Skip to content
2000
image of Exploring the Potential Use of Withania somnifera in Leprosy and Lepra Reactions: A Molecular Docking Approach

Abstract

Introduction

(Ashwagandha) is a traditional herb that is currently commercially available for treating a variety of illnesses. By evaluating and verifying docking affinity scores, it is possible to explore the potential of the plant for treating leprosy and lepra-reaction as off-label use.

Methods

The sitoindosides were used as ligands along with thalidomide in docking against targets, such as , TNF-Alpha, and Interleukin-6 in order to determine the potential for inhibitory concentration and docking affinity.

Results

According to the study, good binding energy values varied from -7 to -11 Kcal/mol. Sitoindoside IX had the highest binding affinity and important binding interactions, such as hydrogen bonding, when compared to Thalidomide and Sitoindoside X against all three receptors.

Conclusion

The present study confirmed that the Sitoindoside IX and X are a better fit for treating patients with leprosy. These findings are highly intriguing and suggest that this herb should be investigated further to validate these findings in leprosy.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265296476241018050329
2024-12-30
2025-01-19
Loading full text...

Full text loading...

References

  1. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  2. Thangaraju P. Velmurugan H. Yella S.S.T. Venkatesan S. Vigilance needed in treating leprosy patients in accordance with WHO’s AWaRe. Recent Adv. Anti-Infect. Drug Disc. 2022 17 2 95 102 10.2174/2772434417666220720111849 35864797
    [Google Scholar]
  3. Maheswari P. Harish S. Navaneethan M. Muthamizhchelvan C. Ponnusamy S. Hayakawa Y. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. Mater. Sci. Eng. C 2020 108 110457 10.1016/j.msec.2019.110457 31924033
    [Google Scholar]
  4. Sarno E.N. Duppre N.C. Sales A.M. Hacker M.A. Nery J.A. de Matos H.J. Leprosy exposure, infection and disease: A 25-year surveillance study of leprosy patient contacts. Mem Inst Oswaldo Cruz. 2012 107 8 1054 9
    [Google Scholar]
  5. Gama RS Gomides TAR Gama CFM Moreira SJM de Neves Manta FS de Oliveira LBP High frequency of M. leprae DNA detection in asymptomatic household contacts. BMC Infect Dis. 2018 18 1 153 10.1186/s12879‑018‑3056‑2
    [Google Scholar]
  6. Araujo S Freitas LO Goulart LR Goulart IMB Molecular evidence for the aerial route of infection of mycobacterium leprae and the role of asymptomatic carriers in the persistence of leprosy. Clin Infect Dis. 2016 63 11 1412 1420 10.1093/cid/ciw570
    [Google Scholar]
  7. Ploemacher T Faber WR Menke H Rutten V Pieters T Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis. 2020 14 4 e0008276 10.1371/journal.pntd.0008276
    [Google Scholar]
  8. Walker S.L. Lockwood D.N.J. Leprosy. Clin. Dermatol. 2007 25 2 165 172 10.1016/j.clindermatol.2006.05.012 17350495
    [Google Scholar]
  9. Sreenivasan P. Misra R.S. Wilfred D. Nath I. Lepromatous leprosy patients show T helper 1‐like cytokine profile with differential expression of interleukin‐10 during type 1 and 2 reactions. Immunology 1998 95 4 529 536 10.1046/j.1365‑2567.1998.00634.x 9893041
    [Google Scholar]
  10. World Health Organization. WHO Expert Committee on Leprosy. World Health Organ. Tech. Rep. Ser. 2012 968 968 1 61 22970604
    [Google Scholar]
  11. Saleem S. Muhammad G. Hussain M.A. Altaf M. Bukhari S.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran. J. Basic Med. Sci. 2020 23 12 1501 1526 10.22038/IJBMS.2020.44254.10378 33489024
    [Google Scholar]
  12. Teo S.K. Resztak K.E. Scheffler M.A. Kook K.A. Zeldis J.B. Stirling D.I. Thomas S.D. Thalidomide in the treatment of leprosy. Microbes Infect. 2002 4 11 1193 1202 10.1016/S1286‑4579(02)01645‑3 12361920
    [Google Scholar]
  13. Christina A.J.M. Joseph D.G. Packialakshmi M. Kothai R. Robert S.J.H. Chidambaranathan N. Ramasamy M. Anticarcinogenic activity of Withania somnifera Dunal against Dalton’s ascitic lymphoma. J. Ethnopharmacol. 2004 93 2-3 359 361 10.1016/j.jep.2004.04.004 15234777
    [Google Scholar]
  14. Singariya P.R. Mourya K.K. Kumar P.A. Comparative Microcidal activity of withaniasomnifera and cenchrussetigerus against the pathogenic micro-organisms. Int. J. Pharm. Pharm. Sci. 2011 3 5 511 555
    [Google Scholar]
  15. Bhattacharya S.K. Bhattacharya A. Sairam K. Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine 2000 7 6 463 469 10.1016/S0944‑7113(00)80030‑6 11194174
    [Google Scholar]
  16. Kumar S. Tewari A. Dwivedi R. The use of aphrodisiacs in medival India. Nagarjun. 1980 23 170 174
    [Google Scholar]
  17. Prince P.S.M. Suman S. Devika P.T. Vaithianathan M. Cardioprotective effect of ‘Marutham’ a polyherbal formulation on isoproterenol induced myocardial infarction in Wistar rats. Fitoterapia 2008 79 6 433 438 10.1016/j.fitote.2008.01.009 18538507
    [Google Scholar]
  18. Bhattacharya A. Ramanathan M. Ghosal S. Bhattacharya S.K. Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother. Res. 2000 14 7 568 570 10.1002/1099‑1573(200011)14:7<568::AID‑PTR663>3.0.CO;2‑Q 11054855
    [Google Scholar]
  19. Sharma M. Kaur R. Puri S. Bio-herbicidal efficiency of Withaniasomnifera against important Himalayan weeds. Int. J. Pharm. Pharm. Sci. 2017 9 3 88 97 10.22159/ijpps.2017v9i3.14740
    [Google Scholar]
  20. Visavadiya N.P. Narasimhacharya A.V.R.L. Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats. Phytomedicine 2007 14 2-3 136 142 10.1016/j.phymed.2006.03.005 16713218
    [Google Scholar]
  21. Rahmatullah M Ferdausi D Mollik AH Jahan R Chowdhury MH Haque WM A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med. 2009 7 2 91 7 10.4314/ajtcam.v7i2.50859
    [Google Scholar]
  22. Kuboyama T. Tohda C. Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol. 2005 144 7 961 971 10.1038/sj.bjp.0706122 15711595
    [Google Scholar]
  23. Ahmad M. Saleem S. Ahmad A.S. Ansari M.A. Yousuf S. Hoda M.N. Islam F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum. Exp. Toxicol. 2005 24 3 137 147 10.1191/0960327105ht509oa 15901053
    [Google Scholar]
  24. Panda S. Kar A. Withania somnifera and Bauhinia purpurea in the regulation of circulating thyroid hormone concentrations in female mice. J. Ethnopharmacol. 1999 67 2 233 239 10.1016/S0378‑8741(99)00018‑5 10619390
    [Google Scholar]
  25. Montes-Grajales D. Bernardes G.J.L. Olivero-Verbel J. Urban endocrine disruptors targeting breast cancer proteins. Chem. Res. Toxicol. 2016 29 2 150 161 10.1021/acs.chemrestox.5b00342 26700111
    [Google Scholar]
  26. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  27. Wiwanitkit V. Analysis of Mycobacterium leprae genome: In silico searching for drug targets. Southeast Asian J. Trop. Med. Public Health 2005 36 36 Suppl. 4 225 227 16438214
    [Google Scholar]
  28. Cabarcas-Montalvo M. Maldonado-Rojas W. Montes-Grajales D. Bertel-Sevilla A. Wagner-Döbler I. Sztajer H. Reck M. Flechas-Alarcon M. Ocazionez R. Olivero-Verbel J. Discovery of antiviral molecules for dengue: In silico search and biological evaluation. Eur. J. Med. Chem. 2016 110 87 97 10.1016/j.ejmech.2015.12.030 26807547
    [Google Scholar]
  29. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  30. Dar N.J. Hamid A. Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell. Mol. Life Sci. 2015 72 23 4445 4460 10.1007/s00018‑015‑2012‑1 26306935
    [Google Scholar]
  31. Sukanya D.H. Lokesha A.N. Datta G. Himabindu K. Phytochemical diversity in ashwagandha (Withaniasomnifera). Open Access J. J. Med. Aromat. Plants 2010 1 2
    [Google Scholar]
  32. Maiti C.K. Sen S. Paul A.K. Acharya K. First report of Alternaria dianthicola Causing leaf blight on Withania somnifera from India. Plant Dis. 2007 91 4 467 10.1094/PDIS‑91‑4‑0467B 30781215
    [Google Scholar]
  33. Doddanna S. Patel S. Sundarrao M. Veerabhadrappa R. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study. Indian J. Dent. Res. 2013 24 4 401 405 10.4103/0970‑9290.118358 24047829
    [Google Scholar]
  34. Birla H Keswani C Rai SN Neuroprotective effects of Withaniasomnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. Behav Brain Funct. 2019 15 1 9 10.1186/s12993‑019‑0160‑4
    [Google Scholar]
  35. Schmelze GH Gurib–Fakim A Arroo RR Bosch CH de Ruijter A Simmonds MS Plant resources of tropical Africa 11 (1). 2019 Available From: https://www.researchgate.net/profile/Randolph-Arroo/publication/317510018_Plant_Resources_of_Tropical_Africa_111_Medicinal_plants_1/links/593ff602458515a62187b871/Plant-Resources-of-Tropical-Africa-111-Medicinal-plants-1.pdf
  36. Mofed D. Ahmed W. Zekri A.R. Said O. Rahouma M. Faraag A.H.I. The antiviral efficacy of Withaniasomnifera (Ashwagandha) against hepatitis C virus activity: In vitro and in silico study. Adv. Microbiol. 2020 10 9 463 477 10.4236/aim.2020.109035
    [Google Scholar]
  37. George T.K. Tomy A. Jisha M.S. Molecular docking study of bioactive compounds of Withaniasomnifera extract against topoisomerase IV type B. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2020 90 2 381 390 10.1007/s40011‑019‑01110‑z
    [Google Scholar]
  38. Sudeep H.V. Gouthamchandra K. Shyamprasad K. Molecular docking analysis of Withaferin A from Withania somnifera with the Glucose regulated protein 78 (GRP78) in comparison with the COVID-19 main protease. Bioinformation 2020 16 5 411 417 10.6026/97320630016411 32831523
    [Google Scholar]
  39. Shree P. Mishra P. Selvaraj C. Singh S.K. Chaube R. Garg N. Tripathi Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J. Biomol. Struct. Dyn. 2022 40 1 190 203 10.1080/07391102.2020.1810778 32851919
    [Google Scholar]
  40. Ali A. Mir G.J. Ayaz A. Maqbool I. Ahmad S.B. Mushtaq S. Khan A. Mir T.M. Rehman M.U. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9. J. Mol. Model. 2023 29 6 171 10.1007/s00894‑023‑05570‑z 37155030
    [Google Scholar]
  41. Ashraf MU Muhammad G Hussain MA Bukhari SN Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. Front Pharmacol. 2016 7 163 10.3389/fphar.2016.00163
    [Google Scholar]
  42. Gupta G.L. Rana A.C. Withaniasomnifera (Ashwagandha): A review. Pharmacogn. Rev. 2007 1 1 129 136
    [Google Scholar]
  43. Mahmud S Paul GK Afroze M Efficacy of phytochemicals derived from avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study. Molecles 2021 26 8 2210 10.3390/molecules26082210
    [Google Scholar]
  44. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  45. Ghobrial I.M. Rajkumar S.V. Management of thalidomide toxicity. J. Support. Oncol. 2003 1 3 194 205 15334875
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265296476241018050329
Loading
/content/journals/iddt/10.2174/0118715265296476241018050329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test