Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-2949
  • E-ISSN: 2666-2957

Abstract

Quantum computer development attracts security experts in software. Software developers need to pay attention to the development of quantum computers in terms of software security. The security of software is at risk with the computation speed of quantum mechanisms in computing.

Background

Software security evaluation focuses on the fundamental security features of the software as well as the quantum enable security alternatives . The rapid development of a number of qubits in quantum computers makes the present security mechanism of software insecure. The software security evaluation is the most crucial part of surveying, controlling, and administering security in order to further improve the properties of safety.

Objective

It's crucial to understand that performing a security assessment early on in the development process can help you find bugs, vulnerabilities, faults, and attacks. In this quantitative study, the definition and use of the quantum computing security approach in software security will be covered. The cryptographic calculations had to secure our institutions based on computers and networks.

Methods

The Fuzzy Technique for Order Preference by Similarity to Ideal Situation (Fuzzy-TOPSIS) to quantitatively assess the rank of the quantum enable security alternatives with security factors.

Results

The Quantum Key Distribution [A2], the quantum technique of security approach, has got the top priority and quantum key distribution in GHz state [A6] got the least in the estimation of software security during the era of quantum computer by the neural network method of Fuzzy-TOPSIS.

Conclusion

The quantum mechanism of computing makes classical computing insecure. The security estimation of software makes developers focus on the quantum mechanism of security. The quantum mechanism of quantum key distribution is to make software secure.

Loading

Article metrics loading...

/content/journals/flme/10.2174/2666294902666230817162030
2023-08-22
2025-01-19
Loading full text...

Full text loading...

References

  1. WalthallR. DixitS. Impact of quantum computing in aerospace.Aviat. Data Inform. Tech. SAE International202210.4271/EPR2022014
    [Google Scholar]
  2. AruteF. AryaK. BabbushR. Quantum supremacy using a programmable superconducting processor, vol. 574, no. 7779, pp. 505-510, 2019.Nature2019574777950551010.1038/s41586‑019‑1666‑5
    [Google Scholar]
  3. MöllerM. VuikC. On the impact of quantum computing technology on future developments in high-performance scientific computing.Ethics Inf. Technol.201719425326910.1007/s10676‑017‑9438‑0
    [Google Scholar]
  4. ITRC business impact report - ITRCAvailable from: https://www.idtheftcenter.org/publication/itrc-2022-business-impact-report/(accessed May 06, 2023)
  5. AlyamiH. NadeemM. AlharbiA. AlosaimiW. AnsariM.T.J. PandeyD. KumarR. KhanR.A. The evaluation of software security through quantum computing techniques: A durability perspective.Appl. Sci.202111241178410.3390/app112411784
    [Google Scholar]
  6. MitraS. JanaB. BhattacharyaS. PalP. PorayJ. Quantum cryptography: Overview, security issues and future challenges4th International Conference on Opto-Electronics and Applied Optics (Optronix)2018Kolkata, India10.1109/OPTRONIX.2017.8350006
    [Google Scholar]
  7. RupareliaN.B. Software development lifecycle models.Softw. Eng. Notes201035381310.1145/1764810.1764814
    [Google Scholar]
  8. LeeW.K. SeoH. ZhangZ. HwangS.O. Tensorcrypto: High throughput acceleration of lattice-based cryptography using tensor core on GPU.IEEE Access202210206162063210.1109/ACCESS.2022.3152217
    [Google Scholar]
  9. ShorP.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.SIAM J. Comput.19972651484150910.1137/S0097539795293172
    [Google Scholar]
  10. Garcia CidM.I. Álvaro GonzálezJ. Ortíz MartínL. Del Río GómezD. Disruptive quantum safe technologiesACM Int. Conf. Proceeding Ser23 August 2022 New York, NY, United States202210.1145/3538969.3544484
    [Google Scholar]
  11. BanegasG. ZandbergK. BaccelliE. HerrmannA. SmithB. Quantum-resistant software update security on low-power networked embedded devices Ateniese,G. VenturiD. Applied Cryptography and Network SecuritySpringer: Cham, ACNS202213269872891Lecture Notes in Computer Science10.1007/978‑3‑031‑09234‑3_43
    [Google Scholar]
  12. AlyamiH. NadeemM. AlosaimiW. AlharbiA. KumarR. Kumar GuptaB. AgrawalA. Ahmad KhanR. Analyzing the data of software security life-span: Quantum computing era.Intell. Autom. Soft. Comp.202231270771610.32604/iasc.2022.020780
    [Google Scholar]
  13. AgrawalA. AleneziM. KumarR. KhanR.A. Measuring the sustainable-security of web applications through a fuzzy-based integrated approach of AHP and TOPSIS.IEEE Access2019715393615395110.1109/ACCESS.2019.2946776
    [Google Scholar]
  14. PhaphoomN. WangX. SamuelS. HelmerS. AbrahamssonP. A survey study on major technical barriers affecting the decision to adopt cloud services.J. Syst. Softw.201510316718110.1016/j.jss.2015.02.002
    [Google Scholar]
  15. HwangS. ParkJ. YoonK. JunK. A trusty digital rights management in content distribution environmentAvailable from: http://dpnm.postech.ac.kr/papers/DSOM/03/27-eoktrirnhw.pdf Accessed: May 08, 20232023
  16. AlzahraniF.A. AhmadM. NadeemM. KumarR. KhanR.A. Integrity assessment of medical devices for improving hospital services.Comput. Mater. Continua202167310.32604/cmc.2021.014869
    [Google Scholar]
  17. NadeemM. Multi-level hesitant fuzzy based model for usable-security assessmentIntell. Autom. Soft Comput.202231110.32604/iasc.2022.019624
    [Google Scholar]
  18. AzzaouiA.E.L. SharmaP.K. ParkJ.H. Blockchain-based delegated quantum cloud architecture for medical big data security.J. Netw. Comput. Appl.202219810330410.1016/j.jnca.2021.103304
    [Google Scholar]
  19. BoseR. JohnsonH.T. Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots.Microelectron. Eng.2004751435310.1016/j.mee.2003.11.008
    [Google Scholar]
  20. MisraS.C. Modeling design/coding factors that drive maintainability of software systems.Softw. Qual. J.20051329732010.1007/s11219‑005‑1754‑7
    [Google Scholar]
  21. MidilliA. DincerI. AyM. Green energy strategies for sustainable development.Energy Policy200634183623363310.1016/j.enpol.2005.08.003
    [Google Scholar]
  22. AbdullahM.A. MuttaqiK.M. AgalgaonkarA.P. Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects.Renew. Energy20157816517210.1016/j.renene.2014.12.044
    [Google Scholar]
  23. LiN. Research on diffie-hellman key exchange protocol2nd International Conference on Computer Engineering and TechnologyChengdu, China201010.1109/ICCET.2010.5485276
    [Google Scholar]
  24. HellmanD. Aditya KakaraparthiK. KarthickV. YuwenWang MogosG. KumarC. Raj VincenM.D.P. Enhanced diffie-hellman algorithm for reliable key exchangeIOP Conf. Ser. Mater. Sci. Eng.201726304201510.1088/1757‑899X/263/4/042015
    [Google Scholar]
  25. RashidM. KumarH. KhanS.Z. BahkaliI. AlhomoudA. MehmoodZ. Throughput/area optimized architecture for elliptic-curve diffie-hellman protocol.Appl. Sci.2022128409110.3390/app12084091
    [Google Scholar]
  26. BacsardiL. Using quantum computing algorithms in future satellite communicationActa Astronaut.2005572-822422910.1016/j.actaastro.2005.03.023
    [Google Scholar]
  27. FangJ. Improved polar-code-based efficient post-processing algorithm for quantum key distribution.Sci. Rep.20221211015510.1038/s41598‑022‑14145‑6
    [Google Scholar]
  28. Adu-KyereA. NigussieE. IsoahoJ. Quantum key distribution: Modeling and simulation through BB84 protocol using python3.Sensors20222216628410.3390/s22166284
    [Google Scholar]
  29. MishimaK. TokumoK. YamashitaK. Quantum computing using molecular electronic and vibrational states.Chem. Phys.20083431617510.1016/j.chemphys.2007.10.027
    [Google Scholar]
  30. RycerzK. PatrzykJ. PatrzykB. BubakM. Teaching quantum computing with the quide simulator.Procedia Comput. Sci.2015511724173310.1016/j.procs.2015.05.374
    [Google Scholar]
  31. HooyberghsJ. Deutsch-jozsa algorithm.Introd. Microsoft Quantum Comput. Dev.O'Reilly202223327010.1007/978‑1‑4842‑7246‑6_9
    [Google Scholar]
  32. QiuD. ZhengS. Revisiting deutsch-jozsa algorithm.Inf. Comput.202027510460510.1016/j.ic.2020.104605
    [Google Scholar]
  33. PetrosyanD. ZhangP. Quantum attacks on sum of even–mansour construction with linear key schedules.Entropy202224215310.3390/e24020153
    [Google Scholar]
  34. GrasslM. LangenbergB. RoettelerM. SteinwandtR. Applying grover’s algorithm to AES: Quantum resource estimatesPost-Quantum Cryptography. springer2016294310.1007/978‑3‑319‑29360‑8_3
    [Google Scholar]
  35. NagataK. NakamuraT. FaroukA. Quantum cryptography based on the deutsch-jozsa algorithm.Int. J. Theor. Phys.20175692887289710.1007/s10773‑017‑3456‑x
    [Google Scholar]
  36. AbidinS. SwamiA. Ramirez-AsísE. Alvarado-TolentinoJ. MauryaR.K. HussainN. Quantum cryptography technique: A way to improve security challenges in mobile cloud computing (MCC).Mater. Today Proc.20225150851410.1016/j.matpr.2021.05.593
    [Google Scholar]
  37. HwangC. Multiple attribute decision making: Methods and applications: A state-of-the-art surveyAvailable from: https://cir.nii.ac.jp/crid/1130000796669247872(Accessed: May 08, 2023)
  38. YoonK. HwangC. Multiple attribute decision making: An introductionQuantitative Applications in the Social SciencesSAGE Publications, Inc1995
    [Google Scholar]
  39. YoonK. SedaghatM. portfolio selection by the axiom of choice: Post mean-variance analysis.I. J. of Opers. and Quant. Management2020262303318
    [Google Scholar]
  40. AkramM. LuqmanA. AlcantudJ.C.R. Risk evaluation in failure modes and effects analysis: Hybrid topsis and electre i solutions with pythagorean fuzzy information.Neural Comput. Appl.202133115675570310.1007/s00521‑020‑05350‑3
    [Google Scholar]
  41. HwangS. YoonK. JunK. Modeling and implementation of digital rights.J. Sys. Soft.2004733553549Available from: https://www.sciencedirect.com/science/article/pii/S0164121203002899(Accessed: May 08, 2023)
    [Google Scholar]
/content/journals/flme/10.2174/2666294902666230817162030
Loading
/content/journals/flme/10.2174/2666294902666230817162030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test