Skip to content
2000
image of Mucormycosis and COVID-19: Unraveling the Interplay of Fungal Infection in a Global Health Crisis: An Overview

Abstract

The healthcare system has been greatly affected by the COVID-19 pandemic, resulting in an increase in secondary and co-infections among patients. Factors like pulmonary damage and weakened immune systems make patients more susceptible to fungal infections. Mucormycosis, an opportunistic fungal infection, prospers in environments with limited oxygen, and elevated glucose levels due to conditions such as diabetes and steroid use, as well as in acidic environments from metabolic acidosis and diabetic ketoacidosis, where it demonstrates heightened germination ability. Recognizing these complications is critical to minimize harm to patients. The insights gained from this review can improve our understanding of how fungal infections develop in connection to COVID-19, leading to better predictive algorithms, tailored care plans, enhanced antifungal treatments, quicker diagnostics, and improved management strategies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265310191240919060621
2024-10-31
2025-01-19
Loading full text...

Full text loading...

References

  1. Rahalkar M.C. Bahulikar R.A. Lethal pneumonia cases in Mojiang miners (2012) and the mineshaft could provide important clues to the origin of SARS-CoV-2. Front. Public Health 2020 8 581569 10.3389/fpubh.2020.581569 33194988
    [Google Scholar]
  2. Gates B. Responding to Covid-19 — A Once-in-a-Century Pandemic? 2020 10.1056/NEJMp2003762?query=RP.
    [Google Scholar]
  3. Frutos R. Javelle E. Barberot C. Gavotte L. Tissot-Dupont H. Devaux C.A. Origin of COVID-19: Dismissing the Mojiang mine theory and the laboratory accident narrative. Environ. Res. 2022 204 Pt B 112141 10.1016/j.envres.2021.112141 34597664
    [Google Scholar]
  4. Jones DS. History in a crisis - Lessons for Covid-19. N Engl J Med 2020 382 18 1681 1683 10.1056/NEJMp2004361.
    [Google Scholar]
  5. Madabhavi I. Sarkar M. Kadakol N. COVID-19. A review. Monaldi Arch. Chest Dis. 2020 90 2 10.4081/monaldi.2020.1298 32498503
    [Google Scholar]
  6. Ashique S. ‘Mucormycosis’: A Fungal Infection Threatening India During COVID-19′ - A Review. Antiinfect. Agents 2022 20 1 e301121198413 10.2174/2211352519666211130105217
    [Google Scholar]
  7. Garcia-Vidal C. Sanjuan G. Moreno-García E. Puerta-Alcalde P. Garcia-Pouton N. Chumbita M. Fernandez-Pittol M. Pitart C. Inciarte A. Bodro M. Morata L. Ambrosioni J. Grafia I. Meira F. Macaya I. Cardozo C. Casals C. Tellez A. Castro P. Marco F. García F. Mensa J. Martínez J.A. Soriano A. Rico V. Hernández-Meneses M. Agüero D. Torres B. González A. de la Mora L. Rojas J. Linares L. Fidalgo B. Rodriguez N. Nicolas D. Albiach L. Muñoz J. Almuedo A. Camprubí D. Angeles Marcos M. Camprubí D. Cilloniz C. Fernández S. Nicolas J.M. Torres A. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin. Microbiol. Infect. 2021 27 1 83 88 10.1016/j.cmi.2020.07.041 32745596
    [Google Scholar]
  8. Khanna M. Challa S. Kabeil A.S. Inyang B. Gondal F.J. Abah G.A. Minnal Dhandapani M. Manne M. Mohammed L. Risk of mucormycosis in diabetes mellitus: a systematic review. Cureus 2021 13 10 e18827 10.7759/cureus.18827 34804684
    [Google Scholar]
  9. SeyedAlinaghi S. Karimi A. Barzegary A. Pashaei Z. Afsahi A.M. Alilou S. Janfaza N. Shojaei A. Afroughi F. Mohammadi P. Soleimani Y. Nazarian N. Amiri A. Tantuoyir M.M. Oliaei S. Mehraeen E. Dadras O. Mucormycosis infection in patients with COVID-19: A systematic review. Health Sci. Rep. 2022 5 2 e529 10.1002/hsr2.529 35252593
    [Google Scholar]
  10. Prakash H. Skiada A. Paul R.A. Chakrabarti A. Rudramurthy S.M. Connecting the dots: interplay of pathogenic mechanisms between COVID-19 disease and mucormycosis. J. Fungi (Basel) 2021 7 8 616 10.3390/jof7080616 34436155
    [Google Scholar]
  11. Prakash H. Chakrabarti A. Epidemiology of Mucormycosis in India. Microorganisms 2021 9 3 523 10.3390/microorganisms9030523 33806386
    [Google Scholar]
  12. Patel A. Agarwal R. Rudramurthy S.M. Shevkani M. Xess I. Sharma R. Savio J. Sethuraman N. Madan S. Shastri P. Thangaraju D. Marak R. Tadepalli K. Savaj P. Sunavala A. Gupta N. Singhal T. Muthu V. Chakrabarti A. Multicenter epidemiologic study of coronavirus disease–associated mucormycosis, India. Emerg. Infect. Dis. 2021 27 9 2349 2359 10.3201/eid2709.210934 34087089
    [Google Scholar]
  13. John T.M. Jacob C.N. Kontoyiannis D.P. When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis. J. Fungi (Basel) 2021 7 4 298 10.3390/jof7040298 33920755
    [Google Scholar]
  14. Hoenigl M. Seidel D. Carvalho A. Rudramurthy S.M. Arastehfar A. Gangneux J.P. The Emergence of COVID-19 Associated Mucormycosis: Analysis of Cases From 18 Countries (preprint). Lancet Microbe 2021
    [Google Scholar]
  15. Patel A. Kaur H. Xess I. Michael J. Savio J. Rudramurthy S. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin Microbiol Infect 2020 26 7 944.e9 944.e15 10.1016/j.cmi.2019.11.021
    [Google Scholar]
  16. Prakash H. Ghosh A.K. Rudramurthy S.M. Singh P. Xess I. Savio J. Pamidimukkala U. Jillwin J. Varma S. Das A. Panda N.K. Singh S. Bal A. Chakrabarti A. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med. Mycol. 2019 57 4 395 402 10.1093/mmy/myy060 30085158
    [Google Scholar]
  17. Calabretta E. Moraleda J.M. Iacobelli M. Jara R. Vlodavsky I. O’Gorman P. Pagliuca A. Mo C. Baron R.M. Aghemo A. Soiffer R. Fareed J. Carlo-Stella C. Richardson P. COVID‐19‐induced endotheliitis: emerging evidence and possible therapeutic strategies. Br. J. Haematol. 2021 193 1 43 51 10.1111/bjh.17240 33538335
    [Google Scholar]
  18. Iba T. Connors J.M. Levy J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020 69 12 1181 1189 10.1007/s00011‑020‑01401‑6 32918567
    [Google Scholar]
  19. Huertas A. Montani D. Savale L. Pichon J. Tu L. Parent F. Guignabert C. Humbert M. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur. Respir. J. 2020 56 1 2001634 10.1183/13993003.01634‑2020 32554538
    [Google Scholar]
  20. Danion F. Letscher-Bru V. Guitard J. Sitbon K. Dellière S. Angoulvant A. Coronavirus disease 2019-Associated mucormycosis in France: A rare but deadly complication. Open Forum Infect Dis 2021 9 2 ofab566 10.1093/ofid/ofab566.
    [Google Scholar]
  21. Kumar M. Sarma D.K. Shubham S. Kumawat M. Verma V. Singh B. Nagpal R. Tiwari R.R. Mucormycosis in COVID-19 pandemic: Risk factors and linkages. Curr. Res. Microb. Sci. 2021 2 100057 10.1016/j.crmicr.2021.100057 34396355
    [Google Scholar]
  22. Singh A.K. Singh R. Joshi S.R. Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 2021 15 4 102146 10.1016/j.dsx.2021.05.019 34192610
    [Google Scholar]
  23. Hanley B. Naresh K.N. Roufosse C. Nicholson A.G. Weir J. Cooke G.S. Thursz M. Manousou P. Corbett R. Goldin R. Al-Sarraj S. Abdolrasouli A. Swann O.C. Baillon L. Penn R. Barclay W.S. Viola P. Osborn M. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 2020 1 6 e245 e253 10.1016/S2666‑5247(20)30115‑4 32844161
    [Google Scholar]
  24. Monte Junior E.S. Santos M.E.L. Ribeiro I.B. Luz G.O. Baba E.R. Hirsch B.S. Funari M.P. de Moura E.G.H. Rare and fatal gastrointestinal mucormycosis (Zygomycosis) in a COVID-19 patient: a case report. Clin. Endosc. 2020 53 6 746 749 10.5946/ce.2020.180 33207116
    [Google Scholar]
  25. Pasero D. Sanna S. Liperi C. Piredda D. Branca G.P. Casadio L. Simeo R. Buselli A. Rizzo D. Bussu F. Rubino S. Terragni P. A challenging complication following SARS-CoV-2 infection: a case of pulmonary mucormycosis. Infection 2021 49 5 1055 1060 10.1007/s15010‑020‑01561‑x 33331988
    [Google Scholar]
  26. Karimi‐Galougahi M. Arastou S. Haseli S. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19). Int Forum Allergy Rhinol 2021 11 6 1029 1030 10.1002/alr.22785.
    [Google Scholar]
  27. Veisi A. Bagheri A. Eshaghi M. Rikhtehgar M.H. Rezaei Kanavi M. Farjad R. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: A case report. Eur. J. Ophthalmol. 2022 32 4 NP11 NP16 10.1177/11206721211009450 33843287
    [Google Scholar]
  28. Sargin F. Akbulut M. Karaduman S. Sungurtekin H. Severe rhinocerebral mucormycosis case developed after COVID 19. J. Bacteriol. Parasitol. 2021 12 1 1000386
    [Google Scholar]
  29. Waizel-Haiat S. Guerrero-Paz J.A. Sanchez-Hurtado L. Calleja-Alarcon S. Romero-Gutierrez L. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus 2021 13 2 e13163 10.7759/cureus.13163 33575155
    [Google Scholar]
  30. Zurl C. Hoenigl M. Schulz E. Hatzl S. Gorkiewicz G. Krause R. Eller P. Prattes J. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy. J. Fungi (Basel) 2021 7 2 88 10.3390/jof7020088 33513875
    [Google Scholar]
  31. Buil J.B. van Zanten A.R.H. Bentvelsen R.G. Rijpstra T.A. Goorhuis B. van der Voort S. Wammes L.J. Janson J.A. Melchers M. Heusinkveld M. Melchers W.J.G. Kuijper E.J. Verweij P.E. Case series of four secondary mucormycosis infections in COVID-19 patients, the Netherlands, December 2020 to May 2021. Euro Surveill. 2021 26 23 2100510 10.2807/1560‑7917.ES.2021.26.23.2100510 34114540
    [Google Scholar]
  32. Arana C. Cuevas Ramírez R.E. Xipell M. Casals J. Moreno A. Herrera S. Bodro M. Cofan F. Diekmann F. Esforzado N. Mucormycosis associated with COVID‐19 in two kidney transplant patients. Transpl. Infect. Dis. 2021 23 4 e13652 10.1111/tid.13652 34038014
    [Google Scholar]
  33. Mulakavalupil B. Vaity C. Joshi S. Misra A. Pandit R.A. Absence of Case of Mucormycosis (March 2020–May 2021) under strict protocol driven management care in a COVID-19 specific tertiary care intensive care unit. Diabetes Metab. Syndr. 2021 15 4 102169 10.1016/j.dsx.2021.06.006 34198110
    [Google Scholar]
  34. Hoenigl M. Seidel D. Carvalho A. Rudramurthy S.M. Arastehfar A. Gangneux J.P. Nasir N. Bonifaz A. Araiza J. Klimko N. Serris A. Lagrou K. Meis J.F. Cornely O.A. Perfect J.R. White P.L. Chakrabarti A. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe 2022 3 7 e543 e552 10.1016/S2666‑5247(21)00237‑8 35098179
    [Google Scholar]
  35. Trieu T.A. Navarro-Mendoza M.I. Pérez-Arques C. Sanchis M. Capilla J. Navarro-Rodriguez P. Lopez-Fernandez L. Torres-Martínez S. Garre V. Ruiz-Vázquez R.M. Nicolás F.E. RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog. 2017 13 1 e1006150 10.1371/journal.ppat.1006150 28107502
    [Google Scholar]
  36. Zhou P. Li Z. Xie L. An D. Fan Y. Wang X. Li Y. Liu X. Wu J. Li G. Li Q. Research progress and challenges to coronavirus vaccine development. J. Med. Virol. 2021 93 2 741 754 10.1002/jmv.26517 32936465
    [Google Scholar]
  37. Varsha A. RNA viruses with central nervous system tropism. RNA Viruses and Neurological Disorders. CRC Press 2023 16 35 10.1201/9781003285823‑3
    [Google Scholar]
  38. Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection: Interim guidance, 10 January 2020. 2020 Available from: https://iris.who.int/handle/10665/330374
  39. Zhang T. Wu Q. Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020 30 7 1346 1351.e2 10.1016/j.cub.2020.03.063.
    [Google Scholar]
  40. Devaux C.A. Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front. Microbiol. 2023 14 1199561 10.3389/fmicb.2023.1199561 37520374
    [Google Scholar]
  41. Wadman M. Cohen J. Novavax vaccine delivers 89% efficacy against COVID-19 in UK—but is less potent in South Africa. Science 2021 12 2774
    [Google Scholar]
  42. Pouresmaieli M. Ekrami E. Akbari A. Noorbakhsh N. Moghadam N.B. Mamoudifard M. A comprehensive review on efficient approaches for combating coronaviruses. Biomed. Pharmacother. 2021 144 112353 10.1016/j.biopha.2021.112353 34794240
    [Google Scholar]
  43. Yadav R. Chaudhary J.K. Jain N. Chaudhary P.K. Khanra S. Dhamija P. Sharma A. Kumar A. Handu S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 2021 10 4 821 10.3390/cells10040821 33917481
    [Google Scholar]
  44. Calvaresi V. Wrobel A.G. Toporowska J. Hammerschmid D. Doores K.J. Bradshaw R.T. Parsons R.B. Benton D.J. Roustan C. Reading E. Malim M.H. Gamblin S.J. Politis A. Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nat. Commun. 2023 14 1 1421 10.1038/s41467‑023‑36745‑0 36918534
    [Google Scholar]
  45. Chatterjee S.K. Saha S. Munoz M.N.M. Molecular pathogenesis, immunopathogenesis and novel therapeutic strategy against COVID-19. Front. Mol. Biosci. 2020 7 196 10.3389/fmolb.2020.00196 32850977
    [Google Scholar]
  46. Jackson C. Farzan M. Chen B. Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2021 ••• 10 34611326
    [Google Scholar]
  47. Millet J.K. Kien F. Cheung C.Y. Siu Y.L. Chan W.L. Li H. Leung H.L. Jaume M. Bruzzone R. Malik Peiris J.S. Altmeyer R.M. Nal B. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage. PLoS One 2012 7 11 e49566 10.1371/journal.pone.0049566 23185364
    [Google Scholar]
  48. Song W. Gui M. Wang X. Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018 14 8 e1007236 10.1371/journal.ppat.1007236 30102747
    [Google Scholar]
  49. Tikellis C. Bernardi S. Burns W.C. Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens. 2011 20 1 62 68 10.1097/MNH.0b013e328341164a 21099686
    [Google Scholar]
  50. Samavati L. Uhal B.D. ACE DU. Much more than just a receptor for SARS-COV-2. Front. Cell. Infect. Microbiol. 2020 10 317 10.3389/fcimb.2020.00317 32582574
    [Google Scholar]
  51. Jia H. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock 2016 46 3 239 248 10.1097/SHK.0000000000000633 27082314
    [Google Scholar]
  52. Bourgonje A.R. Abdulle A.E. Timens W. Hillebrands J.L. Navis G.J. Gordijn S.J. Bolling M.C. Dijkstra G. Voors A.A. Osterhaus A.D.M.E. van der Voort P.H.J. Mulder D.J. van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020 251 3 228 248 10.1002/path.5471 32418199
    [Google Scholar]
  53. Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 181 2 271 280.e8 10.1016/j.cell.2020.02.052.
    [Google Scholar]
  54. Böttcher-Friebertshäuser E. Freuer C. Sielaff F. Schmidt S. Eickmann M. Uhlendorff J. Steinmetzer T. Klenk H.D. Garten W. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J. Virol. 2010 84 11 5605 5614 10.1128/JVI.00140‑10 20237084
    [Google Scholar]
  55. Belouzard S. Chu V. Whittaker G. Activación de la proteína de la espiga del coronavirus del SARS a través de la escisión proteolítica secuencial en dos sitios distintos. Proc. Natl. Acad. Sci. USA 2009 106 14 5871 5876 10.1073/pnas.0809524106 19321428
    [Google Scholar]
  56. Wang H. Yang P. Liu K. Guo F. Zhang Y. Zhang G. Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008 18 2 290 301 10.1038/cr.2008.15 18227861
    [Google Scholar]
  57. Trus I. Udenze D. Berube N. Wheler C. Martel M.J. Gerdts V. Karniychuk U. CpG-recoding in Zika virus genome causes host-age-dependent attenuation of infection with protection against lethal heterologous challenge in mice. Front. Immunol. 2020 10 3077 10.3389/fimmu.2019.03077 32038625
    [Google Scholar]
  58. Krishnakumar H.N. Momtaz D.A. Sherwani A. Mhapankar A. Gonuguntla R.K. Maleki A. Abbas A. Ghali A.N. Al Afif A. Pathogenesis and progression of anosmia and dysgeusia during the COVID-19 pandemic. Eur. Arch. Otorhinolaryngol. 2023 280 2 505 509 10.1007/s00405‑022‑07689‑w 36209486
    [Google Scholar]
  59. Chegini Z. Didehdar M. Khoshbayan A. Rajaeih S. Salehi M. Shariati A. Epidemiology, clinical features, diagnosis and treatment of cerebral mucormycosis in diabetic patients: A systematic review of case reports and case series. Mycoses 2020 63 12 1264 1282 10.1111/myc.13187 32965744
    [Google Scholar]
  60. Sharma B. Nonzom S. Mucormycosis and Its Upsurge During COVID-19 Epidemic: An Updated Review. Curr. Microbiol. 2023 80 10 322 10.1007/s00284‑023‑03430‑w 37592083
    [Google Scholar]
  61. Riley T.T. Muzny C.A. Swiatlo E. Legendre D.P. Breaking the Mold. Ann. Pharmacother. 2016 50 9 747 757 10.1177/1060028016655425 27307416
    [Google Scholar]
  62. Prabhu R.M. Patel R. Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment. Clin. Microbiol. Infect. 2004 10 31 47 10.1111/j.1470‑9465.2004.00843.x 14748801
    [Google Scholar]
  63. Ibrahim A.S. Spellberg B. Walsh T.J. Kontoyiannis D.P. Pathogenesis of Mucormycosis. Clin. Infect. Dis. 2012 54 Suppl 1 S16 S22 10.1093/cid/cir865 22247441
    [Google Scholar]
  64. Chander J. Textbook of Medical Mycology 2017
    [Google Scholar]
  65. Mahalaxmi I. Jayaramayya K. Venkatesan D. Subramaniam M.D. Renu K. Vijayakumar P. Narayanasamy A. Gopalakrishnan A.V. Kumar N.S. Sivaprakash P. Sambasiva Rao K.R.S. Vellingiri B. Mucormycosis: An opportunistic pathogen during COVID-19. Environ. Res. 2021 201 111643 10.1016/j.envres.2021.111643 34237335
    [Google Scholar]
  66. Hariprasath P. Arunaloke C. Epidemiologia Global da Mucormicose. J. Fungi (Basel) 2019 5 1 26 10.3390/jof5010026 30901907
    [Google Scholar]
  67. Cinteza E. Nicolescu A. Ciomartan T. Gavriliu L.C. Voicu C. Carabas A. Popescu M. Margarint I. Disseminated Cunninghamella spp. Endocarditis in a Beta-Thalassemia Patient after Asymptomatic COVID-19 Infection. Diagnostics (Basel) 2022 12 3 657 10.3390/diagnostics12030657 35328209
    [Google Scholar]
  68. Chakrabarti A. Kumar P. Padhye A.A. Chatha L. Singh S.K. Das A. Wig J.D. Kataria R.N. Primary cutaneous zygomycosis due to Saksenaea vasiformis and Apophysomyces elegans. Clin. Infect. Dis. 1997 24 4 580 582 10.1093/clind/24.4.580 9145731
    [Google Scholar]
  69. Duan H. Chen X. Li Z. Pang Y. Jing W. Liu P. Wu T. Cai C. Shi J. Qin Z. Yin H. Qiu C. Li C. Xia Y. Chen W. Ye Z. Li Z. Chen G. Wang S. Liu Y. Chu L. Zhu M. Xu T. Wang Q. Wang J. Du Y. Wang J. Chu N. Xu S. Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial. Clin. Microbiol. Infect. 2019 25 2 190 195 10.1016/j.cmi.2018.07.012 30036672
    [Google Scholar]
  70. Phan Q.T. Myers C.L. Fu Y. Sheppard D.C. Yeaman M.R. Welch W.H. Ibrahim A.S. Edwards J.E. Jr Filler S.G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007 5 3 e64 10.1371/journal.pbio.0050064 17311474
    [Google Scholar]
  71. Das R. Roy J. Ashique S. Black Fungus: An Alarming Infection During Novel Coronavirus: A Review. Antiinfect. Agents 2022 20 4 e290322202776 10.2174/2211352520666220329160041
    [Google Scholar]
  72. Ashique S. Gupta K. Gupta G. Mishra N. Singh S.K. Wadhwa S. Gulati M. Dureja H. Zacconi F. Oliver B.G. Paudel K.R. Hansbro P.M. Chellappan D.K. Dua K. Vitamin D-A prominent immunomodulator to prevent COVID-19 infection. Int. J. Rheum. Dis. 2023 26 1 13 30 10.1111/1756‑185X.14477 36308699
    [Google Scholar]
  73. Ashique S. Chaudhary V. Pal S. Panwar J. Kumar M. Pramanik S. Sinha A. Mukherjee A. Marburg virus-a threat during SARS-CoV-2 era: a review. Infect. Disord. Drug Targets 2023 23 5 e280223214111 10.2174/1871526523666230228103845 36852815
    [Google Scholar]
  74. Schulz A. Dürr C. Zenz T. Döhner H. Stilgenbauer S. Lichter P. Seiffert M. Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment. Blood 2013 121 13 2503 2511 10.1182/blood‑2012‑08‑447664 23349394
    [Google Scholar]
  75. Azhar A. Khan W.H. Khan P.A. Alhosaini K. Owais M. Ahmad A. Mucormycosis and COVID-19 pandemic: Clinical and diagnostic approach. J. Infect. Public Health 2022 15 4 466 479 10.1016/j.jiph.2022.02.007 35216920
    [Google Scholar]
  76. Hoffmann K. Pawłowska J. Walther G. Wrzosek M. de Hoog G.S. Benny G.L. Kirk P.M. Voigt K. The family structure of the <I>Mucorales</I>: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 2013 30 1 57 76 10.3767/003158513X666259 24027347
    [Google Scholar]
  77. Lecointe K. Cornu M. Leroy J. Coulon P. Sendid B. Polysaccharides cell wall architecture of Mucorales. Front. Microbiol. 2019 10 469 10.3389/fmicb.2019.00469 30941108
    [Google Scholar]
  78. Angebault C. Lanternier F. Dalle F. Schrimpf C. Roupie A-L. Dupuis A. Prospective evaluation of serum β-glucan testing in patients with probable or proven fungal diseases. Open Forum Infect Dis 2016 3 3 ofw128 10.1093/ofid/ofw128.
    [Google Scholar]
  79. Yamazaki H. Shiraishi N. Takeuchi K. Ohnishi Y. Horinouchi S. Characterization of alg2 encoding a mannosyltransferase in the zygomycete fungus Rhizomucor pusillus. Gene 1998 221 2 179 184 10.1016/S0378‑1119(98)00456‑9 9795208
    [Google Scholar]
  80. Ghuman H. Voelz K. Innate and adaptive immunity to mucorales. J Fungi (Basel) 2017 3 3 10.3390/jof3030048.
    [Google Scholar]
  81. Morin-Sardin S. Nodet P. Coton E. Jany J.L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol. Rev. 2017 31 1 12 32 10.1016/j.fbr.2016.11.002
    [Google Scholar]
  82. Liu D. Classification of medically important fungi. Molecular Medical Microbiology. Elsevier 2024 2763 2777 10.1016/B978‑0‑12‑818619‑0.00034‑4.
    [Google Scholar]
  83. Ibrahim A. Edwards J. Filler S. Zygomycoses. Clinical Mycology Dismukes WE. Pappas PG. Sobel JD. 2003 10.1093/oso/9780195148091.003.0015.
    [Google Scholar]
  84. Baldin C. Ibrahim A.S. Molecular mechanisms of mucormycosis—The bitter and the sweet. PLoS Pathog. 2017 13 8 e1006408 10.1371/journal.ppat.1006408 28771587
    [Google Scholar]
  85. Sharma A. Alam M.A. Dhoundiyal S. Sharma P.K. Review on Mucormycosis: Pathogenesis, Epidemiology, Microbiology and Diagnosis. Infect. Disord. Drug Targets 2024 24 1 e220823220209 10.2174/1871526523666230822154407 37608614
    [Google Scholar]
  86. Timpl R. Rohde H. Robey P.G. Rennard S.I. Foidart J.M. Martin G.R. Laminin–a glycoprotein from basement membranes. J. Biol. Chem. 1979 254 19 9933 9937 10.1016/S0021‑9258(19)83607‑4 114518
    [Google Scholar]
  87. Bouchara J.P. Oumeziane N.A. Lissitzky J.C. Larcher G. Tronchin G. Chabasse D. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components. Eur. J. Cell Biol. 1996 70 1 76 83 8738422
    [Google Scholar]
  88. Ibrahim A.S. Spellberg B. Avanessian V. Fu Y. Edwards J.E. Jr Rhizopus oryzae adheres to, is phagocytosed by, and damages endothelial cells in vitro. Infect. Immun. 2005 73 2 778 783 10.1128/IAI.73.2.778‑783.2005 15664916
    [Google Scholar]
  89. Liu M. Spellberg B. Phan Q.T. Fu Y. Fu Y. Lee A.S. Edwards J.E. Jr Filler S.G. Ibrahim A.S. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J. Clin. Invest. 2010 120 6 1914 1924 10.1172/JCI42164 20484814
    [Google Scholar]
  90. Liu H. Lee M.J. Solis N.V. Phan Q.T. Swidergall M. Ralph B. Ibrahim A.S. Sheppard D.C. Filler S.G. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat. Microbiol. 2016 2 2 16211 10.1038/nmicrobiol.2016.211 27841851
    [Google Scholar]
  91. Upadhyay S.K. Mahajan L. Ramjee S. Singh Y. Basir S.F. Madan T. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J. Med. Microbiol. 2009 58 6 714 722 10.1099/jmm.0.005991‑0 19429746
    [Google Scholar]
  92. Bouvet M. Debarnot C. Imbert I. Selisko B. Snijder E.J. Canard B. Decroly E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010 6 4 e1000863 10.1371/journal.ppat.1000863 20421945
    [Google Scholar]
  93. Gebremariam T. Alkhazraji S. Soliman S.S.M. Gu Y. Jeon H.H. Zhang L. French S.W. Stevens D.A. Edwards J.E. Jr Filler S.G. Uppuluri P. Ibrahim A.S. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Sci. Adv. 2019 5 6 eaaw1327 10.1126/sciadv.aaw1327 31206021
    [Google Scholar]
  94. Chibucos M.C. Soliman S. Gebremariam T. Lee H. Daugherty S. Orvis J. Shetty A.C. Crabtree J. Hazen T.H. Etienne K.A. Kumari P. O’Connor T.D. Rasko D.A. Filler S.G. Fraser C.M. Lockhart S.R. Skory C.D. Ibrahim A.S. Bruno V.M. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat. Commun. 2016 7 1 12218 10.1038/ncomms12218 27447865
    [Google Scholar]
  95. Gebremariam T. Liu M. Luo G. Bruno V. Phan Q.T. Waring A.J. Edwards J.E. Jr Filler S.G. Yeaman M.R. Ibrahim A.S. CotH3 mediates fungal invasion of host cells during mucormycosis. J. Clin. Invest. 2014 124 1 237 250 10.1172/JCI71349 24355926
    [Google Scholar]
  96. Wächtler B. Citiulo F. Jablonowski N. Förster S. Dalle F. Schaller M. Wilson D. Hube B. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 2012 7 5 e36952 10.1371/journal.pone.0036952 22606314
    [Google Scholar]
  97. Tahiri G. Lax C. Cánovas-Márquez J.T. Carrillo-Marín P. Sanchis M. Navarro E. Garre V. Nicolás F.E. Mucorales and mucormycosis: Recent insights and future prospects. J. Fungi (Basel) 2023 9 3 335 10.3390/jof9030335 36983503
    [Google Scholar]
  98. Petrikkos G. Skiada A. Lortholary O. Roilides E. Walsh T.J. Kontoyiannis D.P. Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis. 2012 54 S23 S34 10.1093/cid/cir866 22247442
    [Google Scholar]
  99. Thomas R.J. Particle size and pathogenicity in the respiratory tract. Virulence 2013 4 8 847 858 10.4161/viru.27172 24225380
    [Google Scholar]
  100. Honavar S.G. Sen M. Lahane S. Lahane T.P. Parekh R. Mucor in a viral land: a tale of two pathogens. Indian J. Ophthalmol. 2021 69 2 244 252 10.4103/ijo.IJO_3774_20 33463566
    [Google Scholar]
  101. Chamilos G. Lewis R.E. Lamaris G. Walsh T.J. Kontoyiannis D.P. Zygomycetes hyphae trigger an early, robust proinflammatory response in human polymorphonuclear neutrophils through toll-like receptor 2 induction but display relative resistance to oxidative damage. Antimicrob. Agents Chemother. 2008 52 2 722 724 10.1128/AAC.01136‑07 18025115
    [Google Scholar]
  102. Ma L.J. Ibrahim A.S. Skory C. Grabherr M.G. Burger G. Butler M. Elias M. Idnurm A. Lang B.F. Sone T. Abe A. Calvo S.E. Corrochano L.M. Engels R. Fu J. Hansberg W. Kim J.M. Kodira C.D. Koehrsen M.J. Liu B. Miranda-Saavedra D. O’Leary S. Ortiz-Castellanos L. Poulter R. Rodriguez-Romero J. Ruiz-Herrera J. Shen Y.Q. Zeng Q. Galagan J. Birren B.W. Cuomo C.A. Wickes B.L. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009 5 7 e1000549 10.1371/journal.pgen.1000549 19578406
    [Google Scholar]
  103. Howard D.H. Acquisition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev. 1999 12 3 394 404 10.1128/CMR.12.3.394 10398672
    [Google Scholar]
  104. Artis W.M. Fountain J.A. Delcher H.K. Jones H.E. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability. Diabetes 1982 31 12 1109 1114 10.2337/diacare.31.12.1109 6816646
    [Google Scholar]
  105. Liu M. Lin L. Gebremariam T. Luo G. Skory C.D. French S.W. Chou T.F. Edwards J.E. Jr Ibrahim A.S. Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine. PLoS Pathog. 2015 11 5 e1004842 10.1371/journal.ppat.1004842 25974051
    [Google Scholar]
  106. Brunke S. Mogavero S. Kasper L. Hube B. Virulence factors in fungal pathogens of man. Curr. Opin. Microbiol. 2016 32 89 95 10.1016/j.mib.2016.05.010 27257746
    [Google Scholar]
  107. Pourazizi M. Hakamifard A. Peyman A. Mohammadi R. Dehghani S. Tavousi N. Hosseini N.S. Azhdari Tehrani H. Abtahi-Naeini B. COVID‐19 associated mucormycosis surge: A review on multi‐pathway mechanisms. Parasite Immunol. 2024 46 1 e13016 10.1111/pim.13016 37846902
    [Google Scholar]
  108. Roilides E. Kontoyiannis D.P. Walsh T.J. Host defenses against zygomycetes. Clin. Infect. Dis. 2012 54 S61 S66 10.1093/cid/cir869 22247447
    [Google Scholar]
  109. Castillo P. Wright K.E. Kontoyiannis D.P. Walsh T. Patel S. Chorvinsky E. Bose S. Hazrat Y. Omer B. Albert N. Leen A.M. Rooney C.M. Bollard C.M. Cruz C.R.Y. A new method for reactivating and expanding T cells specific for Rhizopus oryzae. Mol. Ther. Methods Clin. Dev. 2018 9 305 312 10.1016/j.omtm.2018.03.003 30038934
    [Google Scholar]
  110. Potenza L. Vallerini D. Barozzi P. Riva G. Forghieri F. Zanetti E. Quadrelli C. Candoni A. Maertens J. Rossi G. Morselli M. Codeluppi M. Paolini A. Maccaferri M. Del Giovane C. D’Amico R. Rumpianesi F. Pecorari M. Cavalleri F. Marasca R. Narni F. Luppi M. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood 2011 118 20 5416 5419 10.1182/blood‑2011‑07‑366526 21931119
    [Google Scholar]
  111. Shi Y. Wang Y. Shao C. Huang J. Gan J. Huang X. Bucci E. Piacentini M. Ippolito G. Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020 27 5 1451 1454 10.1038/s41418‑020‑0530‑3 32205856
    [Google Scholar]
  112. Lambert N. El-Azab S.A. Ramrakhiani N.S. Barisano A. Yu L. Taylor K. Esperança Á. Mendiola C. Downs C.A. Abrahim H.L. Hughes T. Rahmani A.M. Borelli J.L. Chakraborty R. Pinto M.D. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection. J. Clin. Nurs. 2024 33 1 76 88 10.1111/jocn.16541 36181315
    [Google Scholar]
  113. Popko K. Gorska E. Stelmaszczyk-Emmel A. Plywaczewski R. Stoklosa A. Gorecka D. Pyrzak B. Demkow U. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010 15 S2 120 122 10.1186/2047‑783X‑15‑S2‑120 21147638
    [Google Scholar]
  114. Pinto L.M.O. Oliveira S.A. Braga E.L.A. Nogueira R.M.R. Kubelka C.F. Increased pro-inflammatory cytokines (TNF-alpha and IL-6) and anti-inflammatory compounds (sTNFRp55 and sTNFRp75) in Brazilian patients during exanthematic dengue fever. Mem. Inst. Oswaldo Cruz 1999 94 3 387 394 10.1590/S0074‑02761999000300019 10348988
    [Google Scholar]
  115. Hasan S.S. Capstick T. Ahmed R. Kow C.S. Mazhar F. Merchant H. Zaidi S.T.R. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev. Respir. Med. 2020 14 11 1149 1163 10.1080/17476348.2020.1804365 32734777
    [Google Scholar]
  116. Costela-Ruiz V.J. Illescas-Montes R. Puerta-Puerta J.M. Ruiz C. Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020 54 62 75 10.1016/j.cytogfr.2020.06.001 32513566
    [Google Scholar]
  117. Angelico R. Blasi F. Manzia T.M. Toti L. Tisone G. Cacciola R. The management of immunosuppression in kidney transplant recipients with COVID-19 disease: an update and systematic review of the literature. Medicina (Kaunas) 2021 57 5 435 10.3390/medicina57050435 33946462
    [Google Scholar]
  118. Bhanuprasad K. Manesh A. Devasagayam E. Varghese L. Cherian L.M. Kurien R. Karthik R. Deodhar D. Vanjare H. Peter J. Michael J.S. Thomas M. Samuel P. Varghese G.M. Risk factors associated with the mucormycosis epidemic during the COVID-19 pandemic. Int. J. Infect. Dis. 2021 111 267 270 10.1016/j.ijid.2021.08.037 34450284
    [Google Scholar]
  119. Wong L.Y.R. Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy? Nat. Rev. Immunol. 2022 22 1 47 56 10.1038/s41577‑021‑00656‑2 34837062
    [Google Scholar]
  120. Tahaghoghi-Hajghorbani S. Zafari P. Masoumi E. Rajabinejad M. Jafari-Shakib R. Hasani B. Rafiei A. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res. 2020 290 198197 10.1016/j.virusres.2020.198197 33069815
    [Google Scholar]
  121. Mihai F.C. Assessment of COVID-19 waste flows during the emergency state in Romania and related public health and environmental concerns. Int. J. Environ. Res. Public Health 2020 17 15 5439 10.3390/ijerph17155439 32731593
    [Google Scholar]
  122. Ashique S. Mishra N. Garg A. Garg S. Farid A. Rai S. Gupta G. Dua K. Paudel K.R. Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am. J. Med. 2024 S0002-9343(24)00133-5 10.1016/j.amjmed.2024.02.029 38485111
    [Google Scholar]
  123. Faiyazuddin M. Sophia A. Ashique S. Gholap A.D. Gowri S. Mohanto S. Karthikeyan C. Nag S. Hussain A. Akhtar M.S. Bakht M.A. Ahmed M.G. Rustagi S. Rodriguez-Morales A.J. Salas-Matta L.A. Mohanty A. Bonilla-Aldana D.K. Sah R. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review. Front. Immunol. 2023 14 1264502 10.3389/fimmu.2023.1264502 37818370
    [Google Scholar]
  124. Li Q. Wang Y. Sun Q. Knopf J. Herrmann M. Lin L. Jiang J. Shao C. Li P. He X. Hua F. Niu Z. Ma C. Zhu Y. Ippolito G. Piacentini M. Estaquier J. Melino S. Weiss F.D. Andreano E. Latz E. Schultze J.L. Rappuoli R. Mantovani A. Mak T.W. Melino G. Shi Y. Immune response in COVID-19: what is next? Cell Death Differ. 2022 29 6 1107 1122 10.1038/s41418‑022‑01015‑x 35581387
    [Google Scholar]
  125. Feldman C. Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia 2021 13 1 5 10.1186/s41479‑021‑00083‑w 33894790
    [Google Scholar]
  126. Lin E. Moua T. Limper A.H. Pulmonary mucormycosis: clinical features and outcomes. Infection 2017 45 4 443 448 10.1007/s15010‑017‑0991‑6 28220379
    [Google Scholar]
  127. White P.L. Dhillon R. Cordey A. Hughes H. Faggian F. Soni S. Pandey M. Whitaker H. May A. Morgan M. Wise M.P. Healy B. Blyth I. Price J.S. Vale L. Posso R. Kronda J. Blackwood A. Rafferty H. Moffitt A. Tsitsopoulou A. Gaur S. Holmes T. Backx M. A national strategy to diagnose coronavirus disease 2019–associated invasive fungal disease in the intensive care unit. Clin. Infect. Dis. 2021 73 7 e1634 e1644 10.1093/cid/ciaa1298 32860682
    [Google Scholar]
  128. Kothandaraman N. Rengaraj A. Xue B. Yew W.S. Velan S.S. Karnani N. Leow M.K.S. COVID-19 endocrinopathy with hindsight from SARS. Am. J. Physiol. Endocrinol. Metab. 2021 320 1 E139 E150 10.1152/ajpendo.00480.2020 33236920
    [Google Scholar]
  129. Rudrapal M. Khairnar S.J. Borse L.B. Jadhav A.G. Coronavirus disease-2019 (COVID-19): an updated review. Drug Res. (Stuttg.) 2020 70 9 389 400 10.1055/a‑1217‑2397 32746481
    [Google Scholar]
  130. Jeong W. Keighley C. Wolfe R. Lee W.L. Slavin M.A. Kong D.C.M. Chen S.C.A. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019 25 1 26 34 10.1016/j.cmi.2018.07.011 30036666
    [Google Scholar]
  131. Raw R.K. Kelly C.A. Rees J. Wroe C. Chadwick D.R. Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination. J. Infect. 2021 83 3 381 412 10.1016/j.jinf.2021.05.035 34062184
    [Google Scholar]
  132. Maini A. Tomar G. Khanna D. Kini Y. Mehta H. Bhagyasree V. Sino-orbital mucormycosis in a COVID-19 patient: A case report. Int. J. Surg. Case Rep. 2021 82 105957 10.1016/j.ijscr.2021.105957 33964720
    [Google Scholar]
  133. Yasmin F. Najeeb H. Naeem A. Dapke K. Phadke R. Asghar M.S. Shah S.M.I. De Berardis D. Ullah I. COVID-19 associated mucormycosis: A systematic review from diagnostic challenges to management. Diseases 2021 9 4 65 10.3390/diseases9040065 34698143
    [Google Scholar]
  134. Khatri A. Chang K.M. Berlinrut I. Wallach F. Mucormycosis after Coronavirus disease 2019 infection in a heart transplant recipient – Case report and review of literature. J. Mycol. Med. 2021 31 2 101125 10.1016/j.mycmed.2021.101125 33857916
    [Google Scholar]
  135. Fu Y. Yang Q. Xu M. Kong H. Chen H. Fu Y. Secondary bacterial infections in critical ill patients with coronavirus disease 2019. Open Forum Infect Dis. 2020 7 6 ofaa220 10.1093/ofid/ofaa220.
    [Google Scholar]
  136. Tabassum T. Araf Y. Moin A.T. Rahaman T.I. Hosen M.J. COVID-19-associated-mucormycosis: possible role of free iron uptake and immunosuppression. Mol. Biol. Rep. 2021 ••• 1 8 34709573
    [Google Scholar]
  137. Huang C. Huang L. Wang Y. Li X. Ren L. Gu X. Kang L. Guo L. Liu M. Zhou X. Luo J. Huang Z. Tu S. Zhao Y. Chen L. Xu D. Li Y. Li C. Peng L. Li Y. Xie W. Cui D. Shang L. Fan G. Xu J. Wang G. Wang Y. Zhong J. Wang C. Wang J. Zhang D. Cao B. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021 397 10270 220 232 10.1016/S0140‑6736(20)32656‑8 33428867
    [Google Scholar]
  138. Noreen S. Maqbool I. Madni A. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 2021 894 173854 10.1016/j.ejphar.2021.173854 33428898
    [Google Scholar]
  139. Johnson A.K. Ghazarian Z. Cendrowski K.D. Persichino J.G. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Med. Mycol. Case Rep. 2021 32 64 67 10.1016/j.mmcr.2021.03.006 33842203
    [Google Scholar]
  140. Mohiuddin A. Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect. Disord. Drug Targets 2023 23 8 73 88 37584349
    [Google Scholar]
  141. Abdoli A. Falahi S. Kenarkoohi A. COVID-19-associated opportunistic infections: a snapshot on the current reports. Clin. Exp. Med. 2021 22 3 327 346 10.1007/s10238‑021‑00751‑7 34424451
    [Google Scholar]
  142. Rodriguez-Morales A.J. Mamani-García C.S. Nuñez-Lupaca J.N. León-Figueroa D.A. Olarte-Durand M. Yrene-Cubas R.A. Ticona D.M. Abanto-Urbano S. COVID-19 and mucormycosis in Latin America – An emerging concern. Travel Med. Infect. Dis. 2021 44 102156 10.1016/j.tmaid.2021.102156 34454089
    [Google Scholar]
  143. Al-Tawfiq J.A. Alhumaid S. Alshukairi A.N. Temsah M.H. Barry M. Al Mutair A. Rabaan A.A. Al-Omari A. Tirupathi R. AlQahtani M. AlBahrani S. Dhama K. COVID-19 and mucormycosis superinfection: the perfect storm. Infection 2021 49 5 833 853 10.1007/s15010‑021‑01670‑1 34302291
    [Google Scholar]
  144. Montaño D.E. Voigt K. Host immune defense upon fungal infections with mucorales: pathogen-immune cell interactions as drivers of inflammatory responses. J. Fungi (Basel) 2020 6 3 173 10.3390/jof6030173 32957440
    [Google Scholar]
  145. Wang M. Wey S. Zhang Y. Ye R. Lee A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal. 2009 11 9 2307 2316 10.1089/ars.2009.2485 19309259
    [Google Scholar]
  146. Chinn R.Y. Diamond R.D. Generation of chemotactic factors by Rhizopus oryzae in the presence and absence of serum: relationship to hyphal damage mediated by human neutrophils and effects of hyperglycemia and ketoacidosis. Infect. Immun. 1982 38 3 1123 1129 10.1128/iai.38.3.1123‑1129.1982 6818145
    [Google Scholar]
  147. Waldorf A.R. Ruderman N. Diamond R.D. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus. J. Clin. Invest. 1984 74 1 150 160 10.1172/JCI111395 6736246
    [Google Scholar]
  148. Lamaris G.A. Ben-Ami R. Lewis R.E. Chamilos G. Samonis G. Kontoyiannis D.P. Increased virulence of Zygomycetes organisms following exposure to voriconazole: a study involving fly and murine models of zygomycosis. J. Infect. Dis. 2009 199 9 1399 1406 10.1086/597615 19358672
    [Google Scholar]
  149. Goudarzi M. Rashidi M. Rezaei M. Study of Nonenzymatic Glycation of Transferrin and its Effect on Iron–Binding Antioxidant Capacity. Iran. J. Basic Med. Sci. 2010
    [Google Scholar]
  150. Jehn M. Clark J.M. Guallar E. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 2004 27 10 2422 2428 10.2337/diacare.27.10.2422 15451911
    [Google Scholar]
  151. Ashourpour M. Djalali M. Djazayery A. Eshraghian M.R. Taghdir M. Saedisomeolia A. Relationship between serum ferritin and inflammatory biomarkers with insulin resistance in a Persian population with type 2 diabetes and healthy people. Int. J. Food Sci. Nutr. 2010 61 3 316 323 10.3109/09637480903555150 20113186
    [Google Scholar]
  152. Rahman F.I. Islam M.R. Bhuiyan M.A. Mucormycosis or black fungus infection is a new scare in South Asian countries during the COVID‐19 pandemic: Associated risk factors and preventive measures. J. Med. Virol. 2021 93 12 6447 6448 10.1002/jmv.27207 34260073
    [Google Scholar]
  153. Pakdel F. Ahmadikia K. Salehi M. Tabari A. Jafari R. Mehrparvar G. Rezaie Y. Rajaeih S. Alijani N. Barac A. Abdollahi A. Khodavaisy S. Mucormycosis in patients with COVID‐19: A cross‐sectional descriptive multicentre study from Iran. Mycoses 2021 64 10 1238 1252 10.1111/myc.13334 34096653
    [Google Scholar]
  154. Monika P. Chandraprabha M.N. Risks of mucormycosis in the current Covid-19 pandemic: a clinical challenge in both immunocompromised and immunocompetent patients. Mol. Biol. Rep. 2022 49 6 4977 4988 10.1007/s11033‑022‑07160‑3 35107737
    [Google Scholar]
  155. Imran M. A S A. Tauseef M. Khan S.A. Hudu S.A. Abida Mucormycosis medications: a patent review. Expert Opin. Ther. Pat. 2021 31 11 1059 1074 10.1080/13543776.2021.1939308 34082658
    [Google Scholar]
  156. Haque H. Nettboy S. Kumar S. Surgical-site mucormycosis infection in a solid-organ transplant recipient and a concise review of the literature. BMJ Case Rep. 2019 12 12 e229687 10.1136/bcr‑2019‑229687 31826901
    [Google Scholar]
  157. Horger M. Hebart H. Schimmel H. Vogel M. Brodoefel H. Oechsle K. Hahn U. Mittelbronn M. Bethge W. Claussen C.D. Disseminated mucormycosis in haematological patients: CT and MRI findings with pathological correlation. Br. J. Radiol. 2006 79 945 e88 e95 10.1259/bjr/16038097 16940368
    [Google Scholar]
  158. Rocha I.C.N. Hasan M.M. Goyal S. Patel T. Jain S. Ghosh A. Cedeño T.D.D. COVID‐19 and mucormycosis syndemic: double health threat to a collapsing healthcare system in India. Trop. Med. Int. Health 2021 26 9 1016 1018 10.1111/tmi.13641 34117677
    [Google Scholar]
  159. Honavar S. Code mucor: guidelines for the diagnosis, staging and management of rhino-orbito-cerebral mucormycosis in the setting of COVID-19. Indian J. Ophthalmol. 2021 69 6 1361 1365 10.4103/ijo.IJO_1165_21 34011699
    [Google Scholar]
  160. Cornely O.A. Alastruey-Izquierdo A. Arenz D. Chen S.C.A. Dannaoui E. Hochhegger B. Hoenigl M. Jensen H.E. Lagrou K. Lewis R.E. Mellinghoff S.C. Mer M. Pana Z.D. Seidel D. Sheppard D.C. Wahba R. Akova M. Alanio A. Al-Hatmi A.M.S. Arikan-Akdagli S. Badali H. Ben-Ami R. Bonifaz A. Bretagne S. Castagnola E. Chayakulkeeree M. Colombo A.L. Corzo-León D.E. Drgona L. Groll A.H. Guinea J. Heussel C.P. Ibrahim A.S. Kanj S.S. Klimko N. Lackner M. Lamoth F. Lanternier F. Lass-Floerl C. Lee D.G. Lehrnbecher T. Lmimouni B.E. Mares M. Maschmeyer G. Meis J.F. Meletiadis J. Morrissey C.O. Nucci M. Oladele R. Pagano L. Pasqualotto A. Patel A. Racil Z. Richardson M. Roilides E. Ruhnke M. Seyedmousavi S. Sidharthan N. Singh N. Sinko J. Skiada A. Slavin M. Soman R. Spellberg B. Steinbach W. Tan B.H. Ullmann A.J. Vehreschild J.J. Vehreschild M.J.G.T. Walsh T.J. White P.L. Wiederhold N.P. Zaoutis T. Chakrabarti A. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019 19 12 e405 e421 10.1016/S1473‑3099(19)30312‑3 31699664
    [Google Scholar]
  161. Mekki SO. Hassan AA. Falemban A. Alkotani N. Alsharif SM. Haron A. Pulmonary Mucormycosis: A Case report of a rare infection with potential diagnostic problems. Case Rep Pathol 2020 2020 5845394 10.1155/2020/5845394
    [Google Scholar]
  162. Skiada A. Lanternier F. Groll A.H. Pagano L. Zimmerli S. Herbrecht R. Diagnosis and treatment of mucormycosis in patients with hematological malignancies: Guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 2013 98 4 492 504 10.3324/haematol.2012.065110.
    [Google Scholar]
  163. Barh D. Aljabali A.A. Tambuwala M.M. Tiwari S. Serrano-Aroca Á. Alzahrani K.J. Silva Andrade B. Azevedo V. Ganguly N.K. Lundstrom K. Predicting COVID-19—comorbidity pathway crosstalk-based targets and drugs: towards personalized COVID-19 management. Biomedicines 2021 9 5 556 10.3390/biomedicines9050556 34067609
    [Google Scholar]
  164. Fierz W. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med. Sci. Monit. 2004 10 5 RA111 RA123 15114285
    [Google Scholar]
  165. Sarfraz Z. Sarfraz A. Jaiswal V. Poudel S. Bano S. Hanif M. Singh Shrestha P. Sarfraz M. Michel G. Cherrez-Ojeda I. The Past, Present and Future of COVID-19 Associated Mucormycosis: A Rapid Review. J. Prim. Care Community Health 2022 13 10.1177/21501319221099476 35587142
    [Google Scholar]
  166. Garre V. Recent Advances and Future Directions in the Understanding of Mucormycosis. Front. Cell. Infect. Microbiol. 2022 12 850581 10.3389/fcimb.2022.850581 35281441
    [Google Scholar]
  167. G Alshahawey M. S El-Housseiny G. S Elsayed N. Y Alshahrani M. Wakeel L.M.E.L. M Aboshanab K. New insights on mucormycosis and its association with the COVID-19 pandemic. Future Sci. OA 2022 8 2 FSO772 10.2144/fsoa‑2021‑0122 35059222
    [Google Scholar]
  168. Lamoth F. Lewis R.E. Kontoyiannis D.P. Investigational antifungal agents for invasive mycoses: a clinical perspective. Clin. Infect. Dis. 2022 75 3 534 544 10.1093/cid/ciab1070 34986246
    [Google Scholar]
  169. Syed-Abdul S. Babu A.S. Bellamkonda R.S. Itumalla R. Acharyulu G. Krishnamurthy S. Using artificial intelligence-based models to predict the risk of mucormycosis among COVID-19 survivors: An experience from India. medRxiv 2021 10.1101/2021.09.13.21263511
    [Google Scholar]
  170. Acosta-España JD. Voigt K. Mini review: Risk assessment, clinical manifestation, prediction, and prognosis of mucormycosis: Implications for pathogen- and human-derived biomarkers. Front Microbiol 2022 13 895989 10.3389/fmicb.2022.895989.
    [Google Scholar]
  171. Dopazo J. Maya-Miles D. García F. Lorusso N. Calleja M.Á. Pareja M.J. López-Miranda J. Rodríguez-Baño J. Padillo J. Túnez I. Romero-Gómez M. Implementing personalized medicine in COVID-19 in andalusia: An opportunity to transform the healthcare system. J. Pers. Med. 2021 11 6 475 10.3390/jpm11060475 34073493
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265310191240919060621
Loading
/content/journals/iddt/10.2174/0118715265310191240919060621
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune suppression ; fungal infections ; diabetes ; mucormycosis ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test