Skip to content
2000
image of Serum microRNA Biomarker Expression in HIV and TB: A Concise Overview

Abstract

Non-coding RNAs (ncRNAs), specifically MicroRNAs or miRNAs, are now understood to be essential regulators in the complex field of gene expression. By selectively binding to certain mRNA targets, these tiny RNA molecules control the expression of genes., This review provides a comprehensive analysis of current

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265305638240930054842
2024-11-06
2025-01-19
Loading full text...

Full text loading...

References

  1. Fredsøe J. Rasmussen A.K.I. Thomsen A.R. Mouritzen P. Høyer S. Borre M. Ørntoft T.F. Sørensen K.D. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur. Urol. Focus 2018 4 6 825 833 10.1016/j.euf.2017.02.018 28753866
    [Google Scholar]
  2. Kai K. Dittmar R.L. Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2018 78 22 36 10.1016/j.semcdb.2017.12.011.
    [Google Scholar]
  3. Wightman B. Ha I. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993 75 855 862 10.1016/0092‑8674(93)90530‑4 8252622
    [Google Scholar]
  4. Lee RC. Feinbaum RL. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993 75 5 843 54 10.1016/0092‑8674(93)90529‑y.
    [Google Scholar]
  5. Bueno M.J. de Castro I.P. Malumbres M. Control of cell proliferation pathways by microRNAs. Cell Cycle 2008 7 20 3143 3148 10.4161/cc.7.20.6833 18843198
    [Google Scholar]
  6. Lee Y. Kim M. Han J. Yeom K.H. Lee S. Baek S.H. Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004 23 20 4051 4060 10.1038/sj.emboj.7600385 15372072
    [Google Scholar]
  7. Gregory R.I. Yan K. Amuthan G. Chendrimada T. Doratotaj B. Cooch N. Shiekhattar R. The microprocessor complex mediates the genesis of microRNAs. Nature 2004 432 7014 235 240 10.1038/nature03120 15531877
    [Google Scholar]
  8. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018 9 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  9. Kim V.N. Han J. Siomi M.C. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011 12 2 99 110 10.1038/nrg2936
    [Google Scholar]
  10. Eichhorn S.W. Guo H. McGeary S.E. Rodriguez-Mias R.A. Shin C. Baek D. Hsu S. Ghoshal K. Villén J. Bartel D.P. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 2014 56 1 104 115 10.1016/j.molcel.2014.08.028 25263593
    [Google Scholar]
  11. Weber J.A. Baxter D.H. Zhang S. Huang D.Y. How Huang K. Jen Lee M. Galas D.J. Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010 56 11 1733 1741 10.1373/clinchem.2010.147405 20847327
    [Google Scholar]
  12. Raposo G. Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013 200 4 373 383 10.1083/jcb.201211138 23420871
    [Google Scholar]
  13. Vickers K.C. Palmisano B.T. Shoucri B.M. Shamburek R.D. Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011 13 4 423 433 10.1038/ncb2210 21423178
    [Google Scholar]
  14. Wang K. Li H. Yuan Y. Etheridge A. Zhou Y. Huang D. Wilmes P. Galas D. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One 2012 7 12 e51009 10.1371/journal.pone.0051009 23251414
    [Google Scholar]
  15. Semenov DV. Baryakin DN. Brenner EV. Kurilshikov AM. Vasiliev GV. Bryzgalov LA. Chikova ED. Filippova JA. Kuligina EV. Richter VA. Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology. Expert Opin Biol Ther 2012 12 S43 51 10.1517/14712598.2012.679653
    [Google Scholar]
  16. Smoczynska A. Sega P. Stepien A. Knop K. Jarmolowski A. Pacak A. Szweykowska-Kulinska Z. miRNA detection by stem-loop RT-qPCR in studying microRNA biogenesis and microrna responsiveness to abiotic stresses. Methods Mol. Biol. 2019 1932 131 150 10.1007/978‑1‑4939‑9042‑9_10 30701497
    [Google Scholar]
  17. Arroyo J.D. Chevillet J.R. Kroh E.M. Ruf I.K. Pritchard C.C. Gibson D.F. Mitchell P.S. Bennett C.F. Pogosova-Agadjanyan E.L. Stirewalt D.L. Tait J.F. Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011 108 12 5003 5008 10.1073/pnas.1019055108 21383194
    [Google Scholar]
  18. Ramakrishna S. Muddashetty R.S. Emerging role of microRNAs in dementia. J. Mol. Biol. 2019 431 9 1743 1762 10.1016/j.jmb.2019.01.046 30738891
    [Google Scholar]
  19. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  20. Ranganathan K. Sivasankar V. MicroRNAs - Biology and clinical applications. J. Oral Maxillofac. Pathol. 2014 18 2 229 234 10.4103/0973‑029X.140762 25328304
    [Google Scholar]
  21. Zhang H. Jiang L. Sun D. Hou J. Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer 2018 25 1 1 7 10.1007/s12282‑017‑0793‑9 28721656
    [Google Scholar]
  22. Global tuberculosis report 2014. 2014 Available from: https://www.who.int/publications/i/item/9789241564809
  23. Hu X. Liao S. Bai H. Wu L. Wang M. Wu Q. Zhou J. Jiao L. Chen X. Zhou Y. Lu X. Ying B. Zhang Z. Li W. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine 2019 40 564 573 10.1016/j.ebiom.2019.01.023 30745169
    [Google Scholar]
  24. Ito N. Moseley G.W. Sugiyama M. The importance of immune evasion in the pathogenesis of rabies virus. J. Vet. Med. Sci. 2016 78 7 1089 1098 10.1292/jvms.16‑0092 27041139
    [Google Scholar]
  25. Markar S.R. Lagergren J. Hanna G.B. Research protocol for a diagnostic study of non-invasive exhaled breath analysis for the prediction of oesophago-gastric cancer. BMJ Open 2016 6 1 e009139 10.1136/bmjopen‑2015‑009139 26739727
    [Google Scholar]
  26. Gao Q. Lei F. Zeng Q. Gao Z. Niu P. Junnan Ning Li J. Zhang J. Functional passenger-strand miRNAs in exosomes derived from human colon cancer cells and their heterogeneous paracrine effects. Int. J. Biol. Sci. 2020 16 6 1044 1058 10.7150/ijbs.40787 32140072
    [Google Scholar]
  27. Calin G.A. Sevignani C. Dumitru C.D. Hyslop T. Noch E. Yendamuri S. Shimizu M. Rattan S. Bullrich F. Negrini M. Croce C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004 101 9 2999 3004 10.1073/pnas.0307323101 14973191
    [Google Scholar]
  28. Michael M.Z. O’ Connor S.M. van Holst Pellekaan N.G. Young G.P. James R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003 1 12 882 891 14573789
    [Google Scholar]
  29. Zhang X. Guo J. Fan S. Li Y. Wei L. Yang X. Jiang T. Chen Z. Wang C. Liu J. Ping Z. Xu D. Wang J. Li Z. Qiu Y. Li J.C. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One 2013 8 12 e81076 10.1371/journal.pone.0081076 24349033
    [Google Scholar]
  30. Kaur H. Sehgal R. Kumar A. Sehgal A. Bansal D. Sultan A.A. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. J. Transl. Med. 2018 16 1 272 10.1186/s12967‑018‑1646‑9 30286756
    [Google Scholar]
  31. Yuan Y.H. Chi B.Z. Wen S.H. Liang R.P. Li Z.M. Qiu J.D. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Biosens. Bioelectron. 2018 102 211 216 10.1016/j.bios.2017.11.030 29145074
    [Google Scholar]
  32. Chen C. Ridzon D.A. Broomer A.J. Zhou Z. Lee D.H. Nguyen J.T. Barbisin M. Xu N.L. Mahuvakar V.R. Andersen M.R. Lao K.Q. Livak K.J. Guegler K.J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005 33 20 e179 10.1093/nar/gni178 16314309
    [Google Scholar]
  33. Várallyay É. Burgyán J. Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes. Methods 2007 43 2 140 145 10.1016/j.ymeth.2007.04.004 17889801
    [Google Scholar]
  34. Javelle M. Timmermans M.C.P. In situ localization of small RNAs in plants by using LNA probes. Nat. Protoc. 2012 7 3 533 541 10.1038/nprot.2012.006 22362159
    [Google Scholar]
  35. Qi Y. Zhu Z. Shi Z. Ge Y. Zhao K. Zhou M. Cui L. Dysregulated microRNA expression in serum of non-vaccinated children with varicella. Viruses 2014 6 4 1823 1836 10.3390/v6041823 24759212
    [Google Scholar]
  36. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013 4 2 627 635 24009950
    [Google Scholar]
  37. Stewart C.R. Marsh G.A. Jenkins K.A. Gantier M.P. Tizard M.L. Middleton D. Lowenthal J.W. Haining J. Izzard L. Gough T.J. Deffrasnes C. Stambas J. Robinson R. Heine H.G. Pallister J.A. Foord A.J. Bean A.G. Wang L.F. Promotion of Hendra virus replication by microRNA 146a. J. Virol. 2013 87 7 3782 3791 10.1128/JVI.01342‑12 23345523
    [Google Scholar]
  38. Vickers N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017 27 14 R713 R715 10.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  39. Cui C. Griffiths A. Li G. Silva L.M. Kramer M.F. Gaasterland T. Wang X.J. Coen D.M. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 2006 80 11 5499 5508 10.1128/JVI.00200‑06 16699030
    [Google Scholar]
  40. Ojha R. Nandani R. Pandey R.K. Mishra A. Prajapati V.K. Emerging role of circulating microRNA in the diagnosis of human infectious diseases. J. Cell. Physiol. 2019 234 2 1030 1043 10.1002/jcp.27127 30146762
    [Google Scholar]
  41. Lyu L. Zhang X. Li C. Yang T. Wang J. Pan L. Small RNA Profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front Microbiol 2019 10 1174 10.3389/fmicb.2019.01174
    [Google Scholar]
  42. Gupta A. Nagilla P. Le H.S. Bunney C. Zych C. Thalamuthu A. Bar-Joseph Z. Mathavan S. Ayyavoo V. Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1). PLoS One 2011 6 7 e22730 10.1371/journal.pone.0022730 21829495
    [Google Scholar]
  43. Witwer K.W. Watson A.K. Blankson J.N. Clements J.E. Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 2012 9 1 5 10.1186/1742‑4690‑9‑5 22240256
    [Google Scholar]
  44. Amaral A.J. Andrade J. Foxall R.B. Matoso P. Matos A.M. Soares R.S. Rocha C. Ramos C.G. Tendeiro R. Serra-Caetano A. Guerra-Assunção J.A. Santa-Marta M. Gonçalves J. Gama-Carvalho M. Sousa A.E. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication. EMBO J. 2017 36 3 346 360 10.15252/embj.201694335 27993935
    [Google Scholar]
  45. Thapa DR. Hussain SK. Tran WC. D’souza G. Bream JH. Achenback CJ. Ayyavoo V. Detels R. Martínez-Maza O. Serum microRNAs in HIV-infected individuals as pre-diagnosis biomarkers for AIDS-NHL. J Acquir Immune Defic Syndr. 2014 66 2 229 37 10.1097/QAI.0000000000000146.
    [Google Scholar]
  46. Swaminathan G. Navas-Martín S. Martín-García J. MicroRNAs and HIV-1 infection: Antiviral activities and beyond. J. Mol. Biol. 2014 426 6 1178 1197 10.1016/j.jmb.2013.12.017 24370931
    [Google Scholar]
  47. Philips J.A. Ernst J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. 2012 7 1 353 384 10.1146/annurev‑pathol‑011811‑132458 22054143
    [Google Scholar]
  48. Kim J.K. Kim T.S. Basu J. Jo E.K. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell. Microbiol. 2017 19 1 e12687 10.1111/cmi.12687 27794209
    [Google Scholar]
  49. Liu F. Chen J. Wang P. Li H. Zhou Y. Liu H. Liu Z. Zheng R. Wang L. Yang H. Cui Z. Wang F. Huang X. Wang J. Sha W. Xiao H. Ge B. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat. Commun. 2018 9 1 4295 10.1038/s41467‑018‑06836‑4 30327467
    [Google Scholar]
  50. Kim J.K. Yuk J.M. Kim S.Y. Kim T.S. Jin H.S. Yang C.S. Jo E.K. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J. Immunol. 2015 194 11 5355 5365 10.4049/jimmunol.1402557 25917095
    [Google Scholar]
  51. Fu B. Xue W. Zhang H. Zhang R. Feldman K. Zhao Q. Zhang S. Shi L. Pavani K.C. Nian W. Lin X. Wu H. MicroRNA-325-3p facilitates immune escape of Mycobacterium tuberculosis through targeting LNX1 via NEK6 accumulation to promote anti-apoptotic STAT3 signaling. MBio 2020 11 3 e00557-20 10.1128/mBio.00557‑20 32487755
    [Google Scholar]
  52. Iwai H. Funatogawa K. Matsumura K. Kato-Miyazawa M. Kirikae F. Kiga K. Sasakawa C. Miyoshi-Akiyama T. Kirikae T. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection. Tuberculosis (Edinb.) 2015 95 3 246 250 10.1016/j.tube.2015.03.006 25846955
    [Google Scholar]
  53. Etna M.P. Sinigaglia A. Grassi A. Giacomini E. Romagnoli A. Pardini M. Severa M. Cruciani M. Rizzo F. Anastasiadou E. Mycobacterium tuberculosis -induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog 2018 14 1 e1006790 10.1371/journal.ppat.1006790.
    [Google Scholar]
  54. Wiedrick J.T. Phillips J.I. Lusardi T.A. McFarland T.J. Lind B. Sandau U.S. Harrington C.A. Lapidus J.A. Galasko D.R. Quinn J.F. Saugstad J.A. Validation of microRNA Biomarkers for Alzheimer’s disease in human cerebrospinal fluid. J. Alzheimers Dis. 2019 67 3 875 891 10.3233/JAD‑180539 30689565
    [Google Scholar]
  55. Zhang H. Sun Z. Wei W. Liu Z. Fleming J. Zhang S. Lin N. Wang M. Chen M. Xu Y. Zhou J. Li C. Bi L. Zhou G. Identification of serum microRNA biomarkers for tuberculosis using RNA-seq. PLoS One 2014 9 2 e88909 10.1371/journal.pone.0088909 24586438
    [Google Scholar]
  56. Wang J. Yang K. Zhou L. MinhaoWu Wu Y. Zhu M. Lai X. Chen T. Feng L. Li M. Huang C. Zhong Q. Huang X. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013 9 10 e1003697 10.1371/journal.ppat.1003697 24130493
    [Google Scholar]
  57. Rothchild A.C. Sissons J.R. Shafiani S. Plaisier C. Min D. Mai D. Gilchrist M. Peschon J. Larson R.P. Bergthaler A. Baliga N.S. Urdahl K.B. Aderem A. MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2016 113 41 E6172 E6181 10.1073/pnas.1608255113 27681624
    [Google Scholar]
  58. Duffy F.J. Thompson E. Downing K. Suliman S. Mayanja-Kizza H. Boom W.H. Thiel B. Weiner J. III Kaufmann S.H.E. Dover D. Tabb D.L. Dockrell H.M. Ottenhoff T.H.M. Tromp G. Scriba T.J. Zak D.E. Walzl G. A serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts. Front. Immunol. 2018 9 661 10.3389/fimmu.2018.00661 29706954
    [Google Scholar]
  59. Barry S.E. Ellis M. Yang Y. Guan G. Wang X. Britton W.J. Saunders B.M. Identification of a plasma microRNA profile in untreated pulmonary tuberculosis patients that is modulated by anti-mycobacterial therapy. J. Infect. 2018 77 4 341 348 10.1016/j.jinf.2018.03.006 29746939
    [Google Scholar]
  60. Davuluri K.S. Chauhan D.S. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front. Cell. Infect. Microbiol. 2022 12 1009901 10.3389/fcimb.2022.1009901 36389170
    [Google Scholar]
  61. Wang C. Yang S. Liu C.M. Jiang T.T. Chen Z.L. Tu H.H. Mao L.G. Li Z.J. Li J.C. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb.) 2018 108 26 34 10.1016/j.tube.2017.08.010 29523324
    [Google Scholar]
  62. de Araujo L.S. Ribeiro-Alves M. Leal-Calvo T. Leung J. Durán V. Samir M. Talbot S. Tallam A. Mello F.C.Q. Geffers R. Saad M.H.F. Pessler F. Reprogramming of small noncoding RNA populations in peripheral blood reveals host biomarkers for latent and active Mycobacterium tuberculosis infection. MBio 2019 10 6 e01037-19 10.1128/mBio.01037‑19 31796535
    [Google Scholar]
  63. Honeyborne I. Lipman M.C. Eckold C. Evangelopoulos D. Gillespie S.H. Pym A. McHugh T.D. Effective anti-tuberculosis therapy correlates with plasma small RNA. Eur. Respir. J. 2015 45 6 1741 1744 10.1183/09031936.00221214 25745052
    [Google Scholar]
  64. van Rensburg I.C. du Toit L. Walzl G. du Plessis N. Loxton A.G. Decreased neutrophil–associated miRNA and increased B-cell associated miRNA expression during tuberculosis. Gene 2018 655 35 41 10.1016/j.gene.2018.02.052 29477867
    [Google Scholar]
  65. Spinelli S.V. Diaz A. D’Attilio L. Marchesini M.M. Bogue C. Bay M.L. Bottasso O.A. Altered microRNA expression levels in mononuclear cells of patients with pulmonary and pleural tuberculosis and their relation with components of the immune response. Mol. Immunol. 2013 53 3 265 269 10.1016/j.molimm.2012.08.008 22964481
    [Google Scholar]
  66. Chakrabarty S. Kumar A. Raviprasad K. Mallya S. Satyamoorthy K. Chawla K. Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis (Edinb.) 2019 116 37 43 10.1016/j.tube.2019.04.002 31153517
    [Google Scholar]
  67. Zhou M. Yu G. Yang X. Zhu C. Zhang Z. Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol. Med. Rep. 2016 13 6 4620 4626 10.3892/mmr.2016.5097 27082104
    [Google Scholar]
  68. Pattnaik B. Patnaik N. Mittal S. Mohan A. Agrawal A. Guleria R. Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res. 2022 7 1 16 26 10.1016/j.ncrna.2021.12.005 35128217
    [Google Scholar]
  69. Sinigaglia A. Peta E. Riccetti S. Venkateswaran S. Manganelli R. Barzon L. Tuberculosis-associated MicroRNAs: From pathogenesis to disease biomarkers. Cells 2020 9 10 2160 10.3390/cells9102160 32987746
    [Google Scholar]
  70. Sato F. Tsuchiya S. Terasawa K. Tsujimoto G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 2009 4 5 e5540 10.1371/journal.pone.0005540 19436744
    [Google Scholar]
  71. Cao D.D. Li L. Chan W.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci. 2016 17 6 842 10.3390/ijms17060842 27240359
    [Google Scholar]
  72. Hardikar A.A. Farr R.J. Joglekar M.V. Circulating microRNAs: Understanding the limits for quantitative measurement by real-time PCR. J. Am. Heart Assoc. 2014 3 1 e000792 10.1161/JAHA.113.000792 24572259
    [Google Scholar]
  73. Wong W. Farr R. Joglekar M. Januszewski A. Hardikar A. Probe-based real-time PCR approaches for quantitative measurement of microRNAs. J. Vis. Exp. 2015 98 e52586 [Journal of Visualized Experiments]. 25938938
    [Google Scholar]
  74. Kozomara A. Birgaoanu M. Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019 47 D1 D155 D162 10.1093/nar/gky1141 30423142
    [Google Scholar]
  75. Deng H. Liu Q. Wang X. Huang R. Liu H. Lin Q. Zhou X. Xing D. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens. Bioelectron. 2017 87 931 940 10.1016/j.bios.2016.09.043 27664413
    [Google Scholar]
  76. Zheng W. Yao L. Teng J. Yan C. Qin P. Liu G. Chen W. Lateral flow test for visual detection of multiple MicroRNAs. Sens. Actuators B Chem. 2018 264 320 326 10.1016/j.snb.2018.02.159 30270990
    [Google Scholar]
  77. Labib M. Ghobadloo S.M. Khan N. Kolpashchikov D.M. Berezovski M.V. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA. Anal. Chem. 2013 a 85 20 9422 9427 10.1021/ac402416z 24047131
    [Google Scholar]
  78. Labib M. Khan N. Ghobadloo S.M. Cheng J. Pezacki J.P. Berezovski M.V. Three-mode electrochemical sensing of ultralow microRNA levels. J. Am. Chem. Soc. 2013 b 135 8 3027 3038 10.1021/ja308216z 23362834
    [Google Scholar]
  79. Gai P. Gu C. Hou T. Li F. Integration of biofuel cell-based self-powered biosensing and homogeneous electrochemical strategy for ultrasensitive and easy-to-use bioassays of microRNA. ACS Appl. Mater. Interfaces 2018 10 11 9325 9331 10.1021/acsami.8b01001 29498265
    [Google Scholar]
  80. Deng H. Zhou X. Liu Q. Li B. Liu H. Huang R. Xing D. Paperfluidic chip device for small RNA extraction, amplification, and multiplexed analysis. ACS Appl. Mater. Interfaces 2017 9 47 41151 41158 10.1021/acsami.7b12637 29116747
    [Google Scholar]
  81. Fürsch J. Kammer K.M. Kreft S.G. Beck M. Stengel F. Proteome-wide structural probing of low-abundant protein interactions by cross-linking mass spectrometry. Anal. Chem. 2020 92 5 4016 4022 10.1021/acs.analchem.9b05559 32011863
    [Google Scholar]
  82. Giuffrida M.C. Zanoli L.M. D’Agata R. Finotti A. Gambari R. Spoto G. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal. Bioanal. Chem. 2015 407 6 1533 1543 10.1007/s00216‑014‑8405‑4 25579461
    [Google Scholar]
  83. Liang L. Lan F. Yin X. Ge S. Yu J. Yan M. Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices. Biosens. Bioelectron. 2017 95 181 188 10.1016/j.bios.2017.04.027 28458183
    [Google Scholar]
  84. Chen J.F. Mandel E.M. Thomson J.M. Wu Q. Callis T.E. Hammond S.M. Conlon F.L. Wang D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006 38 2 228 233 10.1038/ng1725 16380711
    [Google Scholar]
  85. Morando N. Rosenzvit M.C. Pando M.A. Allmer J. The role of microRNAs in HIV infection. Genes (Basel) 2024 15 5 574 10.3390/genes15050574 38790203
    [Google Scholar]
  86. Testa U. Pelosi E. Castelli G. Labbaye C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA 2017 3 3 22 10.3390/ncrna3030022 29657293
    [Google Scholar]
  87. Alijani E. Rad FR. Katebi A. Ajdary S. Differential expression of miR-146 and miR-155 in active and latent tuberculosis infection. Iran J Public Health 2023 52 8 1749 1757 10.18502/ijph.v52i8.13414
    [Google Scholar]
  88. Tribolet L. Kerr E. Cowled C. Bean A.G.D. Stewart C.R. Dearnley M. Farr R.J. MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front. Microbiol. 2020 11 1197 10.3389/fmicb.2020.01197 32582115
    [Google Scholar]
  89. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265305638240930054842
Loading
/content/journals/iddt/10.2174/0118715265305638240930054842
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomarkers ; nervous system ; diagnosis ; miRNA ; cancer ; asthma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test