Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

The healthcare system has been greatly affected by the COVID-19 pandemic, resulting in an increase in secondary and co-infections among patients. Factors like pulmonary damage and weakened immune systems make patients more susceptible to fungal infections. Mucormycosis, an opportunistic fungal infection, prospers in environments with limited oxygen, and elevated glucose levels due to conditions such as diabetes and steroid use, as well as in acidic environments from metabolic acidosis and diabetic ketoacidosis, where it demonstrates heightened germination ability. Recognizing these complications is critical to minimize harm to patients. The insights gained from this review can improve our understanding of how fungal infections develop in connection to COVID-19, leading to better predictive algorithms, tailored care plans, enhanced antifungal treatments, quicker diagnostics, and improved management strategies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265310191240919060621
2024-10-31
2025-05-05
Loading full text...

Full text loading...

References

  1. RahalkarM.C. BahulikarR.A. Lethal pneumonia cases in Mojiang miners (2012) and the mineshaft could provide important clues to the origin of SARS-CoV-2.Front. Public Health2020858156910.3389/fpubh.2020.58156933194988
    [Google Scholar]
  2. GatesB. Responding to Covid-19 — A Once-in-a-Century Pandemic?202010.1056/NEJMp2003762?query=RP.
    [Google Scholar]
  3. FrutosR. JavelleE. BarberotC. GavotteL. Tissot-DupontH. DevauxC.A. Origin of COVID-19: Dismissing the Mojiang mine theory and the laboratory accident narrative.Environ. Res.2022204Pt B11214110.1016/j.envres.2021.11214134597664
    [Google Scholar]
  4. JonesDS. History in a crisis - Lessons for COVID-19.N Engl J Med2020382181681168310.1056/NEJMp2004361.
    [Google Scholar]
  5. MadabhaviI. SarkarM. KadakolN. COVID-19. A review.Monaldi Arch. Chest Dis.202090210.4081/monaldi.2020.129832498503
    [Google Scholar]
  6. AshiqueS. ‘Mucormycosis’: A Fungal Infection Threatening India During COVID-19′ - A Review.Antiinfect. Agents2022201e30112119841310.2174/2211352519666211130105217
    [Google Scholar]
  7. Garcia-VidalC. SanjuanG. Moreno-GarcíaE. Puerta-AlcaldeP. Garcia-PoutonN. ChumbitaM. Fernandez-PittolM. PitartC. InciarteA. BodroM. MorataL. AmbrosioniJ. GrafiaI. MeiraF. MacayaI. CardozoC. CasalsC. TellezA. CastroP. MarcoF. GarcíaF. MensaJ. MartínezJ.A. SorianoA. RicoV. Hernández-MenesesM. AgüeroD. TorresB. GonzálezA. de la MoraL. RojasJ. LinaresL. FidalgoB. RodriguezN. NicolasD. AlbiachL. MuñozJ. AlmuedoA. CamprubíD. Angeles MarcosM. CamprubíD. CillonizC. FernándezS. NicolasJ.M. TorresA. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study.Clin. Microbiol. Infect.2021271838810.1016/j.cmi.2020.07.04132745596
    [Google Scholar]
  8. KhannaM. ChallaS. KabeilA.S. InyangB. GondalF.J. AbahG.A. Minnal DhandapaniM. ManneM. MohammedL. Risk of mucormycosis in diabetes mellitus: a systematic review.Cureus20211310e1882710.7759/cureus.1882734804684
    [Google Scholar]
  9. SeyedAlinaghiS. KarimiA. BarzegaryA. PashaeiZ. AfsahiA.M. AlilouS. JanfazaN. ShojaeiA. AfroughiF. MohammadiP. SoleimaniY. NazarianN. AmiriA. TantuoyirM.M. OliaeiS. MehraeenE. DadrasO. Mucormycosis infection in patients with COVID-19: A systematic review.Health Sci. Rep.202252e52910.1002/hsr2.52935252593
    [Google Scholar]
  10. PrakashH. SkiadaA. PaulR.A. ChakrabartiA. RudramurthyS.M. Connecting the dots: interplay of pathogenic mechanisms between COVID-19 disease and mucormycosis.J. Fungi (Basel)20217861610.3390/jof708061634436155
    [Google Scholar]
  11. PrakashH. ChakrabartiA. Epidemiology of Mucormycosis in India.Microorganisms20219352310.3390/microorganisms903052333806386
    [Google Scholar]
  12. PatelA. AgarwalR. RudramurthyS.M. ShevkaniM. XessI. SharmaR. SavioJ. SethuramanN. MadanS. ShastriP. ThangarajuD. MarakR. TadepalliK. SavajP. SunavalaA. GuptaN. SinghalT. MuthuV. ChakrabartiA. Multicenter epidemiologic study of coronavirus disease–associated mucormycosis, India.Emerg. Infect. Dis.20212792349235910.3201/eid2709.21093434087089
    [Google Scholar]
  13. JohnT.M. JacobC.N. KontoyiannisD.P. When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis.J. Fungi (Basel)20217429810.3390/jof704029833920755
    [Google Scholar]
  14. HoeniglM. SeidelD. CarvalhoA. RudramurthyS.M. ArastehfarA. GangneuxJ.P. The Emergence of COVID-19 Associated Mucormycosis: Analysis of Cases From 18 Countries (preprint).Lancet Microbe2021
    [Google Scholar]
  15. PatelA. KaurH. XessI. MichaelJ. SavioJ. RudramurthyS. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India.Clin Microbiol Infect2020267944.e9944.e1510.1016/j.cmi.2019.11.021
    [Google Scholar]
  16. PrakashH. GhoshA.K. RudramurthyS.M. SinghP. XessI. SavioJ. PamidimukkalaU. JillwinJ. VarmaS. DasA. PandaN.K. SinghS. BalA. ChakrabartiA. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment.Med. Mycol.201957439540210.1093/mmy/myy06030085158
    [Google Scholar]
  17. CalabrettaE. MoraledaJ.M. IacobelliM. JaraR. VlodavskyI. O’GormanP. PagliucaA. MoC. BaronR.M. AghemoA. SoifferR. FareedJ. Carlo-StellaC. RichardsonP. COVID‐19‐induced endotheliitis: emerging evidence and possible therapeutic strategies.Br. J. Haematol.20211931435110.1111/bjh.1724033538335
    [Google Scholar]
  18. IbaT. ConnorsJ.M. LevyJ.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19.Inflamm. Res.202069121181118910.1007/s00011‑020‑01401‑632918567
    [Google Scholar]
  19. HuertasA. MontaniD. SavaleL. PichonJ. TuL. ParentF. GuignabertC. HumbertM. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?Eur. Respir. J.2020561200163410.1183/13993003.01634‑202032554538
    [Google Scholar]
  20. DanionF. Letscher-BruV. GuitardJ. SitbonK. DellièreS. AngoulvantA. Coronavirus disease 2019-Associated mucormycosis in France: A rare but deadly complication.Open Forum Infect Dis202192ofab56610.1093/ofid/ofab566.
    [Google Scholar]
  21. KumarM. SarmaD.K. ShubhamS. KumawatM. VermaV. SinghB. NagpalR. TiwariR.R. Mucormycosis in COVID-19 pandemic: Risk factors and linkages.Curr. Res. Microb. Sci.2021210005710.1016/j.crmicr.2021.10005734396355
    [Google Scholar]
  22. SinghA.K. SinghR. JoshiS.R. MisraA. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India.Diabetes Metab. Syndr.202115410214610.1016/j.dsx.2021.05.01934192610
    [Google Scholar]
  23. HanleyB. NareshK.N. RoufosseC. NicholsonA.G. WeirJ. CookeG.S. ThurszM. ManousouP. CorbettR. GoldinR. Al-SarrajS. AbdolrasouliA. SwannO.C. BaillonL. PennR. BarclayW.S. ViolaP. OsbornM. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study.Lancet Microbe202016e245e25310.1016/S2666‑5247(20)30115‑432844161
    [Google Scholar]
  24. Monte JuniorE.S. SantosM.E.L. RibeiroI.B. LuzG.O. BabaE.R. HirschB.S. FunariM.P. de MouraE.G.H. Rare and fatal gastrointestinal mucormycosis (Zygomycosis) in a COVID-19 patient: a case report.Clin. Endosc.202053674674910.5946/ce.2020.18033207116
    [Google Scholar]
  25. PaseroD. SannaS. LiperiC. PireddaD. BrancaG.P. CasadioL. SimeoR. BuselliA. RizzoD. BussuF. RubinoS. TerragniP. A challenging complication following SARS-CoV-2 infection: a case of pulmonary mucormycosis.Infection20214951055106010.1007/s15010‑020‑01561‑x33331988
    [Google Scholar]
  26. Karimi‐GalougahiM. ArastouS. HaseliS. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19).Int Forum Allergy Rhinol20211161029103010.1002/alr.22785.
    [Google Scholar]
  27. VeisiA. BagheriA. EshaghiM. RikhtehgarM.H. Rezaei KanaviM. FarjadR. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: A case report.Eur. J. Ophthalmol.2022324NP11NP1610.1177/1120672121100945033843287
    [Google Scholar]
  28. SarginF. AkbulutM. KaradumanS. SungurtekinH. Severe rhinocerebral mucormycosis case developed after COVID 19.J. Bacteriol. Parasitol.20211211000386
    [Google Scholar]
  29. Waizel-HaiatS. Guerrero-PazJ.A. Sanchez-HurtadoL. Calleja-AlarconS. Romero-GutierrezL. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19.Cureus2021132e1316310.7759/cureus.1316333575155
    [Google Scholar]
  30. ZurlC. HoeniglM. SchulzE. HatzlS. GorkiewiczG. KrauseR. EllerP. PrattesJ. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy.J. Fungi (Basel)2021728810.3390/jof702008833513875
    [Google Scholar]
  31. BuilJ.B. van ZantenA.R.H. BentvelsenR.G. RijpstraT.A. GoorhuisB. van der VoortS. WammesL.J. JansonJ.A. MelchersM. HeusinkveldM. MelchersW.J.G. KuijperE.J. VerweijP.E. Case series of four secondary mucormycosis infections in COVID-19 patients, the Netherlands, December 2020 to May 2021.Euro Surveill.20212623210051010.2807/1560‑7917.ES.2021.26.23.210051034114540
    [Google Scholar]
  32. AranaC. Cuevas RamírezR.E. XipellM. CasalsJ. MorenoA. HerreraS. BodroM. CofanF. DiekmannF. EsforzadoN. Mucormycosis associated with COVID‐19 in two kidney transplant patients.Transpl. Infect. Dis.2021234e1365210.1111/tid.1365234038014
    [Google Scholar]
  33. MulakavalupilB. VaityC. JoshiS. MisraA. PanditR.A. Absence of Case of Mucormycosis (March 2020–May 2021) under strict protocol driven management care in a COVID-19 specific tertiary care intensive care unit.Diabetes Metab. Syndr.202115410216910.1016/j.dsx.2021.06.00634198110
    [Google Scholar]
  34. HoeniglM. SeidelD. CarvalhoA. RudramurthyS.M. ArastehfarA. GangneuxJ.P. NasirN. BonifazA. AraizaJ. KlimkoN. SerrisA. LagrouK. MeisJ.F. CornelyO.A. PerfectJ.R. WhiteP.L. ChakrabartiA. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries.Lancet Microbe202237e543e55210.1016/S2666‑5247(21)00237‑835098179
    [Google Scholar]
  35. TrieuT.A. Navarro-MendozaM.I. Pérez-ArquesC. SanchisM. CapillaJ. Navarro-RodriguezP. Lopez-FernandezL. Torres-MartínezS. GarreV. Ruiz-VázquezR.M. NicolásF.E. RNAi-based functional genomics identifies new virulence determinants in mucormycosis.PLoS Pathog.2017131e100615010.1371/journal.ppat.100615028107502
    [Google Scholar]
  36. ZhouP. LiZ. XieL. AnD. FanY. WangX. LiY. LiuX. WuJ. LiG. LiQ. Research progress and challenges to coronavirus vaccine development.J. Med. Virol.202193274175410.1002/jmv.2651732936465
    [Google Scholar]
  37. VarshaA. RNA viruses with central nervous system tropism.RNA Viruses and Neurological Disorders.CRC Press2023163510.1201/9781003285823‑3
    [Google Scholar]
  38. Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection: Interim guidance, 10 January 2020.2020Available from: https://iris.who.int/handle/10665/330374
  39. ZhangT. WuQ. ZhangZ. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak.Curr Biol202030713461351.e210.1016/j.cub.2020.03.063.
    [Google Scholar]
  40. DevauxC.A. FantiniJ. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus.Front. Microbiol.202314119956110.3389/fmicb.2023.119956137520374
    [Google Scholar]
  41. WadmanM. CohenJ. Novavax vaccine delivers 89% efficacy against COVID-19 in UK—but is less potent in South Africa.Science2021122774
    [Google Scholar]
  42. PouresmaieliM. EkramiE. AkbariA. NoorbakhshN. MoghadamN.B. MamoudifardM. A comprehensive review on efficient approaches for combating coronaviruses.Biomed. Pharmacother.202114411235310.1016/j.biopha.2021.11235334794240
    [Google Scholar]
  43. YadavR. ChaudharyJ.K. JainN. ChaudharyP.K. KhanraS. DhamijaP. SharmaA. KumarA. HanduS. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells1004082133917481
    [Google Scholar]
  44. CalvaresiV. WrobelA.G. ToporowskaJ. HammerschmidD. DooresK.J. BradshawR.T. ParsonsR.B. BentonD.J. RoustanC. ReadingE. MalimM.H. GamblinS.J. PolitisA. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein.Nat. Commun.2023141142110.1038/s41467‑023‑36745‑036918534
    [Google Scholar]
  45. ChatterjeeS.K. SahaS. MunozM.N.M. Molecular pathogenesis, immunopathogenesis and novel therapeutic strategy against COVID-19.Front. Mol. Biosci.2020719610.3389/fmolb.2020.0019632850977
    [Google Scholar]
  46. JacksonC. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.20211034611326
    [Google Scholar]
  47. MilletJ.K. KienF. CheungC.Y. SiuY.L. ChanW.L. LiH. LeungH.L. JaumeM. BruzzoneR. Malik PeirisJ.S. AltmeyerR.M. NalB. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage.PLoS One2012711e4956610.1371/journal.pone.004956623185364
    [Google Scholar]
  48. SongW. GuiM. WangX. XiangY. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2.PLoS Pathog.2018148e100723610.1371/journal.ppat.100723630102747
    [Google Scholar]
  49. TikellisC. BernardiS. BurnsW.C. Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease.Curr. Opin. Nephrol. Hypertens.2011201626810.1097/MNH.0b013e328341164a21099686
    [Google Scholar]
  50. SamavatiL. UhalB.D. ACE DU. Much more than just a receptor for SARS-COV-2.Front. Cell. Infect. Microbiol.20201031710.3389/fcimb.2020.0031732582574
    [Google Scholar]
  51. JiaH. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease.Shock201646323924810.1097/SHK.000000000000063327082314
    [Google Scholar]
  52. BourgonjeA.R. AbdulleA.E. TimensW. HillebrandsJ.L. NavisG.J. GordijnS.J. BollingM.C. DijkstraG. VoorsA.A. OsterhausA.D.M.E. van der VoortP.H.J. MulderD.J. van GoorH. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).J. Pathol.2020251322824810.1002/path.547132418199
    [Google Scholar]
  53. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.052.
    [Google Scholar]
  54. Böttcher-FriebertshäuserE. FreuerC. SielaffF. SchmidtS. EickmannM. UhlendorffJ. SteinmetzerT. KlenkH.D. GartenW. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors.J. Virol.201084115605561410.1128/JVI.00140‑1020237084
    [Google Scholar]
  55. BelouzardS. ChuV. WhittakerG. Activación de la proteína de la espiga del coronavirus del SARS a través de la escisión proteolítica secuencial en dos sitios distintos.Proc. Natl. Acad. Sci. USA2009106145871587610.1073/pnas.080952410619321428
    [Google Scholar]
  56. WangH. YangP. LiuK. GuoF. ZhangY. ZhangG. JiangC. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.Cell Res.200818229030110.1038/cr.2008.1518227861
    [Google Scholar]
  57. TrusI. UdenzeD. BerubeN. WhelerC. MartelM.J. GerdtsV. KarniychukU. CpG-recoding in Zika virus genome causes host-age-dependent attenuation of infection with protection against lethal heterologous challenge in mice.Front. Immunol.202010307710.3389/fimmu.2019.0307732038625
    [Google Scholar]
  58. KrishnakumarH.N. MomtazD.A. SherwaniA. MhapankarA. GonuguntlaR.K. MalekiA. AbbasA. GhaliA.N. Al AfifA. Pathogenesis and progression of anosmia and dysgeusia during the COVID-19 pandemic.Eur. Arch. Otorhinolaryngol.2023280250550910.1007/s00405‑022‑07689‑w36209486
    [Google Scholar]
  59. CheginiZ. DidehdarM. KhoshbayanA. RajaeihS. SalehiM. ShariatiA. Epidemiology, clinical features, diagnosis and treatment of cerebral mucormycosis in diabetic patients: A systematic review of case reports and case series.Mycoses202063121264128210.1111/myc.1318732965744
    [Google Scholar]
  60. SharmaB. NonzomS. Mucormycosis and Its Upsurge During COVID-19 Epidemic: An Updated Review.Curr. Microbiol.2023801032210.1007/s00284‑023‑03430‑w37592083
    [Google Scholar]
  61. RileyT.T. MuznyC.A. SwiatloE. LegendreD.P. Breaking the Mold.Ann. Pharmacother.201650974775710.1177/106002801665542527307416
    [Google Scholar]
  62. PrabhuR.M. PatelR. Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment.Clin. Microbiol. Infect.200410314710.1111/j.1470‑9465.2004.00843.x14748801
    [Google Scholar]
  63. IbrahimA.S. SpellbergB. WalshT.J. KontoyiannisD.P. Pathogenesis of Mucormycosis.Clin. Infect. Dis.201254Suppl 1S16S2210.1093/cid/cir86522247441
    [Google Scholar]
  64. ChanderJ. Textbook of Medical Mycology2017
    [Google Scholar]
  65. MahalaxmiI. JayaramayyaK. VenkatesanD. SubramaniamM.D. RenuK. VijayakumarP. NarayanasamyA. GopalakrishnanA.V. KumarN.S. SivaprakashP. Sambasiva RaoK.R.S. VellingiriB. Mucormycosis: An opportunistic pathogen during COVID-19.Environ. Res.202120111164310.1016/j.envres.2021.11164334237335
    [Google Scholar]
  66. HariprasathP. ArunalokeC. Epidemiologia Global da Mucormicose.J. Fungi (Basel)2019512610.3390/jof501002630901907
    [Google Scholar]
  67. CintezaE. NicolescuA. CiomartanT. GavriliuL.C. VoicuC. CarabasA. PopescuM. MargarintI. Disseminated Cunninghamella spp. Endocarditis in a Beta-Thalassemia Patient after Asymptomatic COVID-19 Infection.Diagnostics (Basel)202212365710.3390/diagnostics1203065735328209
    [Google Scholar]
  68. ChakrabartiA. KumarP. PadhyeA.A. ChathaL. SinghS.K. DasA. WigJ.D. KatariaR.N. Primary cutaneous zygomycosis due to Saksenaea vasiformis and Apophysomyces elegans.Clin. Infect. Dis.199724458058210.1093/clind/24.4.5809145731
    [Google Scholar]
  69. DuanH. ChenX. LiZ. PangY. JingW. LiuP. WuT. CaiC. ShiJ. QinZ. YinH. QiuC. LiC. XiaY. ChenW. YeZ. LiZ. ChenG. WangS. LiuY. ChuL. ZhuM. XuT. WangQ. WangJ. DuY. WangJ. ChuN. XuS. Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial.Clin. Microbiol. Infect.201925219019510.1016/j.cmi.2018.07.01230036672
    [Google Scholar]
  70. PhanQ.T. MyersC.L. FuY. SheppardD.C. YeamanM.R. WelchW.H. IbrahimA.S. EdwardsJ.E.Jr FillerS.G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.PLoS Biol.200753e6410.1371/journal.pbio.005006417311474
    [Google Scholar]
  71. DasR. RoyJ. AshiqueS. Black Fungus: An Alarming Infection During Novel Coronavirus: A Review.Antiinfect. Agents2022204e29032220277610.2174/2211352520666220329160041
    [Google Scholar]
  72. AshiqueS. GuptaK. GuptaG. MishraN. SinghS.K. WadhwaS. GulatiM. DurejaH. ZacconiF. OliverB.G. PaudelK.R. HansbroP.M. ChellappanD.K. DuaK. Vitamin D-A prominent immunomodulator to prevent COVID-19 infection.Int. J. Rheum. Dis.2023261133010.1111/1756‑185X.1447736308699
    [Google Scholar]
  73. AshiqueS. ChaudharyV. PalS. PanwarJ. KumarM. PramanikS. SinhaA. MukherjeeA. Marburg virus-a threat during SARS-CoV-2 era: a review.Infect. Disord. Drug Targets2023235e28022321411110.2174/187152652366623022810384536852815
    [Google Scholar]
  74. SchulzA. DürrC. ZenzT. DöhnerH. StilgenbauerS. LichterP. SeiffertM. Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment.Blood2013121132503251110.1182/blood‑2012‑08‑44766423349394
    [Google Scholar]
  75. AzharA. KhanW.H. KhanP.A. AlhosainiK. OwaisM. AhmadA. Mucormycosis and COVID-19 pandemic: Clinical and diagnostic approach.J. Infect. Public Health202215446647910.1016/j.jiph.2022.02.00735216920
    [Google Scholar]
  76. HoffmannK. PawłowskaJ. WaltherG. WrzosekM. de HoogG.S. BennyG.L. KirkP.M. VoigtK. The family structure of the Mucorales a synoptic revision based on comprehensive multigene-genealogies.Persoonia2013301577610.3767/003158513X66625924027347
    [Google Scholar]
  77. LecointeK. CornuM. LeroyJ. CoulonP. SendidB. Polysaccharides cell wall architecture of Mucorales.Front. Microbiol.20191046910.3389/fmicb.2019.0046930941108
    [Google Scholar]
  78. AngebaultC. LanternierF. DalleF. SchrimpfC. RoupieA-L. DupuisA. Prospective evaluation of serum β-glucan testing in patients with probable or proven fungal diseases.Open Forum Infect Dis201633ofw12810.1093/ofid/ofw128.
    [Google Scholar]
  79. YamazakiH. ShiraishiN. TakeuchiK. OhnishiY. HorinouchiS. Characterization of alg2 encoding a mannosyltransferase in the zygomycete fungus Rhizomucor pusillus.Gene1998221217918410.1016/S0378‑1119(98)00456‑99795208
    [Google Scholar]
  80. GhumanH. VoelzK. Innate and adaptive immunity to mucorales.J Fungi (Basel)20173310.3390/jof3030048.
    [Google Scholar]
  81. Morin-SardinS. NodetP. CotonE. JanyJ.L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications.Fungal Biol. Rev.2017311123210.1016/j.fbr.2016.11.002
    [Google Scholar]
  82. LiuD. Classification of medically important fungi.In: Molecular Medical Microbiology.Elsevier20242763277710.1016/B978‑0‑12‑818619‑0.00034‑4.
    [Google Scholar]
  83. IbrahimA. EdwardsJ. FillerS. Zygomycoses.Clinical Mycology DismukesWE. PappasPG. SobelJD. 200310.1093/oso/9780195148091.003.0015.
    [Google Scholar]
  84. BaldinC. IbrahimA.S. Molecular mechanisms of mucormycosis—The bitter and the sweet.PLoS Pathog.2017138e100640810.1371/journal.ppat.100640828771587
    [Google Scholar]
  85. SharmaA. AlamM.A. DhoundiyalS. SharmaP.K. Review on Mucormycosis: Pathogenesis, Epidemiology, Microbiology and Diagnosis.Infect. Disord. Drug Targets2024241e22082322020910.2174/187152652366623082215440737608614
    [Google Scholar]
  86. TimplR. RohdeH. RobeyP.G. RennardS.I. FoidartJ.M. MartinG.R. Laminin–a glycoprotein from basement membranes.J. Biol. Chem.1979254199933993710.1016/S0021‑9258(19)83607‑4114518
    [Google Scholar]
  87. BoucharaJ.P. OumezianeN.A. LissitzkyJ.C. LarcherG. TronchinG. ChabasseD. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components.Eur. J. Cell Biol.199670176838738422
    [Google Scholar]
  88. IbrahimA.S. SpellbergB. AvanessianV. FuY. EdwardsJ.E.Jr Rhizopus oryzae adheres to, is phagocytosed by, and damages endothelial cells in vitro.Infect. Immun.200573277878310.1128/IAI.73.2.778‑783.200515664916
    [Google Scholar]
  89. LiuM. SpellbergB. PhanQ.T. FuY. FuY. LeeA.S. EdwardsJ.E.Jr FillerS.G. IbrahimA.S. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice.J. Clin. Invest.201012061914192410.1172/JCI4216420484814
    [Google Scholar]
  90. LiuH. LeeM.J. SolisN.V. PhanQ.T. SwidergallM. RalphB. IbrahimA.S. SheppardD.C. FillerS.G. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion.Nat. Microbiol.2016221621110.1038/nmicrobiol.2016.21127841851
    [Google Scholar]
  91. UpadhyayS.K. MahajanL. RamjeeS. SinghY. BasirS.F. MadanT. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp).J. Med. Microbiol.200958671472210.1099/jmm.0.005991‑019429746
    [Google Scholar]
  92. BouvetM. DebarnotC. ImbertI. SeliskoB. SnijderE.J. CanardB. DecrolyE. In vitro reconstitution of SARS-coronavirus mRNA cap methylation.PLoS Pathog.201064e100086310.1371/journal.ppat.100086320421945
    [Google Scholar]
  93. GebremariamT. AlkhazrajiS. SolimanS.S.M. GuY. JeonH.H. ZhangL. FrenchS.W. StevensD.A. EdwardsJ.E.Jr FillerS.G. UppuluriP. IbrahimA.S. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis.Sci. Adv.201956eaaw132710.1126/sciadv.aaw132731206021
    [Google Scholar]
  94. ChibucosM.C. SolimanS. GebremariamT. LeeH. DaughertyS. OrvisJ. ShettyA.C. CrabtreeJ. HazenT.H. EtienneK.A. KumariP. O’ConnorT.D. RaskoD.A. FillerS.G. FraserC.M. LockhartS.R. SkoryC.D. IbrahimA.S. BrunoV.M. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi.Nat. Commun.2016711221810.1038/ncomms1221827447865
    [Google Scholar]
  95. GebremariamT. LiuM. LuoG. BrunoV. PhanQ.T. WaringA.J. EdwardsJ.E.Jr FillerS.G. YeamanM.R. IbrahimA.S. CotH3 mediates fungal invasion of host cells during mucormycosis.J. Clin. Invest.2014124123725010.1172/JCI7134924355926
    [Google Scholar]
  96. WächtlerB. CitiuloF. JablonowskiN. FörsterS. DalleF. SchallerM. WilsonD. HubeB. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process.PLoS One201275e3695210.1371/journal.pone.003695222606314
    [Google Scholar]
  97. TahiriG. LaxC. Cánovas-MárquezJ.T. Carrillo-MarínP. SanchisM. NavarroE. GarreV. NicolásF.E. Mucorales and mucormycosis: Recent insights and future prospects.J. Fungi (Basel)20239333510.3390/jof903033536983503
    [Google Scholar]
  98. PetrikkosG. SkiadaA. LortholaryO. RoilidesE. WalshT.J. KontoyiannisD.P. Epidemiology and clinical manifestations of mucormycosis.Clin. Infect. Dis.201254S23S3410.1093/cid/cir86622247442
    [Google Scholar]
  99. ThomasR.J. Particle size and pathogenicity in the respiratory tract.Virulence20134884785810.4161/viru.2717224225380
    [Google Scholar]
  100. HonavarS.G. SenM. LahaneS. LahaneT.P. ParekhR. Mucor in a viral land: a tale of two pathogens.Indian J. Ophthalmol.202169224425210.4103/ijo.IJO_3774_2033463566
    [Google Scholar]
  101. ChamilosG. LewisR.E. LamarisG. WalshT.J. KontoyiannisD.P. Zygomycetes hyphae trigger an early, robust proinflammatory response in human polymorphonuclear neutrophils through toll-like receptor 2 induction but display relative resistance to oxidative damage.Antimicrob. Agents Chemother.200852272272410.1128/AAC.01136‑0718025115
    [Google Scholar]
  102. MaL.J. IbrahimA.S. SkoryC. GrabherrM.G. BurgerG. ButlerM. EliasM. IdnurmA. LangB.F. SoneT. AbeA. CalvoS.E. CorrochanoL.M. EngelsR. FuJ. HansbergW. KimJ.M. KodiraC.D. KoehrsenM.J. LiuB. Miranda-SaavedraD. O’LearyS. Ortiz-CastellanosL. PoulterR. Rodriguez-RomeroJ. Ruiz-HerreraJ. ShenY.Q. ZengQ. GalaganJ. BirrenB.W. CuomoC.A. WickesB.L. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.PLoS Genet.200957e100054910.1371/journal.pgen.100054919578406
    [Google Scholar]
  103. HowardD.H. Acquisition, transport, and storage of iron by pathogenic fungi.Clin. Microbiol. Rev.199912339440410.1128/CMR.12.3.39410398672
    [Google Scholar]
  104. ArtisW.M. FountainJ.A. DelcherH.K. JonesH.E. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability.Diabetes198231121109111410.2337/diacare.31.12.11096816646
    [Google Scholar]
  105. LiuM. LinL. GebremariamT. LuoG. SkoryC.D. FrenchS.W. ChouT.F. EdwardsJ.E.Jr IbrahimA.S. Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine.PLoS Pathog.2015115e100484210.1371/journal.ppat.100484225974051
    [Google Scholar]
  106. BrunkeS. MogaveroS. KasperL. HubeB. Virulence factors in fungal pathogens of man.Curr. Opin. Microbiol.201632899510.1016/j.mib.2016.05.01027257746
    [Google Scholar]
  107. PouraziziM. HakamifardA. PeymanA. MohammadiR. DehghaniS. TavousiN. HosseiniN.S. Azhdari TehraniH. Abtahi-NaeiniB. COVID‐19 associated mucormycosis surge: A review on multi‐pathway mechanisms.Parasite Immunol.2024461e1301610.1111/pim.1301637846902
    [Google Scholar]
  108. RoilidesE. KontoyiannisD.P. WalshT.J. Host defenses against zygomycetes.Clin. Infect. Dis.201254S61S6610.1093/cid/cir86922247447
    [Google Scholar]
  109. CastilloP. WrightK.E. KontoyiannisD.P. WalshT. PatelS. ChorvinskyE. BoseS. HazratY. OmerB. AlbertN. LeenA.M. RooneyC.M. BollardC.M. CruzC.R.Y. A new method for reactivating and expanding T cells specific for Rhizopus oryzae.Mol. Ther. Methods Clin. Dev.2018930531210.1016/j.omtm.2018.03.00330038934
    [Google Scholar]
  110. PotenzaL. ValleriniD. BarozziP. RivaG. ForghieriF. ZanettiE. QuadrelliC. CandoniA. MaertensJ. RossiG. MorselliM. CodeluppiM. PaoliniA. MaccaferriM. Del GiovaneC. D’AmicoR. RumpianesiF. PecorariM. CavalleriF. MarascaR. NarniF. LuppiM. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients.Blood2011118205416541910.1182/blood‑2011‑07‑36652621931119
    [Google Scholar]
  111. ShiY. WangY. ShaoC. HuangJ. GanJ. HuangX. BucciE. PiacentiniM. IppolitoG. MelinoG. COVID-19 infection: the perspectives on immune responses.Cell Death Differ.20202751451145410.1038/s41418‑020‑0530‑332205856
    [Google Scholar]
  112. LambertN. El-AzabS.A. RamrakhianiN.S. BarisanoA. YuL. TaylorK. EsperançaÁ. MendiolaC. DownsC.A. AbrahimH.L. HughesT. RahmaniA.M. BorelliJ.L. ChakrabortyR. PintoM.D. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection.J. Clin. Nurs.2024331768810.1111/jocn.1654136181315
    [Google Scholar]
  113. PopkoK. GorskaE. Stelmaszczyk-EmmelA. PlywaczewskiR. StoklosaA. GoreckaD. PyrzakB. DemkowU. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects.Eur. J. Med. Res.201015S212012210.1186/2047‑783X‑15‑S2‑12021147638
    [Google Scholar]
  114. PintoL.M.O. OliveiraS.A. BragaE.L.A. NogueiraR.M.R. KubelkaC.F. Increased pro-inflammatory cytokines (TNF-alpha and IL-6) and anti-inflammatory compounds (sTNFRp55 and sTNFRp75) in Brazilian patients during exanthematic dengue fever.Mem. Inst. Oswaldo Cruz199994338739410.1590/S0074‑0276199900030001910348988
    [Google Scholar]
  115. HasanS.S. CapstickT. AhmedR. KowC.S. MazharF. MerchantH. ZaidiS.T.R. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis.Expert Rev. Respir. Med.202014111149116310.1080/17476348.2020.180436532734777
    [Google Scholar]
  116. Costela-RuizV.J. Illescas-MontesR. Puerta-PuertaJ.M. RuizC. Melguizo-RodríguezL. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease.Cytokine Growth Factor Rev.202054627510.1016/j.cytogfr.2020.06.00132513566
    [Google Scholar]
  117. AngelicoR. BlasiF. ManziaT.M. TotiL. TisoneG. CacciolaR. The management of immunosuppression in kidney transplant recipients with COVID-19 disease: an update and systematic review of the literature.Medicina (Kaunas)202157543510.3390/medicina5705043533946462
    [Google Scholar]
  118. BhanuprasadK. ManeshA. DevasagayamE. VargheseL. CherianL.M. KurienR. KarthikR. DeodharD. VanjareH. PeterJ. MichaelJ.S. ThomasM. SamuelP. VargheseG.M. Risk factors associated with the mucormycosis epidemic during the COVID-19 pandemic.Int. J. Infect. Dis.202111126727010.1016/j.ijid.2021.08.03734450284
    [Google Scholar]
  119. WongL.Y.R. PerlmanS. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?Nat. Rev. Immunol.2022221475610.1038/s41577‑021‑00656‑234837062
    [Google Scholar]
  120. Tahaghoghi-HajghorbaniS. ZafariP. MasoumiE. RajabinejadM. Jafari-ShakibR. HasaniB. RafieiA. The role of dysregulated immune responses in COVID-19 pathogenesis.Virus Res.202029019819710.1016/j.virusres.2020.19819733069815
    [Google Scholar]
  121. MihaiF.C. Assessment of COVID-19 waste flows during the emergency state in Romania and related public health and environmental concerns.Int. J. Environ. Res. Public Health20201715543910.3390/ijerph1715543932731593
    [Google Scholar]
  122. AshiqueS. MishraN. GargA. GargS. FaridA. RaiS. GuptaG. DuaK. PaudelK.R. Taghizadeh-HesaryF. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes.Am. J. Med.2024S0002-9343(24)00133-510.1016/j.amjmed.2024.02.02938485111
    [Google Scholar]
  123. FaiyazuddinM. SophiaA. AshiqueS. GholapA.D. GowriS. MohantoS. KarthikeyanC. NagS. HussainA. AkhtarM.S. BakhtM.A. AhmedM.G. RustagiS. Rodriguez-MoralesA.J. Salas-MattaL.A. MohantyA. Bonilla-AldanaD.K. SahR. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review.Front. Immunol.202314126450210.3389/fimmu.2023.126450237818370
    [Google Scholar]
  124. LiQ. WangY. SunQ. KnopfJ. HerrmannM. LinL. JiangJ. ShaoC. LiP. HeX. HuaF. NiuZ. MaC. ZhuY. IppolitoG. PiacentiniM. EstaquierJ. MelinoS. WeissF.D. AndreanoE. LatzE. SchultzeJ.L. RappuoliR. MantovaniA. MakT.W. MelinoG. ShiY. Immune response in COVID-19: what is next?Cell Death Differ.20222961107112210.1038/s41418‑022‑01015‑x35581387
    [Google Scholar]
  125. FeldmanC. AndersonR. The role of co-infections and secondary infections in patients with COVID-19.Pneumonia2021131510.1186/s41479‑021‑00083‑w33894790
    [Google Scholar]
  126. LinE. MouaT. LimperA.H. Pulmonary mucormycosis: clinical features and outcomes.Infection201745444344810.1007/s15010‑017‑0991‑628220379
    [Google Scholar]
  127. WhiteP.L. DhillonR. CordeyA. HughesH. FaggianF. SoniS. PandeyM. WhitakerH. MayA. MorganM. WiseM.P. HealyB. BlythI. PriceJ.S. ValeL. PossoR. KrondaJ. BlackwoodA. RaffertyH. MoffittA. TsitsopoulouA. GaurS. HolmesT. BackxM. A national strategy to diagnose coronavirus disease 2019–associated invasive fungal disease in the intensive care unit.Clin. Infect. Dis.2021737e1634e164410.1093/cid/ciaa129832860682
    [Google Scholar]
  128. KothandaramanN. RengarajA. XueB. YewW.S. VelanS.S. KarnaniN. LeowM.K.S. COVID-19 endocrinopathy with hindsight from SARS.Am. J. Physiol. Endocrinol. Metab.20213201E139E15010.1152/ajpendo.00480.202033236920
    [Google Scholar]
  129. RudrapalM. KhairnarS.J. BorseL.B. JadhavA.G. Coronavirus disease-2019 (COVID-19): an updated review.Drug Res. (Stuttg.)202070938940010.1055/a‑1217‑239732746481
    [Google Scholar]
  130. JeongW. KeighleyC. WolfeR. LeeW.L. SlavinM.A. KongD.C.M. ChenS.C.A. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports.Clin. Microbiol. Infect.2019251263410.1016/j.cmi.2018.07.01130036666
    [Google Scholar]
  131. RawR.K. KellyC.A. ReesJ. WroeC. ChadwickD.R. Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination.J. Infect.202183338141210.1016/j.jinf.2021.05.03534062184
    [Google Scholar]
  132. MainiA. TomarG. KhannaD. KiniY. MehtaH. BhagyasreeV. Sino-orbital mucormycosis in a COVID-19 patient: A case report.Int. J. Surg. Case Rep.20218210595710.1016/j.ijscr.2021.10595733964720
    [Google Scholar]
  133. YasminF. NajeebH. NaeemA. DapkeK. PhadkeR. AsgharM.S. ShahS.M.I. De BerardisD. UllahI. COVID-19 associated mucormycosis: A systematic review from diagnostic challenges to management.Diseases2021946510.3390/diseases904006534698143
    [Google Scholar]
  134. KhatriA. ChangK.M. BerlinrutI. WallachF. Mucormycosis after Coronavirus disease 2019 infection in a heart transplant recipient – Case report and review of literature.J. Mycol. Med.202131210112510.1016/j.mycmed.2021.10112533857916
    [Google Scholar]
  135. FuY. YangQ. XuM. KongH. ChenH. FuY. Secondary bacterial infections in critical ill patients with coronavirus disease 2019.Open Forum Infect Dis.202076ofaa22010.1093/ofid/ofaa220.
    [Google Scholar]
  136. TabassumT. ArafY. MoinA.T. RahamanT.I. HosenM.J. COVID-19-associated-mucormycosis: possible role of free iron uptake and immunosuppression.Mol. Biol. Rep.20211834709573
    [Google Scholar]
  137. HuangC. HuangL. WangY. LiX. RenL. GuX. KangL. GuoL. LiuM. ZhouX. LuoJ. HuangZ. TuS. ZhaoY. ChenL. XuD. LiY. LiC. PengL. LiY. XieW. CuiD. ShangL. FanG. XuJ. WangG. WangY. ZhongJ. WangC. WangJ. ZhangD. CaoB. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study.Lancet20213971027022023210.1016/S0140‑6736(20)32656‑833428867
    [Google Scholar]
  138. NoreenS. MaqboolI. MadniA. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic.Eur. J. Pharmacol.202189417385410.1016/j.ejphar.2021.17385433428898
    [Google Scholar]
  139. JohnsonA.K. GhazarianZ. CendrowskiK.D. PersichinoJ.G. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19.Med. Mycol. Case Rep.202132646710.1016/j.mmcr.2021.03.00633842203
    [Google Scholar]
  140. MohiuddinA. MondalS. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update.Infect. Disord. Drug Targets2023238738837584349
    [Google Scholar]
  141. AbdoliA. FalahiS. KenarkoohiA. COVID-19-associated opportunistic infections: a snapshot on the current reports.Clin. Exp. Med.202122332734610.1007/s10238‑021‑00751‑734424451
    [Google Scholar]
  142. Rodriguez-MoralesA.J. Mamani-GarcíaC.S. Nuñez-LupacaJ.N. León-FigueroaD.A. Olarte-DurandM. Yrene-CubasR.A. TiconaD.M. Abanto-UrbanoS. COVID-19 and mucormycosis in Latin America – An emerging concern.Travel Med. Infect. Dis.20214410215610.1016/j.tmaid.2021.10215634454089
    [Google Scholar]
  143. Al-TawfiqJ.A. AlhumaidS. AlshukairiA.N. TemsahM.H. BarryM. Al MutairA. RabaanA.A. Al-OmariA. TirupathiR. AlQahtaniM. AlBahraniS. DhamaK. COVID-19 and mucormycosis superinfection: the perfect storm.Infection202149583385310.1007/s15010‑021‑01670‑134302291
    [Google Scholar]
  144. MontañoD.E. VoigtK. Host immune defense upon fungal infections with mucorales: pathogen-immune cell interactions as drivers of inflammatory responses.J. Fungi (Basel)20206317310.3390/jof603017332957440
    [Google Scholar]
  145. WangM. WeyS. ZhangY. YeR. LeeA.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders.Antioxid. Redox Signal.20091192307231610.1089/ars.2009.248519309259
    [Google Scholar]
  146. ChinnR.Y. DiamondR.D. Generation of chemotactic factors by Rhizopus oryzae in the presence and absence of serum: relationship to hyphal damage mediated by human neutrophils and effects of hyperglycemia and ketoacidosis.Infect. Immun.19823831123112910.1128/iai.38.3.1123‑1129.19826818145
    [Google Scholar]
  147. WaldorfA.R. RudermanN. DiamondR.D. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus.J. Clin. Invest.198474115016010.1172/JCI1113956736246
    [Google Scholar]
  148. LamarisG.A. Ben-AmiR. LewisR.E. ChamilosG. SamonisG. KontoyiannisD.P. Increased virulence of Zygomycetes organisms following exposure to voriconazole: a study involving fly and murine models of zygomycosis.J. Infect. Dis.200919991399140610.1086/59761519358672
    [Google Scholar]
  149. GoudarziM. RashidiM. RezaeiM. Study of Nonenzymatic Glycation of Transferrin and its Effect on Iron–Binding Antioxidant Capacity.Iran. J. Basic Med. Sci.2010
    [Google Scholar]
  150. JehnM. ClarkJ.M. GuallarE. Serum ferritin and risk of the metabolic syndrome in U.S. adults.Diabetes Care200427102422242810.2337/diacare.27.10.242215451911
    [Google Scholar]
  151. AshourpourM. DjalaliM. DjazayeryA. EshraghianM.R. TaghdirM. SaedisomeoliaA. Relationship between serum ferritin and inflammatory biomarkers with insulin resistance in a Persian population with type 2 diabetes and healthy people.Int. J. Food Sci. Nutr.201061331632310.3109/0963748090355515020113186
    [Google Scholar]
  152. RahmanF.I. IslamM.R. BhuiyanM.A. Mucormycosis or black fungus infection is a new scare in South Asian countries during the COVID‐19 pandemic: Associated risk factors and preventive measures.J. Med. Virol.202193126447644810.1002/jmv.2720734260073
    [Google Scholar]
  153. PakdelF. AhmadikiaK. SalehiM. TabariA. JafariR. MehrparvarG. RezaieY. RajaeihS. AlijaniN. BaracA. AbdollahiA. KhodavaisyS. Mucormycosis in patients with COVID‐19: A cross‐sectional descriptive multicentre study from Iran.Mycoses202164101238125210.1111/myc.1333434096653
    [Google Scholar]
  154. MonikaP. ChandraprabhaM.N. Risks of mucormycosis in the current COVID-19 pandemic: a clinical challenge in both immunocompromised and immunocompetent patients.Mol. Biol. Rep.20224964977498810.1007/s11033‑022‑07160‑335107737
    [Google Scholar]
  155. ImranM. A SA. TauseefM. KhanS.A. HuduS.A. Abida Mucormycosis medications: a patent review.Expert Opin. Ther. Pat.202131111059107410.1080/13543776.2021.193930834082658
    [Google Scholar]
  156. HaqueH. NettboyS. KumarS. Surgical-site mucormycosis infection in a solid-organ transplant recipient and a concise review of the literature.BMJ Case Rep.20191212e22968710.1136/bcr‑2019‑22968731826901
    [Google Scholar]
  157. HorgerM. HebartH. SchimmelH. VogelM. BrodoefelH. OechsleK. HahnU. MittelbronnM. BethgeW. ClaussenC.D. Disseminated mucormycosis in haematological patients: CT and MRI findings with pathological correlation.Br. J. Radiol.200679945e88e9510.1259/bjr/1603809716940368
    [Google Scholar]
  158. RochaI.C.N. HasanM.M. GoyalS. PatelT. JainS. GhoshA. CedeñoT.D.D. COVID‐19 and mucormycosis syndemic: double health threat to a collapsing healthcare system in India.Trop. Med. Int. Health20212691016101810.1111/tmi.1364134117677
    [Google Scholar]
  159. HonavarS. Code mucor: guidelines for the diagnosis, staging and management of rhino-orbito-cerebral mucormycosis in the setting of COVID-19.Indian J. Ophthalmol.20216961361136510.4103/ijo.IJO_1165_2134011699
    [Google Scholar]
  160. CornelyO.A. Alastruey-IzquierdoA. ArenzD. ChenS.C.A. DannaouiE. HochheggerB. HoeniglM. JensenH.E. LagrouK. LewisR.E. MellinghoffS.C. MerM. PanaZ.D. SeidelD. SheppardD.C. WahbaR. AkovaM. AlanioA. Al-HatmiA.M.S. Arikan-AkdagliS. BadaliH. Ben-AmiR. BonifazA. BretagneS. CastagnolaE. ChayakulkeereeM. ColomboA.L. Corzo-LeónD.E. DrgonaL. GrollA.H. GuineaJ. HeusselC.P. IbrahimA.S. KanjS.S. KlimkoN. LacknerM. LamothF. LanternierF. Lass-FloerlC. LeeD.G. LehrnbecherT. LmimouniB.E. MaresM. MaschmeyerG. MeisJ.F. MeletiadisJ. MorrisseyC.O. NucciM. OladeleR. PaganoL. PasqualottoA. PatelA. RacilZ. RichardsonM. RoilidesE. RuhnkeM. SeyedmousaviS. SidharthanN. SinghN. SinkoJ. SkiadaA. SlavinM. SomanR. SpellbergB. SteinbachW. TanB.H. UllmannA.J. VehreschildJ.J. VehreschildM.J.G.T. WalshT.J. WhiteP.L. WiederholdN.P. ZaoutisT. ChakrabartiA. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium.Lancet Infect. Dis.20191912e405e42110.1016/S1473‑3099(19)30312‑331699664
    [Google Scholar]
  161. MekkiSO. HassanAA. FalembanA. AlkotaniN. AlsharifSM. HaronA. Pulmonary Mucormycosis: A Case report of a rare infection with potential diagnostic problems.Case Rep Pathol20202020584539410.1155/2020/5845394
    [Google Scholar]
  162. SkiadaA. LanternierF. GrollA.H. PaganoL. ZimmerliS. HerbrechtR. Diagnosis and treatment of mucormycosis in patients with hematological malignancies: Guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3).Haematologica201398449250410.3324/haematol.2012.065110.
    [Google Scholar]
  163. BarhD. AljabaliA.A. TambuwalaM.M. TiwariS. Serrano-ArocaÁ. AlzahraniK.J. Silva AndradeB. AzevedoV. GangulyN.K. LundstromK. Predicting COVID-19—comorbidity pathway crosstalk-based targets and drugs: towards personalized COVID-19 management.Biomedicines20219555610.3390/biomedicines905055634067609
    [Google Scholar]
  164. FierzW. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends?Med. Sci. Monit.2004105RA111RA12315114285
    [Google Scholar]
  165. SarfrazZ. SarfrazA. JaiswalV. PoudelS. BanoS. HanifM. Singh ShresthaP. SarfrazM. MichelG. Cherrez-OjedaI. The Past, Present and Future of COVID-19 Associated Mucormycosis: A Rapid Review.J. Prim. Care Community Health20221310.1177/2150131922109947635587142
    [Google Scholar]
  166. GarreV. Recent Advances and Future Directions in the Understanding of Mucormycosis.Front. Cell. Infect. Microbiol.20221285058110.3389/fcimb.2022.85058135281441
    [Google Scholar]
  167. G AlshahaweyM. S El-HousseinyG. S ElsayedN. Y AlshahraniM. WakeelL.M.E.L. M AboshanabK. New insights on mucormycosis and its association with the COVID-19 pandemic.Future Sci. OA202282FSO77210.2144/fsoa‑2021‑012235059222
    [Google Scholar]
  168. LamothF. LewisR.E. KontoyiannisD.P. Investigational antifungal agents for invasive mycoses: a clinical perspective.Clin. Infect. Dis.202275353454410.1093/cid/ciab107034986246
    [Google Scholar]
  169. Syed-AbdulS. BabuA.S. BellamkondaR.S. ItumallaR. AcharyuluG. KrishnamurthyS. Using artificial intelligence-based models to predict the risk of mucormycosis among COVID-19 survivors: An experience from India.medRxiv202110.1101/2021.09.13.21263511
    [Google Scholar]
  170. Acosta-EspañaJD. VoigtK. Mini review: Risk assessment, clinical manifestation, prediction, and prognosis of mucormycosis: Implications for pathogen- and human-derived biomarkers.Front Microbiol20221389598910.3389/fmicb.2022.895989.
    [Google Scholar]
  171. DopazoJ. Maya-MilesD. GarcíaF. LorussoN. CallejaM.Á. ParejaM.J. López-MirandaJ. Rodríguez-BañoJ. PadilloJ. TúnezI. Romero-GómezM. Implementing personalized medicine in COVID-19 in andalusia: An opportunity to transform the healthcare system.J. Pers. Med.202111647510.3390/jpm1106047534073493
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265310191240919060621
Loading
/content/journals/iddt/10.2174/0118715265310191240919060621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test