Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Non-coding RNAs (ncRNAs), specifically MicroRNAs or miRNAs, are now understood to be essential regulators in the complex field of gene expression. By selectively binding to certain mRNA targets, these tiny RNA molecules control the expression of genes, leading to mRNA degradation or translational repression. The discovery of miRNAs has significantly advanced biomedical research, particularly in elucidating the molecular mechanisms underlying various diseases and exploring innovative therapeutic approaches. Recent progress in miRNA research has provided insights into their biogenesis, functional roles, and potential clinical applications. Despite the absence of established methodologies for clinical implementation, miRNAs show great promise as diagnostic and therapeutic agents for a wide array of diseases. Their distinctive attributes, such as high specificity, sensitivity, and accessibility, position them as ideal candidates for biomarker development and targeted therapy. Achieving a comprehensive understanding of miRNA biology and functionality is crucial to fully harnessing their potential in medicine. Ongoing research efforts aim to unravel the intricate mechanisms of miRNA-mediated gene regulation and to develop novel approaches for utilizing miRNAs in disease diagnosis, prognosis, and treatment. This review provides a comprehensive analysis of current knowledge on miRNAs, focusing on their biogenesis, regulatory mechanisms, and potential clinical applications. By synthesizing existing evidence and highlighting key research findings, this review aims to inspire further exploration into the diverse roles of miRNAs in health and disease. Ultimately, this endeavour could result in the development of innovative miRNA-based diagnostic and therapeutic strategies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265305638240930054842
2024-11-06
2025-05-09
Loading full text...

Full text loading...

References

  1. FredsøeJ. RasmussenA.K.I. ThomsenA.R. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine.Eur. Urol. Focus20184682583310.1016/j.euf.2017.02.018 28753866
    [Google Scholar]
  2. KaiK DittmarRL SenS Secretory microRNAs as biomarkers of cancer.Semin Cell Dev Biol201878223610.1016/j.semcdb.2017.12.011
    [Google Scholar]
  3. WightmanB. HaI. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell19937585586210.1016/0092‑8674(93)90530‑4 8252622
    [Google Scholar]
  4. LeeRC FeinbaumRL AmbrosV The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑y
    [Google Scholar]
  5. BuenoM.J. de CastroI.P. MalumbresM. Control of cell proliferation pathways by microRNAs.Cell Cycle20087203143314810.4161/cc.7.20.6833 18843198
    [Google Scholar]
  6. LeeY. KimM. HanJ. MicroRNA genes are transcribed by RNA polymerase II.EMBO J.200423204051406010.1038/sj.emboj.7600385 15372072
    [Google Scholar]
  7. GregoryR.I. YanK. AmuthanG. The microprocessor complex mediates the genesis of microRNAs.Nature2004432701423524010.1038/nature03120 15531877
    [Google Scholar]
  8. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.00402 30123182
    [Google Scholar]
  9. KimV.N. HanJ. SiomiM.C. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay.Nat. Rev. Genet.20111229911010.1038/nrg2936
    [Google Scholar]
  10. EichhornS.W. GuoH. McGearyS.E. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.Mol. Cell201456110411510.1016/j.molcel.2014.08.028 25263593
    [Google Scholar]
  11. WeberJ.A. BaxterD.H. ZhangS. The microRNA spectrum in 12 body fluids.Clin. Chem.201056111733174110.1373/clinchem.2010.147405 20847327
    [Google Scholar]
  12. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.201211138 23420871
    [Google Scholar]
  13. VickersK.C. PalmisanoB.T. ShoucriB.M. ShamburekR.D. RemaleyA.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.Nat. Cell Biol.201113442343310.1038/ncb2210 21423178
    [Google Scholar]
  14. WangK. LiH. YuanY. The complex exogenous RNA spectra in human plasma: an interface with human gut biota?PLoS One2012712e5100910.1371/journal.pone.0051009 23251414
    [Google Scholar]
  15. SemenovD.V. BaryakinD.N. BrennerE.V. Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology.Expert Opin. Biol. Ther.201212S43S5110.1517/14712598.2012.679653
    [Google Scholar]
  16. SmoczynskaA. SegaP. StepienA. miRNA detection by stem-loop RT-qPCR in studying microRNA biogenesis and microrna responsiveness to abiotic stresses.Methods Mol. Biol.2019193213115010.1007/978‑1‑4939‑9042‑9_10 30701497
    [Google Scholar]
  17. ArroyoJ.D. ChevilletJ.R. KrohE.M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma.Proc. Natl. Acad. Sci. USA2011108125003500810.1073/pnas.1019055108 21383194
    [Google Scholar]
  18. RamakrishnaS. MuddashettyR.S. Emerging role of microRNAs in dementia.J. Mol. Biol.201943191743176210.1016/j.jmb.2019.01.046 30738891
    [Google Scholar]
  19. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb1596 17486113
    [Google Scholar]
  20. RanganathanK. SivasankarV. MicroRNAs - Biology and clinical applications.J. Oral Maxillofac. Pathol.201418222923410.4103/0973‑029X.140762 25328304
    [Google Scholar]
  21. ZhangH. JiangL. SunD. HouJ. JiZ. CircRNA: A novel type of biomarker for cancer.Breast Cancer20182511710.1007/s12282‑017‑0793‑9 28721656
    [Google Scholar]
  22. Global tuberculosis report 2014.2014Available from: https://www.who.int/publications/i/item/9789241564809
    [Google Scholar]
  23. HuX. LiaoS. BaiH. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis.EBioMedicine20194056457310.1016/j.ebiom.2019.01.023 30745169
    [Google Scholar]
  24. ItoN. MoseleyG.W. SugiyamaM. The importance of immune evasion in the pathogenesis of rabies virus.J. Vet. Med. Sci.20167871089109810.1292/jvms.16‑0092 27041139
    [Google Scholar]
  25. MarkarS.R. LagergrenJ. HannaG.B. Research protocol for a diagnostic study of non-invasive exhaled breath analysis for the prediction of oesophago-gastric cancer.BMJ Open201661e00913910.1136/bmjopen‑2015‑009139 26739727
    [Google Scholar]
  26. GaoQ. LeiF. ZengQ. Functional passenger-strand miRNAs in exosomes derived from human colon cancer cells and their heterogeneous paracrine effects.Int. J. Biol. Sci.20201661044105810.7150/ijbs.40787 32140072
    [Google Scholar]
  27. CalinG.A. SevignaniC. DumitruC.D. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci. USA200410192999300410.1073/pnas.0307323101 14973191
    [Google Scholar]
  28. MichaelM.Z. O’ ConnorS.M. van Holst PellekaanN.G. YoungG.P. JamesR.J. Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol. Cancer Res.2003112882891 14573789
    [Google Scholar]
  29. ZhangX. GuoJ. FanS. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis.PLoS One2013812e8107610.1371/journal.pone.0081076 24349033
    [Google Scholar]
  30. KaurH. SehgalR. KumarA. SehgalA. BansalD. SultanA.A. Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria.J. Transl. Med.201816127210.1186/s12967‑018‑1646‑9 30286756
    [Google Scholar]
  31. YuanY.H. ChiB.Z. WenS.H. LiangR.P. LiZ.M. QiuJ.D. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction.Biosens. Bioelectron.201810221121610.1016/j.bios.2017.11.030 29145074
    [Google Scholar]
  32. ChenC. RidzonD.A. BroomerA.J. Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res.20053320e17910.1093/nar/gni178 16314309
    [Google Scholar]
  33. VárallyayÉ. BurgyánJ. HaveldaZ. Detection of microRNAs by Northern blot analyses using LNA probes.Methods200743214014510.1016/j.ymeth.2007.04.004 17889801
    [Google Scholar]
  34. JavelleM. TimmermansM.C.P. In situ localization of small RNAs in plants by using LNA probes.Nat. Protoc.20127353354110.1038/nprot.2012.006 22362159
    [Google Scholar]
  35. QiY. ZhuZ. ShiZ. Dysregulated microRNA expression in serum of non-vaccinated children with varicella.Viruses2014641823183610.3390/v6041823 24759212
    [Google Scholar]
  36. Hajian-TilakiK. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation.Caspian J. Intern. Med.201342627635 24009950
    [Google Scholar]
  37. StewartC.R. MarshG.A. JenkinsK.A. Promotion of Hendra virus replication by microRNA 146a.J. Virol.20138773782379110.1128/JVI.01342‑12 23345523
    [Google Scholar]
  38. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  39. CuiC. GriffithsA. LiG. Prediction and identification of herpes simplex virus 1-encoded microRNAs.J. Virol.200680115499550810.1128/JVI.00200‑06 16699030
    [Google Scholar]
  40. OjhaR. NandaniR. PandeyR.K. MishraA. PrajapatiV.K. Emerging role of circulating microRNA in the diagnosis of human infectious diseases.J. Cell. Physiol.201923421030104310.1002/jcp.27127 30146762
    [Google Scholar]
  41. LyuL. ZhangX. LiC. YangT. WangJ. PanL. Small RNA Profiles of serum exosomes derived from individuals with latent and active tuberculosis.Front. Microbiol.201910117410.3389/fmicb.2019.01174
    [Google Scholar]
  42. GuptaA. NagillaP. LeH.S. Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1).PLoS One201167e2273010.1371/journal.pone.0022730 21829495
    [Google Scholar]
  43. WitwerK.W. WatsonA.K. BlanksonJ.N. ClementsJ.E. Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients.Retrovirology201291510.1186/1742‑4690‑9‑5 22240256
    [Google Scholar]
  44. AmaralA.J. AndradeJ. FoxallR.B. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication.EMBO J.201736334636010.15252/embj.201694335 27993935
    [Google Scholar]
  45. ThapaDR HussainSK TranWC Serum microRNAs in HIV-infected individuals as pre-diagnosis biomarkers for AIDS-NHL.J Acquir Immune Defic Syndr201466222923710.1097/QAI.0000000000000146
    [Google Scholar]
  46. SwaminathanG. Navas-MartínS. Martín-GarcíaJ. MicroRNAs and HIV-1 infection: Antiviral activities and beyond.J. Mol. Biol.201442661178119710.1016/j.jmb.2013.12.017 24370931
    [Google Scholar]
  47. PhilipsJ.A. ErnstJ.D. Tuberculosis pathogenesis and immunity.Annu. Rev. Pathol.20127135338410.1146/annurev‑pathol‑011811‑132458 22054143
    [Google Scholar]
  48. KimJ.K. KimT.S. BasuJ. JoE.K. MicroRNA in innate immunity and autophagy during mycobacterial infection.Cell. Microbiol.2017191e1268710.1111/cmi.12687 27794209
    [Google Scholar]
  49. LiuF. ChenJ. WangP. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy.Nat. Commun.201891429510.1038/s41467‑018‑06836‑4 30327467
    [Google Scholar]
  50. KimJ.K. YukJ.M. KimS.Y. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection.J. Immunol.2015194115355536510.4049/jimmunol.1402557 25917095
    [Google Scholar]
  51. FuB. XueW. ZhangH. MicroRNA-325-3p facilitates immune escape of Mycobacterium tuberculosis through targeting LNX1 via NEK6 accumulation to promote anti-apoptotic STAT3 signaling.MBio2020113e00557e2010.1128/mBio.00557‑20 32487755
    [Google Scholar]
  52. IwaiH. FunatogawaK. MatsumuraK. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection.Tuberculosis (Edinb.)201595324625010.1016/j.tube.2015.03.006 25846955
    [Google Scholar]
  53. EtnaMP SinigagliaA GrassiA Mycobacterium tuberculosis -induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells.PLoS Pathog2018141e100679010.1371/journal.ppat.1006790
    [Google Scholar]
  54. WiedrickJ.T. PhillipsJ.I. LusardiT.A. Validation of microRNA Biomarkers for Alzheimer’s disease in human cerebrospinal fluid.J. Alzheimers Dis.201967387589110.3233/JAD‑180539 30689565
    [Google Scholar]
  55. ZhangH. SunZ. WeiW. Identification of serum microRNA biomarkers for tuberculosis using RNA-seq.PLoS One201492e8890910.1371/journal.pone.0088909 24586438
    [Google Scholar]
  56. WangJ. YangK. ZhouL. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.PLoS Pathog.2013910e100369710.1371/journal.ppat.1003697 24130493
    [Google Scholar]
  57. RothchildA.C. SissonsJ.R. ShafianiS. MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA201611341E6172E618110.1073/pnas.1608255113 27681624
    [Google Scholar]
  58. DuffyF.J. ThompsonE. DowningK. A serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts.Front. Immunol.2018966110.3389/fimmu.2018.00661 29706954
    [Google Scholar]
  59. BarryS.E. EllisM. YangY. Identification of a plasma microRNA profile in untreated pulmonary tuberculosis patients that is modulated by anti-mycobacterial therapy.J. Infect.201877434134810.1016/j.jinf.2018.03.006 29746939
    [Google Scholar]
  60. DavuluriK.S. ChauhanD.S. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection.Front. Cell. Infect. Microbiol.202212100990110.3389/fcimb.2022.1009901 36389170
    [Google Scholar]
  61. WangC. YangS. LiuC.M. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis.Tuberculosis (Edinb.)2018108263410.1016/j.tube.2017.08.010 29523324
    [Google Scholar]
  62. de AraujoL.S. Ribeiro-AlvesM. Leal-CalvoT. Reprogramming of small noncoding RNA populations in peripheral blood reveals host biomarkers for latent and active Mycobacterium tuberculosis infection.MBio2019106e01037e1910.1128/mBio.01037‑19 31796535
    [Google Scholar]
  63. HoneyborneI. LipmanM.C. EckoldC. Effective anti-tuberculosis therapy correlates with plasma small RNA.Eur. Respir. J.20154561741174410.1183/09031936.00221214 25745052
    [Google Scholar]
  64. van RensburgI.C. du ToitL. WalzlG. du PlessisN. LoxtonA.G. Decreased neutrophil–associated miRNA and increased B-cell associated miRNA expression during tuberculosis.Gene2018655354110.1016/j.gene.2018.02.052 29477867
    [Google Scholar]
  65. SpinelliS.V. DiazA. D’AttilioL. Altered microRNA expression levels in mononuclear cells of patients with pulmonary and pleural tuberculosis and their relation with components of the immune response.Mol. Immunol.201353326526910.1016/j.molimm.2012.08.008 22964481
    [Google Scholar]
  66. ChakrabartyS. KumarA. RaviprasadK. MallyaS. SatyamoorthyK. ChawlaK. Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis.Tuberculosis (Edinb.)2019116374310.1016/j.tube.2019.04.002 31153517
    [Google Scholar]
  67. ZhouM. YuG. YangX. ZhuC. ZhangZ. ZhanX. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection.Mol. Med. Rep.20161364620462610.3892/mmr.2016.5097 27082104
    [Google Scholar]
  68. PattnaikB. PatnaikN. MittalS. Micro RNAs as potential biomarkers in tuberculosis: A systematic review.Noncoding RNA Res.202271162610.1016/j.ncrna.2021.12.005 35128217
    [Google Scholar]
  69. SinigagliaA. PetaE. RiccettiS. VenkateswaranS. ManganelliR. BarzonL. Tuberculosis-associated MicroRNAs: From pathogenesis to disease biomarkers.Cells2020910216010.3390/cells9102160 32987746
    [Google Scholar]
  70. SatoF. TsuchiyaS. TerasawaK. TsujimotoG. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology.PLoS One200945e554010.1371/journal.pone.0005540 19436744
    [Google Scholar]
  71. CaoD.D. LiL. ChanW.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases.Int. J. Mol. Sci.201617684210.3390/ijms17060842 27240359
    [Google Scholar]
  72. HardikarA.A. FarrR.J. JoglekarM.V. Circulating microRNAs: Understanding the limits for quantitative measurement by real-time PCR.J. Am. Heart Assoc.201431e00079210.1161/JAHA.113.000792 24572259
    [Google Scholar]
  73. WongW. FarrR. JoglekarM. JanuszewskiA. HardikarA. Probe-based real-time PCR approaches for quantitative measurement of microRNAs.J. Vis. Exp.201598e52586[Journal of Visualized Experiments]. 25938938
    [Google Scholar]
  74. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: From microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky1141 30423142
    [Google Scholar]
  75. DengH. LiuQ. WangX. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy.Biosens. Bioelectron.20178793194010.1016/j.bios.2016.09.043 27664413
    [Google Scholar]
  76. ZhengW. YaoL. TengJ. Lateral flow test for visual detection of multiple MicroRNAs.Sens. Actuators B Chem.201826432032610.1016/j.snb.2018.02.159 30270990
    [Google Scholar]
  77. LabibM. GhobadlooS.M. KhanN. KolpashchikovD.M. BerezovskiM.V. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA.Anal. Chem.2013852094229427a10.1021/ac402416z 24047131
    [Google Scholar]
  78. LabibM. KhanN. GhobadlooS.M. ChengJ. PezackiJ.P. BerezovskiM.V. Three-mode electrochemical sensing of ultralow microRNA levels.J. Am. Chem. Soc.2013135830273038b10.1021/ja308216z 23362834
    [Google Scholar]
  79. GaiP. GuC. HouT. LiF. Integration of biofuel cell-based self-powered biosensing and homogeneous electrochemical strategy for ultrasensitive and easy-to-use bioassays of microRNA.ACS Appl. Mater. Interfaces201810119325933110.1021/acsami.8b01001 29498265
    [Google Scholar]
  80. DengH. ZhouX. LiuQ. Paperfluidic chip device for small RNA extraction, amplification, and multiplexed analysis.ACS Appl. Mater. Interfaces2017947411514115810.1021/acsami.7b12637 29116747
    [Google Scholar]
  81. FürschJ. KammerK.M. KreftS.G. BeckM. StengelF. Proteome-wide structural probing of low-abundant protein interactions by cross-linking mass spectrometry.Anal. Chem.20209254016402210.1021/acs.analchem.9b05559 32011863
    [Google Scholar]
  82. GiuffridaM.C. ZanoliL.M. D’AgataR. FinottiA. GambariR. SpotoG. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.Anal. Bioanal. Chem.201540761533154310.1007/s00216‑014‑8405‑4 25579461
    [Google Scholar]
  83. LiangL. LanF. YinX. GeS. YuJ. YanM. Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices.Biosens. Bioelectron.20179518118810.1016/j.bios.2017.04.027 28458183
    [Google Scholar]
  84. ChenJ.F. MandelE.M. ThomsonJ.M. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.Nat. Genet.200638222823310.1038/ng1725 16380711
    [Google Scholar]
  85. MorandoN. RosenzvitM.C. PandoM.A. AllmerJ. The role of microRNAs in HIV infection.Genes (Basel)202415557410.3390/genes15050574 38790203
    [Google Scholar]
  86. TestaU. PelosiE. CastelliG. LabbayeC. miR-146 and miR-155: Two key modulators of immune response and tumor development.Noncoding RNA2017332210.3390/ncrna3030022 29657293
    [Google Scholar]
  87. AlijaniE. RadF.R. KatebiA. AjdaryS. Differential expression of miR-146 and miR-155 in active and latent tuberculosis infection.Iran. J. Public Health20235281749175710.18502/ijph.v52i8.13414
    [Google Scholar]
  88. TriboletL. KerrE. CowledC. MicroRNA biomarkers for infectious diseases: From basic research to biosensing.Front. Microbiol.202011119710.3389/fmicb.2020.01197 32582115
    [Google Scholar]
  89. CondratC.E. ThompsonD.C. BarbuM.G. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells9020276 31979244
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265305638240930054842
Loading
/content/journals/iddt/10.2174/0118715265305638240930054842
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): asthma; biomarkers; cancer; diagnosis; miRNA; nervous system
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test