Skip to content
2000
image of Polyherbal Approach for the Management of Alcohol-Induced Liver Disease, their Complications and Hangover: A Review

Abstract

Alcohol consumption trouble is the leading cause of disability and illness in the world. Aside from its negative health consequences, alcohol also has a substantial economic impact on society. This burden manifests itself in the way of health-care costs together with personal expenses for the healing process of morbidities caused by alcohol consumption, diminished earning capacity due to early death. The Government of India (GOI) is concentrating on implementing measures to deal with the alarming and rising cost of non-communicable diseases (NCDs) and disabilities in the nation. After drinking, alcohol increases the release of leptin, called satiety hormone produced in adipose tissues, together with tumour necrosis factor-alpha (TNF-α), which mitigates the hunger in alcoholics. After that, TNF-α triggers secondary inflammatory mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-1β (IL-1β), to be over-expressed, which further reduces appetite. Recent research suggests that excessive lipid production, oxidative stress, inflammation along with the intricate connections between the body's immune system, alcohol metabolism and lipid metabolism, are some of the many factors that trigger liver disease caused by alcohol.

There are three medications, namely acamprosate, disulfiram and naltrexone that have been authorised by the Food and Drug Administration (FDA) for the management of drinking disorders. However, these drugs have a number of drawbacks, including symptoms connected to the nervous system. This significant review discusses the scientific mechanisms behind a few particular bioactive constituents of medicinal plants that have been shown to significantly reduce hangover symptoms by detoxifying alcohol metabolites, influencing the metabolic process of alcohol and because of its antioxidants and/or anti-inflammatory capabilities.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906338140241115102403
2024-12-23
2025-07-07
Loading full text...

Full text loading...

References

  1. Saad A.J. Jerrells T.R. Flow cytometric and immunohistochemical evaluation of ethanol-induced changes in splenic and thymic lymphoid cell populations. Alcohol. Clin. Exp. Res. 1991 15 5 796 803 10.1111/j.1530‑0277.1991.tb00603.x 1755511
    [Google Scholar]
  2. Spinozzi F. Agea E. Florucci G. Gerli R. Muscat C. Belia S. Bertotto A. Ethanol-induced CD3 and CD2 hyporesponsiveness of peripheral blood T lymphocytes. Immunopharmacol. Immunotoxicol. 1992 14 4 939 953 10.3109/08923979209009243 1363475
    [Google Scholar]
  3. Bautista A.P. Role of Kupffer cells in the induction of hepatotoxicity and immunosuppression in chronic alcoholic rats with hepatitis. Cells of the Hepatic Sinusoid. 1995 5 70 70
    [Google Scholar]
  4. Bautista A. Spitzer J. Potter B. Bukara M. The impact of alcohol on free radical formation and chemokine release by Kupffer cells: The role of tolerance, sensitization, iron and HIV-1 gp120. Cells of the Hepatic Sinusoid. 1999 7 90 95
    [Google Scholar]
  5. George A. Udani J.K. Yusof A. Effects of Phyllanthus amarus PHYLLPRO TM leaves on hangover symptoms: A randomized, double-blind, placebo-controlled crossover study. Pharm. Biol. 2019 57 1 145 153 10.1080/13880209.2019.1585460 30922154
    [Google Scholar]
  6. Costanzo S. Di Castelnuovo A. Donati M.B. Iacoviello L. de Gaetano G. Alcohol consumption and mortality in patients with cardiovascular disease: A meta-analysis. J. Am. Coll. Cardiol. 2010 55 13 1339 1347 10.1016/j.jacc.2010.01.006 20338495
    [Google Scholar]
  7. Fernández-Solà J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015 12 10 576 587 10.1038/nrcardio.2015.91 26099843
    [Google Scholar]
  8. Rosa-e-Silva L. Troncon L.E. Oliveira R.B. Gallo L. Foss M.C. Su1320 fecal parameters and gastrointestinal transit in patients with alcohol related chronic pancreatitis with and without chronic diarrhea. Factors associated with this symptom. Gastroenterology 2013 144 5 S-457 10.1016/S0016‑5085(13)61687‑X
    [Google Scholar]
  9. Chiang C.P. Wu C.W. Lee S.P. Chung C.C. Wang C.W. Lee S.L. Nieh S. Yin S.J. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human pancreas: Implications for pathogenesis of alcohol-induced pancreatic injury. Alcohol. Clin. Exp. Res. 2009 33 6 1059 1068 10.1111/j.1530‑0277.2009.00927.x 19382905
    [Google Scholar]
  10. Schwartz L.M. Persson E.C. Weinstein S.J. Graubard B.I. Freedman N.D. Männistö S. Albanes D. McGlynn K.A. Alcohol consumption, one-carbon metabolites, liver cancer and liver disease mortality. PLoS One 2013 8 10 e78156 10.1371/journal.pone.0078156 24205137
    [Google Scholar]
  11. Kouda K. Iki M. Fujita Y. Tamaki J. Yura A. Kadowaki E. Sato Y. Moon J.S. Morikawa M. Tomioka K. Okamoto N. Kurumatani N. Alcohol intake and bone status in elderly Japanese men: Baseline data from the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Bone 2011 49 2 275 280 10.1016/j.bone.2011.04.010 21530699
    [Google Scholar]
  12. Hartung B. Schwender H. Mindiashvili N. Ritz-Timme S. Malczyk A. Daldrup T. The effect of alcohol hangover on the ability to ride a bicycle. Int. J. Legal Med. 2015 129 4 751 758 10.1007/s00414‑015‑1194‑2 25940454
    [Google Scholar]
  13. Barker J.M. Taylor J.R. Habitual alcohol seeking: Modeling the transition from casual drinking to addiction. Neurosci. Biobehav. Rev. 2014 47 281 294 10.1016/j.neubiorev.2014.08.012 25193245
    [Google Scholar]
  14. Swift R. Davidson D. Alcohol hangover: Mechanisms and mediators. Alcohol Health Res. World 1998 22 1 54 60 15706734
    [Google Scholar]
  15. Wiese J.G. Shlipak M.G. Browner W.S. The alcohol hangover. Ann. Intern. Med. 2000 132 11 897 902 10.7326/0003‑4819‑132‑11‑200006060‑00008 10836917
    [Google Scholar]
  16. Sinclair J.D. Walker S. Jordan W. Alcohol intubation and its effect on voluntary consumption by rats. Q. J. Stud. Alcohol 1973 34 3 726 743 10.15288/qjsa.1973.34.726 4742689
    [Google Scholar]
  17. Doremus-Fitzwater T.L. Spear L.P. Developmental differences in acute ethanol withdrawal in adolescent and adult rats. Alcohol. Clin. Exp. Res. 2007 31 9 1516 1527 10.1111/j.1530‑0277.2007.00457.x 17760786
    [Google Scholar]
  18. Zhang Z. Morse A.C. Koob G.F. Schulteis G. Dose- and time-dependent expression of anxiety-like behavior in the elevated plus-maze during withdrawal from acute and repeated intermittent ethanol intoxication in rats. Alcohol. Clin. Exp. Res. 2007 31 11 1811 1819 10.1111/j.1530‑0277.2007.00483.x 17877783
    [Google Scholar]
  19. Varlinskaya E.I. Spear L.P. Acute ethanol withdrawal (hangover) and social behavior in adolescent and adult male and female Sprague-Dawley rats. Alcohol. Clin. Exp. Res. 2004 28 1 40 50 10.1097/01.ALC.0000108655.51087.DF 14745301
    [Google Scholar]
  20. Penning R. McKinney A. Verster J.C. Alcohol hangover symptoms and their contribution to the overall hangover severity. Alcohol Alcohol. 2012 47 3 248 252 10.1093/alcalc/ags029 22434663
    [Google Scholar]
  21. Rohsenow D.J. Howland J. Arnedt J.T. Almeida A.B. Greece J. Minsky S. Kempler C.S. Sales S. Intoxication with bourbon versus vodka: Effects on hangover, sleep, and next-day neurocognitive performance in young adults. Alcohol. Clin. Exp. Res. 2010 34 3 509 518 10.1111/j.1530‑0277.2009.01116.x 20028364
    [Google Scholar]
  22. Prat G. Adan A. Pérez-Pàmies M. Sànchez-Turet M. Neurocognitive effects of alcohol hangover. Addict. Behav. 2008 33 1 15 23 10.1016/j.addbeh.2007.05.002 17543471
    [Google Scholar]
  23. Rehm J. Mathers C. Popova S. Thavorncharoensap M. Teerawattananon Y. Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009 373 9682 2223 2233 10.1016/S0140‑6736(09)60746‑7 19560604
    [Google Scholar]
  24. Casswell S. Thamarangsi T. Reducing harm from alcohol: Call to action. Lancet 2009 373 9682 2247 2257 10.1016/S0140‑6736(09)60745‑5 19560606
    [Google Scholar]
  25. Thavorncharoensap M. Teerawattananon Y. Yothasamut J. Lertpitakpong C. Thitiboonsuwan K. Neramitpitagkul P. Chaikledkaew U. The economic costs of alcohol consumption in Thailand, 2006. BMC Public Health 2010 10 1 323 10.1186/1471‑2458‑10‑323 20534112
    [Google Scholar]
  26. Jyani G. Prinja S. Ambekar A. Bahuguna P. Kumar R. Health impact and economic burden of alcohol consumption in India. Int. J. Drug Policy 2019 69 34 42 10.1016/j.drugpo.2019.04.005 31055044
    [Google Scholar]
  27. Mokdad A.A. Lopez A.D. Shahraz S. Lozano R. Mokdad A.H. Stanaway J. Murray C.J.L. Naghavi M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med. 2014 12 1 145 10.1186/s12916‑014‑0145‑y 25242656
    [Google Scholar]
  28. Bhargava B. Paul V.K. Informing NCD control efforts in India on the eve of Ayushman Bharat. Lancet 2022 399 10331 e17 e19 10.1016/S0140‑6736(18)32172‑X 30219331
    [Google Scholar]
  29. Gao B. Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 2011 141 5 1572 1585 10.1053/j.gastro.2011.09.002 21920463
    [Google Scholar]
  30. Lv X. Chen Z. Li J. Zhang L. Liu H. Huang C. Zhu P. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflamm. Res. 2010 59 8 635 645 10.1007/s00011‑010‑0176‑6 20221667
    [Google Scholar]
  31. Rosenthal R.N. Current and future drug therapies for alcohol dependence. J. Clin. Psychopharmacol. 2006 26 6 S20 S29 10.1097/01.jcp.000246223.94119.cd
    [Google Scholar]
  32. Stephens R. Grange J.A. Jones K. Owen L. A critical analysis of alcohol hangover research methodology for surveys or studies of effects on cognition. Psychopharmacology (Berl.) 2014 231 11 2223 2236 10.1007/s00213‑014‑3531‑4 24633471
    [Google Scholar]
  33. Verster J.C. Penning R. Treatment and prevention of alcohol hangover. Curr. Drug Abuse Rev. 2010 3 2 103 109 10.2174/1874473711003020103 20712594
    [Google Scholar]
  34. Hsu J.Y. Lin H.H. Hsu C.C. Chen B.C. Chen J.H. Aqueous extract of pepino (Solanum muriactum Ait) leaves ameliorate lipid accumulation and oxidative stress in alcoholic fatty liver disease. Nutrients 2018 10 7 931 10.3390/nu10070931 30037014
    [Google Scholar]
  35. Park W.Y. Song G. Noh J.H. Kim T. Kim J.J. Hong S. Park J. Um J.Y. Raphani semen (Raphanus sativus L.) ameliorates alcoholic fatty liver disease by regulating de novo lipogenesis. Nutrients 2021 13 12 4448 10.3390/nu13124448 34959999
    [Google Scholar]
  36. Carai M.A.M. Agabio R. Bombardelli E. Bourov I. Luigi Gessa G. Lobina C. Morazzoni P. Pani M. Reali R. Vacca G. Colombo G. Potential use of medicinal plants in the treatment of alcoholism. Fitoterapia 2000 71 Suppl. 1 S38 S42 10.1016/S0367‑326X(00)00178‑7 10930711
    [Google Scholar]
  37. Okoli C.O. Akah P.A. A pilot evaluation of the anti-inflammatory activity of Culcasia scandens, a traditional antirheumatic agent. J. Altern. Complement. Med. 2000 6 5 423 427 10.1089/acm.2000.6.423 11059504
    [Google Scholar]
  38. Xu B.J. Zheng Y.N. Sung C.K. Xu B.J. Zheng Y.N. Sung C.K. Xu B.J. Zheng Y.N. Sung C.K. Natural medicines for alcoholism treatment: A review. Drug Alcohol Rev. 2005 24 6 525 536 10.1080/09595230500293795 16361209
    [Google Scholar]
  39. Jiang Y. Zhang T. Kusumanchi P. Han S. Yang Z. Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 2020 8 3 50 10.3390/biomedicines8030050 32143280
    [Google Scholar]
  40. Wilson D.F. Matschinsky F.M. Ethanol metabolism: The good, the bad, and the ugly. Med. Hypotheses 2020 140 109638 10.1016/j.mehy.2020.109638 32113062
    [Google Scholar]
  41. Cederbaum A.I. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig. Dis. 2010 28 6 802 811 10.1159/000324289 21525766
    [Google Scholar]
  42. Peter Guengerich F. Avadhani N.G. Roles of cytochrome P450 in metabolism of ethanol and carcinogens. Adv. Exp. Med. Biol. 2018 1032 15 35 10.1007/978‑3‑319‑98788‑0_2 30362088
    [Google Scholar]
  43. Kawaratani H. Tsujimoto T. Douhara A. Takaya H. Moriya K. Namisaki T. Noguchi R. Yoshiji H. Fujimoto M. Fukui H. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013 2013 495156 10.1155/2013/495156 24385684
    [Google Scholar]
  44. Mohn E.S. Johnson E.J. Nutrient absorption in the human gastrointestinal tract. Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients Wiley Sabliov C.M. Chen H. Yada R.Y. 2015 10.1002/9781118462157.ch2
    [Google Scholar]
  45. Craemer D.D. Pauwels M. Van den Branden C. Morphometric characteristics of human hepatocellular peroxisomes in alcoholic liver disease. Alcohol. Clin. Exp. Res. 1996 20 5 908 913 10.1111/j.1530‑0277.1996.tb05270.x 8865967
    [Google Scholar]
  46. You M. Matsumoto M. Pacold C.M. Cho W.K. Crabb D.W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004 127 6 1798 1808 10.1053/j.gastro.2004.09.049 15578517
    [Google Scholar]
  47. Purohit V. Gao B. Song B.J. Molecular mechanisms of alcoholic fatty liver. Alcohol. Clin. Exp. Res. 2009 33 2 191 205 10.1111/j.1530‑0277.2008.00827.x 19032584
    [Google Scholar]
  48. Srinivasan S. Dubey K.K. Singhal R.S. Influence of food commodities on hangover based on alcohol dehydrogenase and aldehyde dehydrogenase activities. Curr. Res. Food Sci. 2019 1 8 16 10.1016/j.crfs.2019.09.001
    [Google Scholar]
  49. Kamran U. Towey J. Khanna A. Chauhan A. Rajoriya N. Holt A. Nutrition in alcohol-related liver disease: Physiopathology and management. World J. Gastroenterol. 2020 26 22 2916 2930 10.3748/wjg.v26.i22.2916 32587439
    [Google Scholar]
  50. Butts M. Singh Paulraj R. Haynes J. Arthur S. Singh S. Sundaram U. Moderate alcohol consumption inhibits sodium-dependent glutamine co-transport in rat intestinal epithelial cells in vitro and ex vivo. Nutrients 2019 11 10 2516 10.3390/nu11102516 31635319
    [Google Scholar]
  51. Lackner C. Tiniakos D. Fibrosis and alcohol-related liver disease. J. Hepatol. 2019 70 2 294 304 10.1016/j.jhep.2018.12.003 30658730
    [Google Scholar]
  52. Sancho-Bru P. Altamirano J. Rodrigo-Torres D. Coll M. Millán C. José Lozano J. Miquel R. Arroyo V. Caballería J. Ginès P. Bataller R. Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 2012 55 6 1931 1941 10.1002/hep.25614 22278680
    [Google Scholar]
  53. Working group on the evaluation of the carcinogenic risk of chemicals to humans. Available from: https://www.who.int/publications/m/item/iarc-monographs-on-the-evaluation-of-carcinogenic-risks-to-humans-volume-100d 2012
  54. Testino G. Alcoholic hepatitis. J. Med. Life 2013 6 2 161 167 23904876
    [Google Scholar]
  55. Hwang J.H. Kim M.Y. Natural herbal extract complex induces the degradation of alcohol and acetaldehyde and reduces the breath alcohol concentration. J. Convergence Cult. Technol. 2020 6 3 381 392
    [Google Scholar]
  56. Nasrollahi I. Talebi E. Nemati Z. Study on Silybum marianum seed through fatty acids comparison, peroxide tests, refractive index and oil percentage. Pharmacogn. J. 2016 8 6 595 597 10.5530/pj.2016.6.13
    [Google Scholar]
  57. Singh O. Khanam Z. Misra N. Srivastava M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011 5 9 82 95 10.4103/0973‑7847.79103 22096322
    [Google Scholar]
  58. Le Q.U. Lay H.L. Wu M.C. Joshi R.K. Nguyen D.L. Nguyen T.H. Hovenia dulcis Thunb. Revisited: a mini critical review and call for further research to insightfully elucidate. J. Pharmacogn. Phytochem. 2018 7 6 1137 1141
    [Google Scholar]
  59. Kim M.H. Chung Y.T. Lee J.H. Park Y.S. Shin M.K. Kim H.S. Kim D.H. Lee H.Y. Hepatic detoxification activity and reduction of serum alcohol concentration of Hovenia dulcis $ T_ {HUNB} $ from Korea and China. Hanguk Yakyong Changmul Hakhoe Chi 2000 8 3 225 233
    [Google Scholar]
  60. Cui Y. Ye Q. Wang H. Li Y. Yao W. Qian H. Hepatoprotective potential of Aloe vera polysaccharides against chronic alcohol-induced hepatotoxicity in mice. J. Sci. Food Agric. 2014 94 9 1764 1771 10.1002/jsfa.6489 24272968
    [Google Scholar]
  61. Mathur D. Goyal K. Koul V. Anand A. The molecular links of re-emerging therapy: A review of evidence of Brahmi (Bacopa monniera). Front. Pharmacol. 2016 7 44 10.3389/fphar.2016.00044 26973531
    [Google Scholar]
  62. Gupta M. Sharma S. Gautam A.K. Bhadauria R. Momordica charantia Linn.(Karela): Nature’s silent healer. Int. J. Pharm. Sci. Rev. Res. 2011 11 1 32 37
    [Google Scholar]
  63. Chan E.W.C. Eng S.Y. Tan Y.P. Wong Z.C. Phytochemistry and pharmacological properties of Thunbergia laurifolia: A review. Pharmacogn. J. 2011 3 24 1 6 10.5530/pj.2011.24.1
    [Google Scholar]
  64. Choudhary N. Prasad S.B. Singh A. Khatik G.L. Prabhu K.S. Mishra V. Suttee A. Phytochemistry and pharmacological potential of Operculina turpethum. Plant Arch. 2020 20 683 692
    [Google Scholar]
  65. Chavan T. Ghadge A. Karandikar M. Pandit V. Ranjekar P. Kulkarni O. Kuvalekar A. Mantri N. Hepatoprotective activity of satwa, an ayurvedic formulation, against alcohol-induced liver injury in rats. Altern. Ther. Health Med. 2017 23 4 34 40 28646813
    [Google Scholar]
  66. Nahar L. Al-Groshi A. Kumar A. Sarker S.D. Arbutin: Occurrence in plants, and its potential as an anticancer agent. Molecules 2022 27 24 8786 10.3390/molecules27248786 36557918
    [Google Scholar]
  67. Lieberman H.R. Kellogg M.D. Fulgoni V.L. Agarwal S. Moderate doses of commercial preparations of Ginkgo biloba do not alter markers of liver function but moderate alcohol intake does: A new approach to identify and quantify biomarkers of ‘adverse effects’ of dietary supplements. Regul. Toxicol. Pharmacol. 2017 84 45 53 10.1016/j.yrtph.2016.12.010 28025058
    [Google Scholar]
  68. Azari Z. Kherullahi Z. Mohammadghasemi F. Aghajany Nasab M. Hoseini F. Gazor R. Effect of the aqueous and hydro-alcoholic extracts of Viola odorata L. on biochemical and histologic liver parameters in diabetic Wistar rats. Anatomical Sciences Journal. 2020 17 1 21 32
    [Google Scholar]
  69. Božin B. Kladar N. Grujić N. Anačkov G. Samojlik I. Gavarić N. Čonić B. Impact of origin and biological source on chemical composition, anticholinesterase and antioxidant properties of some St. John’s wort species (Hypericum spp., Hypericaceae) from the Central Balkans. Molecules 2013 18 10 11733 11750 10.3390/molecules181011733 24071982
    [Google Scholar]
  70. Rezvani A.H. Overstreet D.H. Perfumi M. Massi M. Plant derivatives in the treatment of alcohol dependency. Pharmacol. Biochem. Behav. 2003 75 3 593 606 10.1016/S0091‑3057(03)00124‑2 12895677
    [Google Scholar]
  71. Penetar D.M. Toto L.H. Lee D.Y.W. Lukas S.E. A single dose of kudzu extract reduces alcohol consumption in a binge drinking paradigm. Drug Alcohol Depend. 2015 153 194 200 10.1016/j.drugalcdep.2015.05.025 26048637
    [Google Scholar]
  72. Patel V.B. Preedy V.R. Handbook of Substance Misuse and Addictions: From Biology to Public Health Springer Switzerland 2022 10.1007/978‑3‑030‑92392‑1
    [Google Scholar]
  73. Delgado-Montemayor C. Cordero-Pérez P. Torres-González L. Salazar-Cavazos M.L. Saucedo A.L. Paniagua-Vega D. Waksman-Minsky N.H. Development of a hepatoprotective herbal drug from Turnera diffusa. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/5114948 35047045
    [Google Scholar]
  74. Karimi-Sales E. Mohaddes G. Alipour M.R. Hepatoprotection of capsaicin in alcoholic and non-alcoholic fatty liver diseases. Arch. Physiol. Biochem. 2021 ••• 1 1 34396890
    [Google Scholar]
  75. Nikolova K. Velikova M. Gentscheva G. Gerasimova A. Slavov P. Harbaliev N. Makedonski L. Buhalova D. Petkova N. Gavrilova A. Chemical compositions, pharmacological properties and medicinal effects of genus Passiflora L.: A review. Plants 2024 13 2 228 10.3390/plants13020228 38256781
    [Google Scholar]
  76. Malík M. Tlustoš P. Nootropic herbs, shrubs, and trees as potential cognitive enhancers. Plants 2023 12 6 1364 10.3390/plants12061364 36987052
    [Google Scholar]
  77. Pic-Taylor A. da Motta L.G. de Morais J.A. Junior W.M. Santos A.F.A. Campos L.A. Mortari M.R. von Zuben M.V. Caldas E.D. Behavioural and neurotoxic effects of ayahuasca infusion (Banisteriopsis caapi and Psychotria viridis) in female Wistar rat. Behav. Processes 2015 118 102 110 10.1016/j.beproc.2015.05.004 26049017
    [Google Scholar]
  78. Jaffal S. Abazid H. Medicinal plants and addiction treatment: An overview. Handbook of Substance Misuse and Addictions Springer Cham Patel V.B Preedy V.R. 1 26 2022 10.1007/978‑3‑030‑67928‑6_21‑1
    [Google Scholar]
  79. Mohidin S.R. Moshawih S. Hermansyah A. Asmuni M.I. Shafqat N. Ming L.C. Cassava (Manihot esculenta Crantz): A systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. J. Evid. Based Integr. Med. 2023 28 37822215 10.1177/2515690X231206227
    [Google Scholar]
  80. Stein R. Berger M. Santana de Cecco B. Mallmann L.P. Terraciano P.B. Driemeier D. Rodrigues E. Beys-da-Silva W.O. Konrath E.L. Chymase inhibition: A key factor in the anti-inflammatory activity of ethanolic extracts and spilanthol isolated from Acmella oleracea. J. Ethnopharmacol. 2021 270 113610 10.1016/j.jep.2020.113610 33246121
    [Google Scholar]
  81. Brito E. Gomes E. Falé P.L. Borges C. Pacheco R. Teixeira V. Machuqueiro M. Ascensão L. Serralheiro M.L.M. Bioactivities of decoctions from Plectranthus species related to their traditional use on the treatment of digestive problems and alcohol intoxication. J. Ethnopharmacol. 2018 220 147 154 10.1016/j.jep.2018.04.006 29626671
    [Google Scholar]
  82. Akanda M.R. Park B.Y. Involvement of MAPK/NF-κB signal transduction pathways: Camellia japonica mitigates inflammation and gastric ulcer. Biomed. Pharmacother. 2017 95 1139 1146 10.1016/j.biopha.2017.09.031 28926923
    [Google Scholar]
  83. Matsuda H. Morikawa T. Nakamura S. Muraoka O. Yoshikawa M. New biofunctional effects of oleanane-type triterpene saponins. J. Nat. Med. 2023 77 4 644 664 10.1007/s11418‑023‑01730‑w 37436646
    [Google Scholar]
  84. Jung J.I. Choi Y.J. Kim J. Baek K.S. Kim E.J. Aqueous extract of Laurus nobilis leaf accelerates the alcohol metabolism and prevents liver damage in single-ethanol binge rats. Nutr. Res. Pract. 2023 17 6 1113 1127 10.4162/nrp.2023.17.6.1113 38053830
    [Google Scholar]
  85. Xiao S.J. Xu X.K. Chen W. Xin J.Y. Yuan W.L. Zu X.P. Shen Y.H. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. Nat. Prod. Bioprospect. 2023 13 1 6 10.1007/s13659‑023‑00369‑0 36790599
    [Google Scholar]
  86. Farshori N.N. Hepatoprotective effect of Trigonella foenum graecum against ethanol-induced cell death in human liver cells (HepG2 and Huh7). Mol. Biol. Rep. 2022 49 4 2765 2776 10.1007/s11033‑021‑07088‑0 35064405
    [Google Scholar]
  87. James-Martin G. Williams G. Stonehouse W. O’Callaghan N. Noakes M. Health and nutritional properties of pears (Pyrus). 2015 Available from: https://australianpears.com.au/wp-content/uploads/2019/10/Pears-Health-Study-AP15010-Final-Report-Complete.pdf
    [Google Scholar]
  88. Zhao L. Mehmood A. Yuan D. Usman M. Murtaza M.A. Yaqoob S. Wang C. Protective mechanism of edible food plants against alcoholic liver disease with special mention to polyphenolic compounds. Nutrients 2021 13 5 1612 10.3390/nu13051612 34064981
    [Google Scholar]
  89. Dong M. Li L. Li G. Song J. Liu B. Liu X. Wang M. Mangiferin protects against alcoholic liver injury via suppression of inflammation-induced adipose hyperlipolysis. Food Funct. 2020 11 10 8837 8851 10.1039/D0FO01436B 32969440
    [Google Scholar]
  90. Zhang P. Ma D. Wang Y. Zhang M. Qiang X. Liao M. Liu X. Wu H. Zhang Y. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem. Toxicol. 2014 74 225 232 10.1016/j.fct.2014.10.005 25455889
    [Google Scholar]
  91. Shu G. Qiu Y. Hao J. Fu Q. Deng X. Nuciferine alleviates acute alcohol-induced liver injury in mice: Roles of suppressing hepatic oxidative stress and inflammation via modulating miR-144/Nrf2/HO-1 cascade. J. Funct. Foods 2019 58 105 113 10.1016/j.jff.2019.04.055
    [Google Scholar]
  92. Sohn E.H. Koo H.J. Hang D.T.T. Jang S.A. Namkoong S. Lim J.D. Kang S.C. Protective effects of ellagic acid on ethanol-induced toxicity in hepatic HepG2 cells. Mol. Cell. Toxicol. 2013 9 3 249 256 10.1007/s13273‑013‑0032‑1
    [Google Scholar]
  93. Guo Q. Wang N. Liu H. Li Z. Lu L. Wang C. The bioactive compounds and biological functions of Asparagus officinalis L. – A review. J. Funct. Foods 2020 65 103727 10.1016/j.jff.2019.103727
    [Google Scholar]
  94. Gam D. Park J. Kim S. Kang M. Kim S. Kim J. Production of bioactive substances to alleviates hangover and ethanol-induced liver damage through fermentation of Oenanthe javanica using Lactiplantibacillus plantarum. Molecules 2022 27 4 1175 10.3390/molecules27041175 35208964
    [Google Scholar]
  95. Lee D.H. Lee J.S. Lee I.H. Hong J.T. Therapeutic potency of fermented field water-dropwort ( Oenanthe javanica (Blume) DC.) in ethanol-induced liver injury. RSC Advances 2020 10 3 1544 1551 10.1039/C9RA08976D 35494709
    [Google Scholar]
  96. Besné-Eseverri I. Trepiana J. Gómez-Zorita S. Antunes-Ricardo M. Cano M.P. Portillo M.P. Beneficial effects of Opuntia spp. on liver health. Antioxidants 2023 12 6 1174 10.3390/antiox12061174 37371904
    [Google Scholar]
  97. Moslemi M. Jannat B. Mahmoudzadeh M. Ghasemlou M. Abedi A.S. Detoxification activity of bioactive food compounds against ethanol‐induced injuries and hangover symptoms: A review. Food Sci. Nutr. 2023 11 9 5028 5040 10.1002/fsn3.3520 37701198
    [Google Scholar]
  98. Wang F. Li Y. Zhang Y.J. Zhou Y. Li S. Li H.B. Natural products for the prevention and treatment of hangover and alcohol use disorder. Molecules 2016 21 1 64 10.3390/molecules21010064 26751438
    [Google Scholar]
  99. Wang K. Tan W. Liu X. Deng L. Huang L. Wang X. Gao X. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed. Pharmacother. 2021 137 111326 10.1016/j.biopha.2021.111326 33556870
    [Google Scholar]
  100. Luo J. Liao J. Wang Y. Zhao J. Xie X. Qu F. Fang X. Wen W. Lyu S. Advances in traditional Chinese medicine for liver disease therapy in 2021. Trad. Med. Res. 2022 7 6 58 10.53388/TMR20220219002
    [Google Scholar]
  101. Meng F.C. Wu Z.F. Yin Z.Q. Lin L.G. Wang R. Zhang Q.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018 13 1 13 10.1186/s13020‑018‑0171‑3 29541156
    [Google Scholar]
  102. Shruti D.V. A comprehensive review on the therapeutic properties of poison nut (Strychnos nux-vomica L.) of Loganiaceae Family. Res. Jr. Agril. Sci. 2023 14 5 1421 1427
    [Google Scholar]
  103. Teves M.R. Wendel G.H. Pelzer L.E. Reduction in voluntary ethanol intake following repeated oral administration of Jodina rhombifolia lyophilized aqueous extract in male Wistar rats. J. Ethnopharmacol. 2015 161 170 174 10.1016/j.jep.2014.12.019 25540925
    [Google Scholar]
  104. Kim T. Hinton D.J. Johng S. Wang J.B. Choi D.S. Levo-tetrahydropalmatine decreases ethanol drinking and antagonizes dopamine D2 receptor-mediated signaling in the mouse dorsal striatum. Behav. Brain Res. 2013 244 58 65 10.1016/j.bbr.2013.01.028 23376703
    [Google Scholar]
  105. Akter R. Kwak G.Y. Ahn J.C. Mathiyalagan R. Ramadhania Z.M. Yang D.C. Kang S.C. Protective effect and potential antioxidant role of kakadu plum extracts on alcohol-induced oxidative damage in HepG2 cells. Appl. Sci. (Basel) 2021 12 1 236 10.3390/app12010236
    [Google Scholar]
  106. Moniruzzaman M. Study of medicinal plants in Nuhashpalli, Bangladesh. Thesis, Daffodil International University
    [Google Scholar]
  107. Salehi B. Mishra A.P. Shukla I. Sharifi-Rad M. Contreras M.M. Segura-Carretero A. Fathi H. Nasrabadi N.N. Kobarfard F. Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018 32 9 1688 1706 10.1002/ptr.6109 29785774
    [Google Scholar]
  108. Pachisia J. Persimmon (Diospyros kaki): Apple of the Orient: A Review. Int. J. Health Sci. Res. 2020 10 129 133
    [Google Scholar]
  109. Direito R. Rocha J. Sepodes B. Eduardo-Figueira M. From Diospyros kaki L.(persimmon) phytochemical profile and health impact to new product perspectives and waste valorization. Nutrients 2021 13 9 3283 10.3390/nu13093283 34579162
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906338140241115102403
Loading
/content/journals/ijghd/10.2174/0126662906338140241115102403
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test