Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

Herbal medications hold a dominant position in the pharmaceutical sector due to their well-established therapeutic effects and extremely low negative effects. Besides, herbal remedies are easily available and highly economical. However, to circumvent the issue of poor bioavailability, the combinatorial strategy of incorporating herbal medicines and nanotechnology is useful. The phytoconstituents molded in novel nanocarriers such as polymeric nanoparticles, polymeric micelles, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, gold nanoparticles, have been extensively investigated as they are the most promising approach for colon-targeting drug delivery systems. Although plant-based medicines have been developed for decades, there is enormous research interest in the development of an effective plant-derived delivery system for the incorporation of phytoconstituents into various nanomaterials to overcome potential challenges related to solubility, bioavailability, and stability issues. The encapsulation of phytoconstituents in a novel nanocarrier is a promising approach to improving the bioavailability, stability, and therapeutic efficacy of herbal medicines. The herbal nanomedicines are used as a promising tool for targeted delivery to the colon, with potentially effective outcomes for the treatment of colonic diseases, ulcerative colitis, diverticulitis, Crohn's disease, shigellosis, constipation, colonic polyps, colon cancer, This article presents a comprehensive survey of recent findings and patents by innovators working exclusively on nanoparticles for the delivery of phytomedicines for colon targeting.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906317495240827080916
2024-10-07
2025-07-04
Loading full text...

Full text loading...

References

  1. ThomfordN.E. SenthebaneD.A. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  2. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  3. ObeidM.A. Al QaraghuliM.M. AlsaadiM. AlzahraniA.R. NiwasabutraK. FerroV.A. Delivering natural products and biotherapeutics to improve drug efficacy.Ther. Deliv.201781194795610.4155/tde‑2017‑006029061102
    [Google Scholar]
  4. SumithraS. VadivuR. RadhaR. Colon targeted drug delivery system and phytoconstituents.RJPT20191273144315010.5958/0974‑360X.2019.00530.4
    [Google Scholar]
  5. SunS. WangY. WuA. DingZ. LiuX. Influence factors of the pharmacokinetics of herbal resourced compounds in clinical practice.Evid. Based Complement. Alternat. Med.2019201911610.1155/2019/198378030949215
    [Google Scholar]
  6. HeS.M. LiC.G. LiuJ.P. ChanE. DuanW. ZhouS.F. Disposition pathways and pharmacokinetics of herbal medicines in humans.Curr. Med. Chem.201017334072411310.2174/09298671079320533620939821
    [Google Scholar]
  7. BonifácioB.V. SilvaP.B.D. RamosM.A.D.S. NegriK.M.S. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: a review.Int. J. Nanomed.2014911524363556
    [Google Scholar]
  8. AnsariS.H. IslamF. SameemM. Influence of nanotechnology on herbal drugs: A Review.J. Adv. Pharm. Technol. Res.20123314214610.4103/2231‑4040.10100623057000
    [Google Scholar]
  9. PatilP KilledarS BiosynthesisChapter metrics overview202110.5772/intechopen.96632
    [Google Scholar]
  10. PhilipA. PhilipB. Colon targeted drug delivery systems: a review on primary and novel approaches.Oman Med. J.2010252707810.5001/omj.2010.2422125706
    [Google Scholar]
  11. QureshiA.M. MominM. RathodS. DevA. KuteC. Colon targeted drug delivery system: A review on current approaches.IJPBR20131413014710.30750/ijpbr.1.4.24
    [Google Scholar]
  12. KumarS.P. PrathibhaD. ParthibarajanR. ReichalC.R. Novel colon-specific drug delivery system: a review.Int. J. Pharm. Pharm. Sci.2012412229
    [Google Scholar]
  13. StandringS. The anatomy of large intestine.Springer-link201910.1007/978‑3‑030‑05240‑9_2
    [Google Scholar]
  14. TerseP. MallyaR. Importance of colon targeted drug delivery systems in herbal medicines.Int. J. Pharm. Sci. Res.201781145134524
    [Google Scholar]
  15. KaserA. ZeissigS. BlumbergR.S. Inflammatory bowel disease.Annu. Rev. Immunol.201028157362110.1146/annurev‑immunol‑030409‑10122520192811
    [Google Scholar]
  16. DasK.M. FaragS.A. Current medical therapy of inflammatory bowel disease.World J. Gastroent.20006448348911819634
    [Google Scholar]
  17. AroraR MalhotraP SundriyalS YashavanthHS PaiRJ BaligaMS Medicinal plants as remedies for gastrointestinal ailments and diseases: A review. Bioactive food as dietary interventions for liver and gastrointestinal disease.Elsevier201210.1016/B978‑0‑12‑397154‑8.00033‑6
    [Google Scholar]
  18. BaligaM.S. JosephN. VenkatarangannaM.V. SaxenaA. PonemoneV. FayadR. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations.Food Funct.20123111109111710.1039/c2fo30097d22833299
    [Google Scholar]
  19. IsikF. Tunali AkbayT. YaratA. GencZ. PisiricilerR. Caliskan-AkE. CetinelS. AltıntasA. SenerG. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats.Dig. Dis. Sci.201156372173010.1007/s10620‑010‑1333‑z20658190
    [Google Scholar]
  20. HeidariB. SajjadiS.E. MinaiyanM. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats.Avicenna J. Phytomed.20166220521427222834
    [Google Scholar]
  21. ShayestehF. HaidariF. ShayestehA.A. Mohammadi-AslJ. Ahmadi-AngaliK. Ginger in patients with active ulcerative colitis: a study protocol for a randomized controlled trial.Trials202021127810.1186/s13063‑020‑4193‑732183895
    [Google Scholar]
  22. Nikkhah-BodaghiM. MalekiI. AgahS. HekmatdoostA. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial.Complement. Ther. Med.20194351610.1016/j.ctim.2018.12.02130935515
    [Google Scholar]
  23. GuptaI. PariharA. MalhotraP. GuptaS. LüdtkeR. SafayhiH. AmmonH.P.T. Effects of gum resin of Boswellia serrata in patients with chronic colitis.Planta Med.200167539139510.1055/s‑2001‑1580211488449
    [Google Scholar]
  24. SiemoneitU. PergolaC. JazzarB. NorthoffH. SkarkeC. JauchJ. WerzO. On the interference of boswellic acids with 5-lipoxygenase: Mechanistic studies in vitro and pharmacological relevance.Eur. J. Pharmacol.20096061-324625410.1016/j.ejphar.2009.01.04419374837
    [Google Scholar]
  25. WaslykA BakovicM Biological activity and therapeutic potential of Quercetin for inflammatory bowel disease.Food Sci. Nutr. Res.20214209411710.26502/jfsnr.2642‑11000065
    [Google Scholar]
  26. SalaritabarA. DarvishiB. HadjiakhoondiF. ManayiA. SuredaA. NabaviS.F. FitzpatrickL.R. NabaviS.M. BishayeeA. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review.World J. Gastroent.201723285097511410.3748/wjg.v23.i28.509728811706
    [Google Scholar]
  27. SotnikovaR. NosalovaV. NavarovaJ. Efficacy of quercetin derivatives in prevention of ulcerative colitis in rats.Interdiscip. Toxicol.20136191210.2478/intox‑2013‑000224170973
    [Google Scholar]
  28. SunL.L. JiangH.B. LiuB.Y. LiW.D. DuA.L. LuoX.Q. LiX.Q. Effects of rhein on intestinal transmission, colonic electromyography and expression of aquaporin-3 by colonic epithelium cells in constipated mice.Int. J. Clin. Exp. Pathol.201811261462331938147
    [Google Scholar]
  29. GaoC.C. LiG.W. WangT.T. GaoL. WangF.F. ShangH.W. YangZ.J. GuoY.X. WangB.Y. XuJ.D. Rhubarb extract relieves constipation by stimulating mucus production in the colon and altering the intestinal flora.Biomed. Pharmacother.202113811147910.1016/j.biopha.2021.11147933774313
    [Google Scholar]
  30. MominM. PundarikakshuduK. In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides.J. Pharm. Pharm. Sci.20047332533115576012
    [Google Scholar]
  31. MominM. PundarikakshuduK. NagoriS.A. Design and development of mixed film of pectin: Ethyl cellulose for colon specific drug delivery of sennosides and Triphala.Indian J. Pharm. Sci.200870333834310.4103/0250‑474X.4299820046742
    [Google Scholar]
  32. LiD. ZhangY. LiuK. ZhaoY. XuB. XuL. TanL. TianY. LiC. ZhangW. CaoH. ZhanY. HuT. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth.Lab. Invest.201797111343135310.1038/labinvest.2017.7128759012
    [Google Scholar]
  33. ZhangJ. CaoH. ZhangB. CaoH. XuX. RuanH. YiT. TanL. QuR. SongG. WangB. HuT. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling.J. Cell. Mol. Med.201317111484149310.1111/jcmm.1211924015932
    [Google Scholar]
  34. HaggarF. BousheyR. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors.Clin. Colon Rectal Surg.200922419119710.1055/s‑0029‑124245821037809
    [Google Scholar]
  35. HammondW.A. SwaikaA. ModyK. Pharmacologic resistance in colorectal cancer: a review.Ther. Adv. Med. Oncol.201681578410.1177/175883401561453026753006
    [Google Scholar]
  36. AielloP. SharghiM. MansourkhaniS.M. ArdekanA.P. JouybariL. DaraeiN. PeiroK. MohamadianS. RezaeiM. HeidariM. PelusoI. GhoratF. BishayeeA. KootiW. Medicinal plants in the prevention and treatment of colon cancer.Oxid. Med. Cell. Longev.2019201915110.1155/2019/207561432377288
    [Google Scholar]
  37. SaundersI.T. MirH. KapurN. SinghS. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways.Cancer Cell Int.20191919810.1186/s12935‑019‑0820‑331011292
    [Google Scholar]
  38. LinX. WangG. LiuP. HanL. WangT. ChenK. GaoY. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation.Exp. Ther. Med.202121663810.3892/etm.2021.1007033968169
    [Google Scholar]
  39. PatelV.B. MisraS. PatelB.B. MajumdarA.P.N. Colorectal cancer: chemopreventive role of curcumin and resveratrol.Nutr. Cancer201062795896710.1080/01635581.2010.51025920924971
    [Google Scholar]
  40. PrasadS. TyagiA.K. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.2015201511110.1155/2015/14297925838819
    [Google Scholar]
  41. ZhangR. ZhaoJ. XuJ. JiaoD.X. WangJ. GongZ.Q. JiaJ.H. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway.Oncol. Lett.20171444305431010.3892/ol.2017.666928943944
    [Google Scholar]
  42. WangC.Z. YuanC.S. Potential role of ginseng in the treatment of colorectal cancer.Am. J. Chin. Med.20083661019102810.1142/S0192415X0800654519051332
    [Google Scholar]
  43. LiuT. DuoL. DuanP. Ginsenoside Rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers.Evid. Based Comp. Alter. Med.201820181810.1155/2018/158042729743919
    [Google Scholar]
  44. SeoE.Y. KimW.K. Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J. Ginseng Res.201135331532410.5142/jgr.2011.35.3.31523717075
    [Google Scholar]
  45. de AlmeidaG.C. OliveiraL.F.S. PredesD. FokoueH.H. KusterR.M. OliveiraF.L. MendesF.A. AbreuJ.G. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells.Sci. Rep.20201011168110.1038/s41598‑020‑68574‑232669593
    [Google Scholar]
  46. ChenY. WangX.Q. ZhangQ. ZhuJ.Y. LiY. XieC.F. LiX.T. WuJ.S. GengS.S. ZhongC.Y. HanH.Y. Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing Wnt/-catenin pathway.Nutrients20179657210.3390/nu906057228587207
    [Google Scholar]
  47. CoatesE.M. PopaG. GillC.I.R. McCannM.J. McDougallG.J. StewartD. RowlandI. Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer.J. Carcinog.200761410.1186/1477‑3163‑6‑417442116
    [Google Scholar]
  48. OlajuyigbeO.O. AfolayanA.J. Pharmacological assessment of the medicinal potential of Acacia mearnsii De Wild.: antimicrobial and toxicity activities.Int. J. Mol. Sci.20121344255426710.3390/ijms1304425522605976
    [Google Scholar]
  49. OlajuyigbeO.O. AfolayanA.J. In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii de wild against bacteria in shigellosis.Molecules20121722103211810.3390/molecules1702210322354188
    [Google Scholar]
  50. JuL.Z. KeF. YadavP.K. Herbal medicine in the treatment of ulcerative colitis.Saudi J. Gastroenterol.201218131010.4103/1319‑3767.9172622249085
    [Google Scholar]
  51. TriantafyllidiA. XanthosT. PapaloisA. TriantafillidisJ.K. Herbal and plant therapy in patients with inflammatory bowel disease.Ann. Gastroenterol.201528221022025830661
    [Google Scholar]
  52. HuntsmanM LeeSN StylliJ StorkC ShimizuJ Development of a novel drug delivery system to deliver drugs directly to the colonic mucosa, resulting in improved efficacy and reduced systemic exposure for the treatment of ulcerative colitis.Crohn’s Colitis 36020213415
    [Google Scholar]
  53. NewtonA. PrabakaranL. JayaveeraK. Pectin-HPMC E15LV vs. pH sensitive polymer coating films for delayed drug delivery to colon: A comparison of two dissolution models to assess colonic targeting performance in-vitro.Int. J. Appl. Res. Nat. Prod.20125116
    [Google Scholar]
  54. ThakralS. ThakralN.K. MajumdarD.K. Eudragit: a technology evaluation.Expert Opin. Drug Deliv.201310113114910.1517/17425247.2013.73696223102011
    [Google Scholar]
  55. SharmaN. HarikumarS.L. Polymers for colon targeted drug delivery: A review.Int. J. Drug Dev. Res.2013512131
    [Google Scholar]
  56. KhanM.Z.I. PrebegŽ. KurjakovićN. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers.J. Control. Release199958221522210.1016/S0168‑3659(98)00151‑510053194
    [Google Scholar]
  57. KhanM.Z.I. ŠtedulH.P. KurjakovićN. A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers. II. Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations.Drug Dev. Ind. Pharm.200026554955410.1081/DDC‑10010126610789067
    [Google Scholar]
  58. LeeS.H. BajracharyaR. MinJ.Y. HanJ.W. ParkB.J. HanH.K. Strategic approaches for colon targeted drug delivery: an overview of recent advancements.Pharmaceutics20201216810.3390/pharmaceutics1201006831952340
    [Google Scholar]
  59. GazzanigaA. MoutaharrikS. FilippinI. FoppoliA. PaluganL. MaroniA. CereaM. Time-based formulation strategies for colon drug delivery.Pharmaceutics20221412276210.3390/pharmaceutics1412276236559256
    [Google Scholar]
  60. PatelD.B. PatelD.M. ParikhB.N. PrajapatiS.T. PatelC.N. A review on time-dependent systems for colonic delivery.J. Glob. Pharma Technol.2010216571
    [Google Scholar]
  61. FarswanR TangriP Approaches to pulsatile drug delivery system.Int. j. pharm. res. scholars2015428095
    [Google Scholar]
  62. MathewP. MurugananthamV. Novel approaches to colon targeted drug delivery: An overview. Int. J. Pharm. Sci. Rev. Res.20206315259
    [Google Scholar]
  63. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotech.20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  64. ReinM.J. RenoufM. Cruz-HernandezC. Actis-GorettaL. ThakkarS.K. da Silva PintoM. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.Br. J. Clin. Pharmacol.201375358860210.1111/j.1365‑2125.2012.04425.x22897361
    [Google Scholar]
  65. TejaP.K. MithiyaJ. KateA.S. BairwaK. ChautheS.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview.Phytomedicine20229615389010.1016/j.phymed.2021.15389035026510
    [Google Scholar]
  66. DewiM.K. ChaerunisaaA.Y. MuhaiminM. JoniI.M. Improved activity of herbal medicines through nanotechnology.Nanomaterials20221222407310.3390/nano1222407336432358
    [Google Scholar]
  67. BhattacharjeeS. MandalD.P. AdhikaryA. Nanotechnology: Scopes and various aspects of drug delivery.Nanotech. Biomed.2022112010.1016/B978‑0‑323‑88450‑1.00001‑6
    [Google Scholar]
  68. KyriakoudiA. SpanidiE. MourtzinosI. GardikisK. Innovative delivery systems loaded with plant bioactive ingredients: formulation approaches and applications.Plants2021106123810.3390/plants1006123834207139
    [Google Scholar]
  69. PrasadM. LambeU.P. BrarB. ShahI. JM. RanjanK. RaoR. KumarS. MahantS. KhuranaS.K. IqbalH.M.N. DhamaK. MisriJ. PrasadG. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world.Biomed. Pharmaco.2018971521153710.1016/j.biopha.2017.11.02629793315
    [Google Scholar]
  70. SandhiyaV. UbaidullaU. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process.Fut. J. Pharma. Sci2020615110.1186/s43094‑020‑00050‑0
    [Google Scholar]
  71. RahmanH.S. OthmanH.H. HammadiN.I. YeapS.K. AminK.M. Abdul SamadN. AlitheenN.B. Novel Drug delivery systems for loading of natural plant extracts and their biomedical applications.Int. J. Nanomed.2020152439248310.2147/IJN.S22780532346289
    [Google Scholar]
  72. McCoubreyL.E. FavaronA. AwadA. OrluM. GaisfordS. BasitA.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics.J. Control. Release20233531107112610.1016/j.jconrel.2022.12.02936528195
    [Google Scholar]
  73. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  74. SalunkheP. BhoyarP. GodeA. ShewaleS.P. Application of nanotechnology to the extraction of herbal components for medicinal uses.Curr. Nanomater.20205141110.2174/2405461504666190830094917
    [Google Scholar]
  75. ChourasiaM.K. JainS.K. Polysaccharides for colon targeted drug delivery.Drug Deliv.200411212914810.1080/1071754049028077815200012
    [Google Scholar]
  76. AgarwalV.K. GuptaA. ChaturvediS. KhanF. Polysaccharide: Carrier in colon targeted drug delivery system. MIT.Int. J. Pharm.20162219
    [Google Scholar]
  77. RehmanA. TongQ. JafariS.M. AssadpourE. ShehzadQ. AadilR.M. IqbalM.W. RashedM.M.A. MushtaqB.S. AshrafW. Carotenoid-loaded nanocarriers: A comprehensive review.Adv. Colloid Interface Sci.202027510204810.1016/j.cis.2019.10204831757387
    [Google Scholar]
  78. RehmanA. JafariS.M. TongQ. RiazT. AssadpourE. AadilR.M. NiaziS. KhanI.M. ShehzadQ. AliA. KhanS. Drug nanodelivery systems based on natural polysaccharides against different diseases.Adv. Colloid Interface Sci.202028410225110.1016/j.cis.2020.10225132949812
    [Google Scholar]
  79. SabraR. RobertsC.J. BillaN. Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin.Colloid Interface Sci. Commun.20193210019210.1016/j.colcom.2019.100192
    [Google Scholar]
  80. CastangiaI. NácherA. CaddeoC. MerinoV. Díez-SalesO. Catalán-LatorreA. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats.Acta Biomater.20151321622710.1016/j.actbio.2014.11.01725463498
    [Google Scholar]
  81. XiaoB. HanM.K. ViennoisE. WangL. ZhangM. SiX. MerlinD. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy.Nanoscale2015742177451775510.1039/C5NR04831A26455329
    [Google Scholar]
  82. SabraR. BillaN. RobertsC.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer.Int. J. Pharm.201957211877510.1016/j.ijpharm.2019.11877531678385
    [Google Scholar]
  83. KamelK.M. KhalilI.A. RatebM.E. ElgendyH. ElhawaryS. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-Fluorouracil cytotoxicity for colorectal cancer: extracts standardization, nanoparticles optimization, and cytotoxicity evaluation.J. Agric. Food Chem.201765367966798110.1021/acs.jafc.7b0309328813148
    [Google Scholar]
  84. XiaoB. SiX. HanM.K. ViennoisE. ZhangM. MerlinD. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy.J. Mater. Chem. B Mater. Biol. Med.20153397724773310.1039/C5TB01245G26617985
    [Google Scholar]
  85. GuoX.Y. WangP. DuQ.G. HanS. ZhuS.M. LvY.F. LiuG.S. HaoZ.M. Paclitaxel and gemcitabine combinational drug-loaded mucoadhesive delivery system in the treatment of colon cancers.Drug Res. (Stuttg.)201565419920424941086
    [Google Scholar]
  86. PatilP. KilledarS. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer.J. Drug Deliv. Sci. Technol.20216310252310.1016/j.jddst.2021.102523
    [Google Scholar]
  87. ChuahL.H. BillaN. RobertsC.J. BurleyJ.C. ManickamS. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon.Pharm. Dev. Technol.201318359159910.3109/10837450.2011.64068822149945
    [Google Scholar]
  88. SuS. M KangP. Recent advances in nanocarrier-assisted therapeutics delivery systems.Pharmaceutics202012983710.3390/pharmaceutics1209083732882875
    [Google Scholar]
  89. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: from history to therapeutic applications.Nanomaterials20221224449410.3390/nano1224449436558344
    [Google Scholar]
  90. PavlitschekT. GretzM. PlankJ. Microcapsules prepared from a polycondensate‐based cement dispersant via layer‐by‐layer self‐assembly on melamine‐formaldehyde core templates.J. Appl. Polym. Sci.201312753705371110.1002/app.37981
    [Google Scholar]
  91. Modarres-GheisariS.M.M. Gavagsaz-GhoachaniR. MalakiM. SafarpourP. ZandiM. Ultrasonic nano-emulsification – A review.Ultrason. Sonochem.2019528810510.1016/j.ultsonch.2018.11.00530482437
    [Google Scholar]
  92. EzhilarasiP.N. KarthikP. ChhanwalN. AnandharamakrishnanC. Nanoencapsulation techniques for food bioactive components: a review.Food Bioprocess Technol.20136362864710.1007/s11947‑012‑0944‑0
    [Google Scholar]
  93. QiuC. HuY. JinZ. McClementsD.J. QinY. XuX. WangJ. A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems.Trends Food Sci. Technol.20199213815110.1016/j.tifs.2019.08.007
    [Google Scholar]
  94. AnandharamakrishnanC. Techniques for nanoencapsulation of food ingredients.Springer201410.1007/978‑1‑4614‑9387‑7
    [Google Scholar]
  95. AssaadE. WangY.J. ZhuX.X. MateescuM.A. Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration.Carbohydr. Polym.20118441399140710.1016/j.carbpol.2011.01.048
    [Google Scholar]
  96. ArpagausC. CollenbergA. RüttiD. AssadpourE. JafariS.M. Nano spray drying for encapsulation of pharmaceuticals.Int. J. Pharm.20185461-219421410.1016/j.ijpharm.2018.05.03729778825
    [Google Scholar]
  97. JiaZ. DumontM.J. OrsatV. Encapsulation of phenolic compounds present in plants using protein matrices.Food Biosci.2016158710410.1016/j.fbio.2016.05.007
    [Google Scholar]
  98. LiuC. QinY. LiX. SunQ. XiongL. LiuZ. Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature.Int. J. Biol. Macromol.20168435436010.1016/j.ijbiomac.2015.12.04026708434
    [Google Scholar]
  99. MaindarkarS. DubbelboerA. MeuldijkJ. HooglandH. HensonM. Prediction of emulsion drop size distributions in colloid mills.Chem. Eng. Sci.201411811412510.1016/j.ces.2014.07.032
    [Google Scholar]
  100. YukuyamaM.N. KatoE.T.M. de AraujoG.L.B. LöbenbergR. MonteiroL.M. LourençoF.R. Bou-ChacraN.A. Olive oil nanoemulsion preparation using high-pressure homogenization and d-phase emulsification – A design space approach.J. Drug Deliv. Sci. Technol.20194962263110.1016/j.jddst.2018.12.029
    [Google Scholar]
  101. Faridi EsfanjaniA. JafariS.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds.Colloids Surf. B Biointerfaces201614653254310.1016/j.colsurfb.2016.06.05327419648
    [Google Scholar]
  102. ŠevčíkováP. KašpárkováV. VltavskáP. KrejčíJ. On the preparation and characterization of nanoemulsions produced by phase inversion emulsification.Colloids Surf. A Physicochem. Eng. Asp.201241013013510.1016/j.colsurfa.2012.06.031
    [Google Scholar]
  103. SilvaH.D. CerqueiraM.Â. VicenteA.A. Nanoemulsions for food applications: development and characterization.Food Bioprocess Technol.20125385486710.1007/s11947‑011‑0683‑7
    [Google Scholar]
  104. BaiL. McClementsD.J. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.J. Colloid Interface Sci.201646620621210.1016/j.jcis.2015.12.03926724703
    [Google Scholar]
  105. AssadpourE. JafariS.M. Biopolymer Nanostructures for Food Encapsulation Purposes.Academic Press2019
    [Google Scholar]
  106. AssadpourE. Mahdi JafariS. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers.Crit. Rev. Food Sci. Nutr.2018591912329883187
    [Google Scholar]
  107. Acevedo-GuevaraL. Nieto-SuazaL. SanchezL.T. PinzonM.I. VillaC.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin.Int. J. Biol. Macromol.201811149850410.1016/j.ijbiomac.2018.01.06329337095
    [Google Scholar]
  108. De LeoV. MilanoF. ManciniE. ComparelliR. GiottaL. NacciA. LongobardiF. GarbettaA. AgostianoA. CatucciL. Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process.Molecules201823473910.3390/molecules2304073929570636
    [Google Scholar]
  109. SunoqrotS. AbujamousL. PH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine.J. Drug Deliv. Sci. Technol.20195267067610.1016/j.jddst.2019.05.035
    [Google Scholar]
  110. ÜnalS. AktaşY. BenitoJ.M. BilensoyE. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization.Int. J. Pharm.202058411946810.1016/j.ijpharm.2020.11946832470483
    [Google Scholar]
  111. PandelidouM. DimasK. GeorgopoulosA. HatziantoniouS. DemetzosC. Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines.J. Nanosci. Nanotechnol.20111121259126610.1166/jnn.2011.309321456169
    [Google Scholar]
  112. ZhangM. XiaoB. WangH. HanM.K. ZhangZ. ViennoisE. XuC. MerlinD. Edible ginger-derived nano-lipids loaded with Doxorubicin as a novel drug-delivery approach for colon cancer therapy.Mol. Ther.201624101783179610.1038/mt.2016.15927491931
    [Google Scholar]
  113. HuangR.F.S. WeiY.J. InbarajB.S. ChenB.H. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene.Int. J. Nanomed.2015102823284625914533
    [Google Scholar]
  114. MinhL.N. AnhT.T.M. LocT.V. HueP.T.K. ThaoD.T. Production of nanoliposomes with piperine from black pepper (piper nigrum) and its improved growth inhibitory activity on colorectal cancer cells.Vietnam J. Sci. Technol.2020184671678
    [Google Scholar]
  115. SookkasemA. ChatpunS. YuenyongsawadS. WiwattanapatapeeR. Alginate beads for colon specific delivery of self-emulsifying curcumin.J. Drug Deliv. Sci. Technol.20152915916610.1016/j.jddst.2015.07.005
    [Google Scholar]
  116. PhamD.T. SaelimN. TiyaboonchaiW. Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment.Drug Deliv. Transl. Res.202010241342410.1007/s13346‑019‑00682‑731701488
    [Google Scholar]
  117. PrajaktaD. RatneshJ. ChandanK. SureshS. GraceS. MeeraV. VandanaP. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer.J. Biomed. Nanotechnol.20095544545510.1166/jbn.2009.103820201417
    [Google Scholar]
  118. AishaA.F.A. AbdulmajidA.M.S. IsmailZ. AlrokayanS.A. Abu-SalahK.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in eudragit RL100/RS100 for anti-colon cancer drug delivery.J. Nanomater.20152015711210.1155/2015/701979
    [Google Scholar]
  119. MoideenM.M.J. KaruppaiyanK. KandhasamyR. SeetharamanS. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing soluble curcumin used for the treatment of colorectal cancer.Food Sci. Nutr.20208126643665933312548
    [Google Scholar]
  120. YangX. LiZ. WangN. LiL. SongL. HeT. SunL. WangZ. WuQ. LuoN. YiC. GongC. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep.2015511032210.1038/srep1032225980982
    [Google Scholar]
  121. WoraphatphadungT. SajomsangW. RojanarataT. NgawhirunpatT. TonglairoumP. OpanasopitP. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery.AAPS PharmSciTech2018193991100010.1208/s12249‑017‑0906‑y29110292
    [Google Scholar]
  122. ZhangL. ZhuW. YangC. GuoH. YuA. JiJ. GaoY. SunM. ZhaiG. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting.Int. J. Nanomed.2012715116222275831
    [Google Scholar]
  123. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
  124. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  125. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  126. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  127. Faridi EsfanjaniA. AssadpourE. JafariS.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers.Trends Food Sci. Technol.201876566610.1016/j.tifs.2018.04.002
    [Google Scholar]
  128. YousefiM. EhsaniA. JafariS.M. Lipid-based nano delivery of antimicrobials to control food-borne bacteria.Adv. Colloid Interface Sci.201927026327710.1016/j.cis.2019.07.00531306852
    [Google Scholar]
  129. RafieeZ. Application of different nanocarriers for encapsulation of curcumin.Crit. Rev. Food Sci. Nutr.201859213468349730001150
    [Google Scholar]
  130. KumarH.M. SpandanaV. Liposomal encapsulation technology a novel drug delivery system designed for ayurvedic drug preparation.Int. Res. J. Pharm.201121046
    [Google Scholar]
  131. HaghighiM. YarmandM.S. Emam-DjomehZ. McClementsD.J. SabouryA.A. Rafiee-TehraniM. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin.Int. J. Biol. Macromol.201811262663710.1016/j.ijbiomac.2018.01.10829366892
    [Google Scholar]
  132. ShishirM.R.I. KarimN. GowdV. XieJ. ZhengX. ChenW. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property.Food Hydrocoll.20199543244410.1016/j.foodhyd.2019.04.059
    [Google Scholar]
  133. CamposV.E.B. Ricci-JúniorE. MansurC.R.E. Nanoemulsions as delivery systems for lipophilic drugs.J. Nanosci. Nanotechnol.20121232881289010.1166/jnn.2012.569022755138
    [Google Scholar]
  134. SutradharK.B. AminM.L. Nanoemulsions: increasing possibilities in drug delivery.Eur. J. Nanomed.2013529711010.1515/ejnm‑2013‑0001
    [Google Scholar]
  135. JaiswalM DudheR SharmaPK Nanoemulsion: an advanced mode of drug delivery systemBiotech201552123127
    [Google Scholar]
  136. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.22531608247
    [Google Scholar]
  137. JafriSM PaximadaP MandalaL AssadpourE MehrniaMA Encapsulation of nanoemulsion.Academic Press201710.1016/B978‑0‑12‑809436‑5.00002‑1
    [Google Scholar]
  138. RehmanA. AhmadT. AadilR.M. SpottiM.J. BakryA.M. KhanI.M. ZhaoL. RiazT. TongQ. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds.Trends Food Sci. Technol.201990354610.1016/j.tifs.2019.05.015
    [Google Scholar]
  139. ChoiA.Y. KimC.T. ParkH.Y. KimH.O. LeeN.R. LeeK.E. GwakH.S. Pharmacokinetic characteristics of capsaicin loaded nanoemulsions fabricated with alginate and chitosan.J. Agric. Food Chem.20136192096210210.1021/jf305270823414078
    [Google Scholar]
  140. UzmaA KrishnaSA Pharmacosomes and emulsomes: An emerging novel vesicular drug delivery system.Glob. j. anesth. pain med.202043287297
    [Google Scholar]
  141. GhodeS.P. GhodeP.D. Applications perspectives of emulsomes drug delivery system.Int. J. Med. Phar. Sci.20201011810.31782/IJMPS.2020.10101
    [Google Scholar]
  142. GillV. NandaG. Emulsomes: a lipid based drug delivery system.World J. Pharm. Res.2021102113129
    [Google Scholar]
  143. AldawsariH.M. Badr-EldinS.M. AssiriN.Y. AlhakamyN.A. PriviteraA. CaraciF. CarusoG. Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: in vitro optimization and in vivo pharmacokinetic assessment.Drug Deliv.20222912671268410.1080/10717544.2022.211099635975309
    [Google Scholar]
  144. GillB. SinghJ. SharmaV. Hari KumarS.L. Emulsomes: An emerging vesicular drug delivery system.Asian J. Pharm.201262879410.4103/0973‑8398.102930
    [Google Scholar]
  145. BolatZ.B. IslekZ. DemirB.N. YilmazE.N. SahinF. UcisikM.H. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model.Front. Bioeng. Biotechnol.202085010.3389/fbioe.2020.0005032117930
    [Google Scholar]
  146. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  147. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: a review on recent perspectives and patents.Expert. Opin. Ther. Pat.202030317919410.1080/13543776.2020.1720649
    [Google Scholar]
  148. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.5728220502539
    [Google Scholar]
  149. FangC.L. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/18722101380448482722946628
    [Google Scholar]
  150. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  151. NasirizadehS. Malaekeh-NikoueiB. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery.J. Drug Deliv. Sci. Technol.20205510145810.1016/j.jddst.2019.101458
    [Google Scholar]
  152. LiuY. ZhangH. CuiH. ZhangF. ZhaoL. LiuY. MengQ. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers.Drug Deliv.202229134235010.1080/10717544.2022.202757335049388
    [Google Scholar]
  153. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  154. HarikaP. DeepthiB.V.P. VinithaB. BaherjiR. AliJ. SharmaJ.V.C. Herbal NanoparticlesWorld J. Pharm. Med. Res202173127130
    [Google Scholar]
  155. YadavD SuriS ChoudharyAA SikenderM Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems.Int. J. Pharm. Tech.2011330923116
    [Google Scholar]
  156. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  157. JawaharN. MeyyanathanS.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review.Int. J. Health Allied Sci.20121421722310.4103/2278‑344X.107832
    [Google Scholar]
  158. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  159. AndishmandH. TabibiazarM. MohammadifarM.A. HamishehkarH. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol.Int. J. Biol. Macromol.201797162210.1016/j.ijbiomac.2016.12.08728064058
    [Google Scholar]
  160. AgrahariV. MengJ. EzoulinM.J.M. YoumI. DimD.C. MolteniA. HungW.T. ChristensonL.K. YouanB.B.C. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity.Nanomedicine201611222935295810.2217/nnm‑2016‑010327785967
    [Google Scholar]
  161. JafariS. Nanoencapsulation of Food Bioactive Ingredients.2017Academic Press10.1016/B978‑0‑12‑809740‑3.00001‑5
    [Google Scholar]
  162. BayatS. AmiriN. PishavarE. KalaliniaF. MovaffaghJ. HashemiM. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models.Life Sci.2019229576610.1016/j.lfs.2019.05.02831085247
    [Google Scholar]
  163. RostamiM. GhorbaniM. Aman mohammadiM. DelavarM. TabibiazarM. RamezaniS. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system.Int. J. Biol. Macromol.201913569870510.1016/j.ijbiomac.2019.05.18731145955
    [Google Scholar]
  164. SarangiM. PadhiS. Novel herbal drug delivery system: An overview.Arch. Med. Health Sci.20186117117910.4103/amhs.amhs_88_17
    [Google Scholar]
  165. CevcG. VierlU. Nanotechnology and the transdermal routeA state of the art review and critical appraisal.J. Control. Release2010141327729910.1016/j.jconrel.2009.10.01619850095
    [Google Scholar]
  166. KlippsteinR. WangJ.T.W. El-GogaryR.I. BaiJ. MustafaF. RubioN. BansalS. Al-JamalW.T. Al-JamalK.T. Passively targeted curcumin-loaded PEGylated PLGA nanocapsules for colon cancer therapy in vivo. Small201511364704472210.1002/smll.20140379926140363
    [Google Scholar]
  167. RamzyL. MetwallyA.A. NasrM. AwadG.A.S. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors.Sci. Rep.20201011098710.1038/s41598‑020‑67748‑232620860
    [Google Scholar]
  168. Simón-GraciaL. HuntH. ScodellerP. GaitzschJ. KotamrajuV.R. SugaharaK.N. TammikO. RuoslahtiE. BattagliaG. TeesaluT. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes.Biomaterials201610424725710.1016/j.biomaterials.2016.07.02327472162
    [Google Scholar]
  169. AlibolandiM. RezvaniR. FarzadS.A. TaghdisiS.M. AbnousK. RamezaniM. Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.2017532158159410.1016/j.ijpharm.2017.09.03928935257
    [Google Scholar]
  170. Reimondez-TroitiñoS. González-AramundizJ.V. Ruiz-BañobreJ. López-LópezR. AlonsoM.J. CsabaN. de la FuenteM. Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells.Eur. J. Pharm. Biopharm.201914244945910.1016/j.ejpb.2019.07.01631326581
    [Google Scholar]
  171. PriyadarshiK. ShirsathK. WaghelaN.B. SharmaA. KumarA. PathakC. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells.J. Biomol. Struct. Dyn.202139186853686910.1080/07391102.2020.180234432752940
    [Google Scholar]
  172. AlibolandiM. TaghdisiS.M. RamezaniP. Hosseini ShamiliF. FarzadS.A. AbnousK. RamezaniM. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.20175191-235236410.1016/j.ijpharm.2017.01.04428126548
    [Google Scholar]
  173. DebeleT.A. LeeK.Y. HsuN.Y. ChiangY.T. YuL.Y. ShenY.A. LoC.L. A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20175295870588010.1039/C7TB01031A32264220
    [Google Scholar]
  174. XuG. ShiH. RenL. GouH. GongD. GaoX. HuangN. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles.Int. J. Nanomed.2015102051206325844036
    [Google Scholar]
  175. ZhuH. Targeted nanoparticles drug for magnetic hyperthermia treatment on malignant tumors.U.S. 201101771532011
  176. DashA.K. TricklerW.J. Mucoadhesive nanoparticles for cancer treatment.U.S. 8242165,2012
  177. IyerK.L. EvansC.W. ClemonsT.D. FitzgeraldM. DunlopS.A. LuzinovI. ZdyrkoB. Multifunctional nanoparticles.W.O. 2012075533,2012
  178. ZhaoY. Nanoparticles and nanoparticle compositions.W.O. 2011130114,2011
  179. SoonJ.E. YukC.K. SeokC.Y. JongY.T. HongA.C. TaeK.K. HyunC.Z. YoungR.J. KeunC.B. JeongC.E. ChulY.G. Nanoparticles conjugates with a cetuximab antibody for diag nosis of colon cancer, and a method for preparing the same.K.R. 100830889,2008
  180. BayfordR.H. RoittI.M. RademacherT.W. DemosthenousA. IlesR.K. Detection of cancer.W.O. 2010052503,2010
  181. BlockC. MittmannK. ArntzC. Optimized adhesin fragments and corresponding nanoparticles.U.S. 20110110856,2011
  182. LiuW. HainfeldJ.F. NM nickel-NTA-gold nanoparticles.U.S. 20120244075,2012
  183. AmijiM.M. GantaS. TsaiP.-C. Multimodal diagnostic technology for early stage cancer lesions.E.P. 2549925,2013
/content/journals/ijghd/10.2174/0126662906317495240827080916
Loading
/content/journals/ijghd/10.2174/0126662906317495240827080916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test