870139
    [Google Scholar]
  70. Zhao W. Bian Y. Wang Q. Yin F. Yin L. Zhang Y. Liu J. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol. Sin. 2022 43 3 645 658 10.1038/s41401‑021‑00681‑w 33990765
    [Google Scholar]
  71. Lu J. Zeng Y. Zhong H. Guo W. Zhang Y. Mai W. Dual-stimuli-responsive gut microbiota-targeting nitidine chloride-CS/PT-NPs improved metabolic status in MASLD Int. J. Nanomed. 2024 19 2409 2428 10.2147/IJN.S452194
    [Google Scholar]
  72. Abulikemu A. Zhao X. Xu H. Li Y. Ma R. Yao Q. Wang J. Sun Z. Li Y. Guo C. Silica nanoparticles aggravated the metabolic associated fatty liver disease through disturbed amino acid and lipid metabolisms-mediated oxidative stress. Redox Biol. 2023 59 102569 10.1016/j.redox.2022.102569 36512914
    [Google Scholar]
  73. Ahmed E.S.A. Mohamed H.E. Farrag M.A. Luteolin loaded on zinc oxide nanoparticles ameliorates MASLDisease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int. J. Immunopathol. Pharmacol. 2022 36 03946320221137435 10.1177/03946320221137435 36319192
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906321699241004070130
Loading
/content/journals/ijghd/10.2174/0126662906321699241004070130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test