Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-2949
  • E-ISSN: 2666-2957

Abstract

In computer science, one often needs to deal with undefined values. For example, they naturally increase when a mistake such as the square root of a negative number or division by zero occurs. A similar problem occurs in the logical analysis of natural language. For example, the expression “Czech president in the 18th century” has no denotation because there was no Czech president before 1918. Such a situation in mathematics is characterized by partial functions, ., functions that may be undefined for specific arguments.

In this paper, we will extend the theory of intermediate quantifiers (., expressions such as “most, almost all, many, a few,” .) to deal with partially defined fuzzy sets. First, we will extend algebraic operations that are used in fuzzy logic by the additional value “undefined.” Then we will introduce intermediate quantifiers using the former. The theory of intermediate quantifiers has been developed as a special theory of higher-order fuzzy logic.

In this paper, we introduce the quantifiers semantically and show how they can be computed. The latter is also demonstrated in three illustrative examples.

The paper contributes to the development of fuzzy quantifier theory and its extension by undefined values and suggests methods for computation of truth values.

Loading

Article metrics loading...

/content/journals/flme/10.2174/2666294901666210105141618
2022-04-01
2024-11-25
Loading full text...

Full text loading...

References

  1. KacprzykJ. WilbikA. ZadroznyS. Linguistic summarization of time series using a fuzzy quantifier driven aggregation.Fuzzy Sets Syst.20081591485149910.1016/j.fss.2008.01.025
    [Google Scholar]
  2. GilsingR. WilbikA. GrefenP. TuretkenO. OzkanB. A formal basis for business model evaluation with linguistic summaries. S. Nurcan, I. Reinhartz-Berger, P. Soffer, and J. Zdravkovic, Eds.25th Int. Conf. EMMSAD 20203872020428442Grenoble, France
    [Google Scholar]
  3. WilbikA. BarretoD. BackusG. On relevance of linguistic summaries - a case study from the agro-food domain. M. Lesot, S. Vieira, M. Reformat, J. Carvalho, A. Wilbik, B. Bouchon-Meunier, and R. Yager, Eds.,Information Processing and Management of Uncertainty in Knowledge-Based Systems - 18th International Conference, IPMU12372020289300Lisbon, Portugal Part I
    [Google Scholar]
  4. PetersonP. “Intermediate quantifiers - Logic, linguistics, and Aristotelian semantics.AldershotAshgate2000
    [Google Scholar]
  5. MostowskiA. On a generalization of quantifiers.Fundam. Math.195744123610.4064/fm‑44‑1‑12‑36
    [Google Scholar]
  6. BarwiseR.C.J. Generalized quantifiers and natural language.Linguist. Philos.1981415921910.1007/BF00350139
    [Google Scholar]
  7. BrownM. Generalized quantifiers and the square of opposition.Notre Dame J. Form. Log.19842530332210.1305/ndjfl/1093870683
    [Google Scholar]
  8. PetersS. WesterstahlD. “Quantifiers in Language and Logic.”OxfordClarendon Press2006
    [Google Scholar]
  9. WesterstahlD. “Quantifiers in formal and natural languages.”Handbook of philosophical logic.DordrechtD. Reidel1989IV113110.1007/978‑94‑009‑1171‑0_1
    [Google Scholar]
  10. LindstromP. First order predicate logic with generalized quantifiers.Theoria196632186195
    [Google Scholar]
  11. HolcapekM. Monadic L-fuzzy quantifiers of the type <1n,1>.Fuzzy Sets Syst.20081591811183510.1016/j.fss.2008.03.028
    [Google Scholar]
  12. MurinovaP. Nov´akV. A formal theory of generalized´ intermediate syllogisms.Fuzzy Sets Syst.2012186478010.1016/j.fss.2011.07.004
    [Google Scholar]
  13. MurinovaP. Nov´akV. Analysis of generalized square of´ opposition with intermediate quantifiers.Fuzzy Sets Syst.20142428911310.1016/j.fss.2013.05.006
    [Google Scholar]
  14. NovakV. A formal theory of intermediate quantifiers.Fuzzy Sets Syst.2008159101229124610.1016/j.fss.2007.12.008
    [Google Scholar]
  15. ZadehL.A. A computational approach to fuzzy quantifiers in natural languages.Comput. Math. Appl.1983914918410.1016/0898‑1221(83)90013‑5
    [Google Scholar]
  16. ZadehL.A. Syllogistic reasoning in fuzzy logic and its applications to usuality and reasoning with dispositions.IEEE Trans. Syst. Man Cybern.19851575476510.1109/TSMC.1985.6313459
    [Google Scholar]
  17. DelgadoM. RuizM. SanchezD. VilaM. Fuzzy quantification: a state of the art.Fuzzy Sets Syst.201424213010.1016/j.fss.2013.10.012
    [Google Scholar]
  18. GalindoJ. CarrascoR. del R’ıoP. Fuzzy quantifiers with and without arguments for databases: Definition, implementation and application to fuzzy dependenciesProceedings of IPMU, Torremolinos, Malaga2008227234
    [Google Scholar]
  19. GlocknerI. “Fuzzy Quantifiers: A Computational Theory”BerlinSpringer2006
    [Google Scholar]
  20. YingM. Bouchon-MeunierB. Quantifiers, modifiers and qualifiers in fuzzy logic.J. App. Non Class. Logics1997733534210.1080/11663081.1997.10510918
    [Google Scholar]
  21. BehounekL. NovˇakV. Towards fuzzy partial logic45th Intl. Symposium on Multiple-Valued Logics2015139144
    [Google Scholar]
  22. BehounekL. DaˇnkovˇaM. Variable-domain fuzzy sets - part I: RepresentationFuzzy Sets Syst.202038011810.1016/j.fss.2018.11.002
    [Google Scholar]
  23. MurinovaP. Nov´akV. The theory of intermediate quantifiers in fuzzy natural logic revisited and the model of “Many”.Fuzzy Sets Syst.2020388568910.1016/j.fss.2019.12.010
    [Google Scholar]
  24. NovakV. PerfilievaI. DvoˇrakA. “Insight into Fuzzy´ Modeling,”In Wiley & SonsHoboken, New Jersey201611210.1002/9781119193210
    [Google Scholar]
  25. NovakV. Intermediate quantifiers in presence of partial fuzzy sets SundaramS. Proc. 2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)201842743310.1109/SSCI.2018.8628922
    [Google Scholar]
  26. BehounekL. DaˇnkovˇaM. Variable-domain fuzzy sets-part II: ApparatusFuzzy Sets Syst.2020380194310.1016/j.fss.2019.04.026
    [Google Scholar]
/content/journals/flme/10.2174/2666294901666210105141618
Loading
/content/journals/flme/10.2174/2666294901666210105141618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test