Skip to content
2000
image of Advances in the Experimental Research on the Surface Integrity in the Cutting of Titanium Alloy

Abstract

Background

Titanium alloy, as a high-strength alloy material, has been widely used in aerospace and other fields due to its high specific strength, good corrosion resistance, super fracture toughness, and fatigue resistance. However, its small elastic modulus, low thermal conductivity, and strong chemical affinity result in high cutting forces and cutting temperatures during the cutting process. Different thermo-mechanical coupling effects can change the surface structure, composition, and mechanical properties of the workpiece and show different surface integrity. This paper summarizes the recent progress in the experimental research on surface integrity in the cutting of titanium alloy from four aspects, including surface roughness, microhardness, white layer, and residual stress. It focuses on analyzing the experimental results about the influence of process parameters, tool wear, and lubrication methods on surface integrity. The problems existing in current research and the future development direction are pointed out in this article. It is helpful to provide theoretical guidance for the machining of titanium alloy that meets the requirement of service performance.

Introduction

Surface integrity encompasses both geometric features and physical and mechanical properties. Geometric features include surface roughness, surface morphology, and blade direction. Extensive research has been conducted on surface roughness, microhardness, the white layer, and residual stress. This article reviews recent advancements in experimental research on surface integrity during titanium alloy cutting, focusing on the impact of cutting parameters, tool wear, and lubrication methods. It also addresses current research challenges and suggests directions for future development.

Method

Scholars have conducted extensive research on surface roughness, microhardness, the white layer, and residual stress using both experimental methods and finite element simulations. Experiments are the primary method due to existing issues with finite element simulations, which often suffer from low accuracy and poor reliability in studying surface integrity during titanium alloy machining.

Results

At present, a large amount of experiments have been conducted. However, due to the numerous influencing factors and insufficient consideration of materials microstructure, the conclusions of current research are not consistent. Therefore, it is necessary to conduct more in-depth and systematic experimental research to clarify the influencing factors and the influence of cutting parameters on surface integrity.

Conclusion

There is a need for a deeper understanding of the physical and mechanical fundamentals of surface integrity. Integrating experimental research with finite element simulations can enhance the investigation of these mechanisms and improve predictions related to phase transformation, microhardness, white layer, and residual stress. It is helpful to provide theoretical guidance for the machining of titanium alloy that meets the requirement of service performance.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121345001241029094618
2024-12-09
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121345001241029094618/BMS-ENG-2024-114.html?itemId=/content/journals/eng/10.2174/0118722121345001241029094618&mimeType=html&fmt=ahah

References

  1. Liang X. Liu Z. Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2017 93 5-8 1617 1626 10.1007/s00170‑017‑0654‑x
    [Google Scholar]
  2. Chen G. Ren C. Yang X. Jin X. Guo T. Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int. J. Adv. Manuf. Technol. 2011 56 9-12 1027 1038 10.1007/s00170‑011‑3233‑6
    [Google Scholar]
  3. Wei D. Fundamentals of Tolerance Fit and Measurement Technology. Chemical Industry Press 2006
    [Google Scholar]
  4. Sun J. Guo Y.B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J. Mater. Process. Technol. 2009 209 8 4036 4042 10.1016/j.jmatprotec.2008.09.022
    [Google Scholar]
  5. Yang D. Liu Z. Surface topography analysis and cutting parameters optimization for peripheral milling titanium alloy Ti–6Al–4V. Int. J. Refract. Hard Met. 2015 51 192 200 10.1016/j.ijrmhm.2015.04.001
    [Google Scholar]
  6. Jin C.Z. Chen E.T. Wu B. Analyzing for surface roughness in machining Ti-alloy by turn-milling. Tool Engi 2014 48 02 74 76
    [Google Scholar]
  7. Zhao X. 2013 Experimental study on surface roughness and cutting force in high-speed cutting of TC4 titanium alloy. Master's Thesis, Dalian University of Technology
    [Google Scholar]
  8. Liu H. Sun Y. Geng Y. Shan D. Experimental research of milling force and surface quality for TC4 titanium alloy of micro-milling. Int. J. Adv. Manuf. Technol. 2015 79 1-4 705 716 10.1007/s00170‑015‑6844‑5
    [Google Scholar]
  9. Yang Z.C. Zhang D.H. Yao C.F. Effects of high-speed milling parameters onsurface integrity of TC4 titanium alloy. J. Northwest. Polytech. Univ. 2009 27 4 538 543
    [Google Scholar]
  10. Wang B. Zhao J. Zhang X. Influence of side milling parameters on surface roughness and material removal rate of TC4 titanium alloy. Tool Eng 2021 55 12 9 12
    [Google Scholar]
  11. Yin X.M. Yu H.D. Xu J.K. Experimental study on influencing factors of surface quality in high-speed precision micro-milling of Ti-6Al-4V. Combination Machine Tools and Automatic Processing Technology 2015 10 56 60
    [Google Scholar]
  12. Shen X. Zhang D. Yao C. Tan L. Yao H. Formation mechanism of surface metamorphic layer and influence rule on milling TC17 titanium alloy. Int. J. Adv. Manuf. Technol. 2021 112 7-8 2259 2276 10.1007/s00170‑020‑06382‑8
    [Google Scholar]
  13. Safari H. Sharif S. Izman S. Jafari H. Surface integrity characterization in high-speed dry end milling of Ti-6Al-4V titanium alloy. Int. J. Adv. Manuf. Technol. 2015 78 1-4 651 657 10.1007/s00170‑014‑6653‑2
    [Google Scholar]
  14. Yang X.Y. Ren C.Z. Chen G. Study on the influence of titanium alloy milling tool wear on surface integrity. J. Mech. Des. 2012 29 11 22 26
    [Google Scholar]
  15. Liang X. Liu Z. Tool wear behaviors and corresponding machined surface topography during high-speed machining of Ti-6Al-4V with fine grain tools. Tribol. Int. 2018 121 321 332 10.1016/j.triboint.2018.01.057
    [Google Scholar]
  16. Liang X. Liu Z. Yao G. Wang B. Ren X. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol. Int. 2019 135 130 142 10.1016/j.triboint.2019.02.049
    [Google Scholar]
  17. Dawood A. Arbuckle G.K. Jahan M.P. A comparative study on the machinability of Ti-6Al-4V using conventional flood coolant and sustainable dry machining. Int. J. Mach. Mach. Mater. 2015 17 6 507 528 10.1504/IJMMM.2015.073721
    [Google Scholar]
  18. Agrawal C. Wadhwa J. Pitroda A. Pruncu C.I. Sarikaya M. Khanna N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribol. Int. 2021 153 106597 10.1016/j.triboint.2020.106597
    [Google Scholar]
  19. Zhao W. Ren F. Iqbal A. Gong L. He N. Xu Q. Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4 V titanium alloy. Int. J. Adv. Manuf. Technol. 2020 106 3-4 1497 1508 10.1007/s00170‑019‑04721‑y
    [Google Scholar]
  20. Gajrani K.K. Assessment of cryo-MQL environment for machining of Ti-6Al-4V. J. Manuf. Process. 2020 60 494 502 10.1016/j.jmapro.2020.10.038
    [Google Scholar]
  21. Krishnan G P. P S. Samuel Raj D. Hussain S. Ravi Shankar V. Raj N. Optimization of jet position and investigation of the effects of multijet MQCL during end milling of Ti-6Al-4V. J. Manuf. Process. 2021 64 392 408 10.1016/j.jmapro.2021.01.038
    [Google Scholar]
  22. Iqbal A. Suhaimi H. Zhao W. Jamil M. Nauman M.M. He N. Zaini J. Sustainable milling of Ti-6Al-4V: Investigating the effects of milling orientation, cutter′s helix angle, and type of cryogenic coolant. Metals (Basel) 2020 10 2 258 10.3390/met10020258
    [Google Scholar]
  23. Chen S.L. Shen B. Sun F.H. Experimental optimization of process parameters for turning TC11 titanium alloy using taguchi methodology design. Key Eng. Mater. 2016 693 1009 1014 10.4028/www.scientific.net/KEM.693.1009
    [Google Scholar]
  24. Yao C. Shen X. Zhang D. Formation mechanism of surface metamorphic layer on turning end face of GH4169 superalloy. J. Aeronaut. Mater. 2017 37 6 50 58
    [Google Scholar]
  25. Ginting A. Nouari M. Surface integrity of dry machined titanium alloys. Int. J. Mach. Tools Manuf. 2009 49 3-4 325 332 10.1016/j.ijmachtools.2008.10.011
    [Google Scholar]
  26. Wang F. Zhao J. Li A. Zhao J. Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. Mach. Sci. Technol. 2014 18 3 448 463 10.1080/10910344.2014.926690
    [Google Scholar]
  27. Zhou Z. Cui J. Chen Z. 2015 Experimental research on surface integrity of TB6 titanium alloy. Aviat. Manuf. Technol. 477 8 66 9
    [Google Scholar]
  28. Hassanpour H. Sadeghi M.H. Rezaei H. Rasti A. Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of Ti6Al4V in minimum quantity lubrication. Mater. Manuf. Process. 2016 31 13 1654 1662 10.1080/10426914.2015.1117629
    [Google Scholar]
  29. Che-Haron C.H. Jawaid A. The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V. J. Mater. Process. Technol. 2005 166 2 188 192 10.1016/j.jmatprotec.2004.08.012
    [Google Scholar]
  30. He G.H. Wu M. Li L. Study on the formation mechanism of phase transformation and the influencing factors of cutting layer of the typical titanium alloy. Chin. J. Mech. Eng. 2018 17 9
    [Google Scholar]
  31. Pretorius C.J. Leung Soo S. Aspinwall D.K. Harden P.M. M’Saoubi R. Mantle A.L. Tool wear behaviour and workpiece surface integrity when turning Ti–6Al–2Sn–4Zr–6Mo with polycrystalline diamond tooling. CIRP Ann. 2015 64 1 109 112 10.1016/j.cirp.2015.04.058
    [Google Scholar]
  32. Chou Y.K. Evans C.J. White layers and thermal modeling of hard turned surfaces. Int. J. Mach. Tools Manuf. 1999 39 12 1863 1881 10.1016/S0890‑6955(99)00036‑X
    [Google Scholar]
  33. Herbert C. Axinte D.A. Hardy M. Withers P. Influence of surface anomalies following hole making operations on the fatigue performance for a nickel-based superalloy. J. Manuf. Sci. Eng. 2014 136 5 051016 10.1115/1.4027619
    [Google Scholar]
  34. Griffiths B. J. 1987 Mechanisms of white layer generation with reference to machining and deformation processes. J. Tribol. 109 3 525 530 10.1115/1.3261495
    [Google Scholar]
  35. Xu X. Zhang J. Liu H. He Y. Zhao W. Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V. Mater. Sci. Eng. A 2019 752 167 179 10.1016/j.msea.2019.03.011
    [Google Scholar]
  36. Brown M. Crawforth P. M’Saoubi R. Larsson T. Wynne B. Mantle A. Ghadbeigi H. Quantitative characterization of machining-induced white layers in Ti–6Al–4V. Mater. Sci. Eng. A 2019 764 138220 10.1016/j.msea.2019.138220
    [Google Scholar]
  37. Xin Q. Study on formation surface mechanism of white layer on workpiece surface in cutting process. Thesis, Shenyang Ligong University 2019
    [Google Scholar]
  38. Rancic M. Colin C. Sennour M. Costes J-P. Poulachon G. Microstructural investigations of the white and deformed layers close to the turned surface of Ti-6Al-4V. Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 2017 48 1 389 402 10.1007/s11661‑016‑3844‑5
    [Google Scholar]
  39. Velásquez J.D.P. Tidu A. Bolle B. Chevrier P. Fundenberger J-J. Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy. Mater. Sci. Eng. A 2010 527 10-11 2572 2578 10.1016/j.msea.2009.12.018
    [Google Scholar]
  40. Hassanpour H. Rasti A. Sadeghi M.H. Khosrowshahi J.H. Investigation of roughness, topography, microhardness, white layer and surface chemical composition in high speed milling of Ti-6Al-4V using minimum quantity lubrication. Mach. Sci. Technol. 2020 24 5 719 738 10.1080/10910344.2020.1752237
    [Google Scholar]
  41. Houchuan Y. Zhitong C. ZiTong Z. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling. Int. J. Adv. Manuf. Tech. 2015 78 1113 1126 10.1007/s00170‑014‑6593‑x
    [Google Scholar]
  42. Li A. Zhao J. Dong Y. Wang D. Chen X. Surface integrity of high-speed face milled Ti-6Al-4V alloy with PCD tools. Mach. Sci. Technol. 2013 17 3 464 482 10.1080/10910344.2013.806180
    [Google Scholar]
  43. Zhu D. Zhang L. Xin H. Research on affected layer experiment of disc-milling slotting of TC4. Modul. Mach. Tool Automat. Manufact. Tech. 2019 5 146 151
    [Google Scholar]
  44. Zhang H. Li J. study on microscopic characteristics of surface layer of titanium alloy cutting process. Tool Eng. 2022 56 09 19 24
    [Google Scholar]
  45. Yang D. Liu Z. Quantification of microstructural features and prediction of mechanical properties of a dual-phase Ti-6Al-4V alloy. Materials (Basel) 2016 9 8 628 10.3390/ma9080628 28773751
    [Google Scholar]
  46. Jiang Y. 2013 Study on surface integrity in the spiral milling of Ti-6Al-4V titanium alloy holes. Master's Thesis, Tianjin University
    [Google Scholar]
  47. Liu Z. Lv S. Thermo-mechanical coupling mechanisms for white layer formation on machined surface of powder metallurgical nickel-based superalloy. Jixie Gongcheng Xuebao 2014 50 17 186 193 10.3901/JME.2014.17.186
    [Google Scholar]
  48. Liang X. Liu Z. Wang B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review. Measurement 2019 132 150 181 10.1016/j.measurement.2018.09.045
    [Google Scholar]
  49. Su H. Liu P. Fu Y. Xu J. Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin. J. Aeronaut. 2012 25 5 784 790 10.1016/S1000‑9361(11)60445‑7
    [Google Scholar]
  50. Zhao Q. Qin X. Ji C. Li Y. Sun D. Jin Y. Tool life and hole surface integrity studies for hole-making of Ti6Al4V alloy. Int. J. Adv. Manuf. Technol. 2015 79 5-8 1017 1026 10.1007/s00170‑015‑6890‑z
    [Google Scholar]
  51. Liang X. Liu Z. Wang B. Hou X. Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V. Int. J. Mech. Sci. 2018 140 1 12 10.1016/j.ijmecsci.2018.02.031
    [Google Scholar]
  52. Che-Haron C.H. Tool life and surface integrity in turning titanium alloy. J. Mater. Process. Technol. 2001 118 1-3 231 237 10.1016/S0924‑0136(01)00926‑8
    [Google Scholar]
  53. Rahim E.A. Sharif S. Investigation on tool life and surface integrity when drilling Ti-6Al-4V and Ti-5Al-4V-Mo/Fe. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2006 49 2 340 345 10.1299/jsmec.49.340
    [Google Scholar]
  54. Chen J.H.M. Guo G.Q. Experimental Study and Mechanism Analysis of Deep Hole Drilling of TC4 Titanium Alloy. Aerosp. Manufact. Technol. 2018 61 21 6
    [Google Scholar]
  55. Reissig L. Völkl R. Mills M.J. Glatzel U. Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr. Mater. 2004 50 1 121 126 10.1016/j.scriptamat.2003.09.023
    [Google Scholar]
  56. Wang H. Zhu L. Xu B. Detection of Residual Stress by Nanoindentation Technique Science Press 2016
    [Google Scholar]
  57. Poulos H.G. Pile group settlement estimation — Research to practice. Foundation Analysis and Design: Innovative Methods 2006 10.1061/40865(197)1
    [Google Scholar]
  58. Varela P.I. Rakurty C.S. Balaji A.K. Surface integrity in hard machining of 300 M steel: Effect of cutting-edge geometry on machining induced residual stresses. Procedia CIRP 2014 13 288 293 10.1016/j.procir.2014.04.049
    [Google Scholar]
  59. Madariaga A. Esnaola J.A. Fernandez E. Arrazola P.J. Garay A. Morel F. Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 2014 71 9-12 1587 1598 10.1007/s00170‑013‑5585‑6
    [Google Scholar]
  60. Yang X. Ren C. Wang Y. Chen G. Experimental study on surface integrity of Ti-6Al-4V in high speed side milling. Trans. Tianjin Univ. 2012 18 3 206 212 10.1007/s12209‑012‑1784‑8
    [Google Scholar]
  61. Wu Q. Xie D.J. Si Y. Zhang Y-D. Li L. Zhao Y-X. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J. Manuf. Process. 2018 32 530 537 10.1016/j.jmapro.2018.03.015
    [Google Scholar]
  62. Li J. Ren C. Yang X. Effects of milling parameters on surface integrity of titanium alloy (Ti-6Al-4V). J. Mach. Des. 2016 33 04 1 6
    [Google Scholar]
  63. Tan L. Zhang D. Yao C. Effect of high-speed milling parameters on surface metamorphic layer of TC17 titanium alloy. J. Aeronaut. Mat. 2017 37 06 75 81
    [Google Scholar]
  64. Ni X. Shen X. Cao W. Finite element analysis of residual stress in high-speed milling of titanium alloy. Hebei Agric. Mach. 2016 02 38
    [Google Scholar]
  65. Wang M. Wang J. Zheng Y. Finite element simulation and analysis of titanium alloy under high-speed milling. Mech. Sci. Technol. Aerosp. Eng. 2015 34 06 898 902
    [Google Scholar]
  66. Huang Y. Niu X. Yan X. Finite element simulation of residual stress in milling of titanium alloy. Modul. Mach. Tool Automat. Manufact. Tech. 2020 02 29 33
    [Google Scholar]
  67. Hughes J.I. Sharman A.R.C. Ridgway K. The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 2006 220 2 93 107 10.1243/095440506X78192
    [Google Scholar]
  68. Liang X. Liu Z. Ren X. Wang B. Tool wear induced the gradient distribution of surface integrity with process-microstructure-property characteristics after turning Ti-6Al-4 V. J. Manuf. Process. 2021 70 570 577 10.1016/j.jmapro.2021.09.007
    [Google Scholar]
  69. Tian R. Shi Y. Yang Z. Effect of tool wear on residual stress in milling of titanium alloy TC17. Aeronaut. Manuf. Tech. 2011 Z1 134 138
    [Google Scholar]
  70. Masmiati N. Sarhan A.A.D. Optimizing cutting parameters in inclined end milling for minimum surface residual stress – Taguchi approach. Measurement 2015 60 267 275 10.1016/j.measurement.2014.10.002
    [Google Scholar]
  71. Daymi A. Boujelbene M. Ben Amara A. Bayraktar E. Katundi D. Surface integrity in high speed end milling of titanium alloy Ti–6Al–4V. Mater. Sci. Technol. 2011 27 1 387 394 10.1179/026708310X12738371692932
    [Google Scholar]
  72. Yang P. Yao C. Xie S. Zhang D. Tang D.X. Effect of tool orientation on surface integrity during ball end milling of titanium alloy TC17. Procedia CIRP 2016 56 143 148 10.1016/j.procir.2016.10.044
    [Google Scholar]
  73. Yao C. Tan L. Yang P. Effects of tool orientation and surface curvature on surface integrity in ball end milling of TC17. Int. J. Adv. Manuf. Tech. 94 1699 1710 2017 10.1007/s00170‑017‑0523‑7
    [Google Scholar]
  74. Yang D. Milling induced surface integrity and its effects on fatigue life of the titanium alloy Ti6Al4V. Thesis, Shandong University 2017
    [Google Scholar]
  75. He Z. 2022 Experimental study on serrated chips and cutting forces in high-speed machining of Ti6Al4V. Master's thesis, Tianjin University of Technology and Education
    [Google Scholar]
  76. Liu W. Li G. Shao Z. Wu X. Ma G. Wang F. Advance in experimental research on cutting temperature of titanium alloys. Int. J. Adv. Manuf. Technol. 2023 126 5-6 1827 1844 10.1007/s00170‑023‑11263‑x
    [Google Scholar]
/content/journals/eng/10.2174/0118722121345001241029094618
Loading
/content/journals/eng/10.2174/0118722121345001241029094618
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: surface roughness ; white layer ; residual stresses ; microhardness ; Titanium alloy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test