Skip to content
2000
image of Applications of Photovoltaic Water Pumping System in Developing Countries

Abstract

Background

Indian agriculture is the backbone of the country's economy. As the population increases, the need for water arises accordingly. The main challenge in the extraction and transportation of water for agriculture and drinking purposes is high energy consumption. Among the various alternatives, the best one is to use solar energy, which is abundant and nearly cost-free, to power any industry, especially for irrigation. Photovoltaic (PV) solutions are the most suitable for remote agricultural needs.

Objectives

The present research aimed to study the challenge of the use of solar energy, energy conversion initiatives, and the application of photovoltaic pumping systems in India and other developing countries.

Methods

Solar cells make up the smallest portion of a PV panel. Two or more distinct layers of material known as semiconductors that have been specially prepared are present in every solar cell and when exposed to light, these layers generate direct current (DC) electrical power. The electrical wiring in the circuit board accumulates the DC. After conversion, it is then given to either a DC pump or an AC pump, which pumps water while the sun shines.

Results

Water pumps powered by solar energy are less expensive, have a silent operation, and require less maintenance. Moreover, in addition to pumping water, PV panels can be used to generate electricity for domestic use.

Conclusion

Solar energy finds potential applications for agricultural uses, such as, irrigation, purification, threshing aeration, and electrical fencing. Photovoltaic arrays of solar-powered water pumping systems can be used to generate electricity, reducing the dependency on conventional energy sources.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121336917241029062947
2024-12-09
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121336917241029062947/BMS-ENG-2024-HT71-5913-6.html?itemId=/content/journals/eng/10.2174/0118722121336917241029062947&mimeType=html&fmt=ahah

References

  1. Singh E.U. Vyas M. Sharma G. Singh M.S. Khan S. Solar based smart irrigation system. Int. J. Recent Res. Aspects 3 1 105 108 2016
    [Google Scholar]
  2. Kalaskar B. Kale Y.A. Solar powered automated irrigation system. Int. J. Sci. Res. Dev. 2017 5 10
    [Google Scholar]
  3. Murtaza M.A. Sharma M. Yadav R. Chaudhary R. Rastogi K. 2017 Solar powered automatic irrigation system. Int. J. Eng. Sci. Comput. 7 4 10719 10722
    [Google Scholar]
  4. Indragandhi V. Vardhan B.K. Arunkumar G. Raja Singh R. Banumathi S. Implementation of a DC micro-grid for house hold applications. 8th International Conference on Power and Energy Systems Colombo, Sri Lanka, 21-22 Dec, 2018, pp. 141-145. 10.1109/ICPESYS.2018.8626889
    [Google Scholar]
  5. Prisilla L. Rooban P.S.V. Arockiam L. A novel method for water irrigation system for paddy fields using ANN. Int. J. Comput. Sci. Netw. 1 2 2012
    [Google Scholar]
  6. Singh R.R. Indragandhi V. Umashankar S. Impact of voltage variation on hydroelectric doubly fed machines - An electro-thermomechnaical investigation. IEEE 2nd International Conference on Power and Energy Applications Singapore, 27-30 Apr, 2019, pp. 22-27. 10.1109/ICPEA.2019.8818535
    [Google Scholar]
  7. Salam M.A. Ahmed A. Ziedan H. Sayed K. Amery M. Swify M. A solar-wind hybrid power system for irrigation in toshka area. IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies Amman, Jordan, 06-08 Dec, 2011, pp. 1-6.
    [Google Scholar]
  8. Singh R.R. Kumar B.A. Shruthi D. Panda R. Raj C.T. Review and experimental illustrations of electronic load controller used in standalone Micro-Hydro generating plants. Eng. Sci. Technol. Int. J. 2018 21 5 886 900 10.1016/j.jestch.2018.07.006
    [Google Scholar]
  9. Kou Q. Klein S.A. Beckman W.A. A method for estimating the long-term performance of direct-coupled PV pumping systems. Sol. Energy 1998 64 1-3 33 40 10.1016/S0038‑092X(98)00049‑8
    [Google Scholar]
  10. Vasiliev M. Nur-E-Alam M. Alameh K. Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies 2019 12 6 1080 10.3390/en12061080
    [Google Scholar]
  11. Benghanem M. Daffallah K.O. Alamri S.N. Joraid A.A. Effect of pumping head on solar water pumping system. Energy Convers. Manage. 2014 77 334 339 10.1016/j.enconman.2013.09.043
    [Google Scholar]
  12. Setiawan A.A. Purwanto D.H. Pamuji D.S. Huda N. Development of a solar water pumping system in Karsts rural area Tepus, Gunungkidul through student community services. Energy Procedia 2014 47 7 14 10.1016/j.egypro.2014.01.190
    [Google Scholar]
  13. Ghoneim A.A. Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manage. 2006 47 11-12 1449 1463 10.1016/j.enconman.2005.08.015
    [Google Scholar]
  14. Meah K. Fletcher S. Ula S. Solar photovoltaic water pumping for remote locations. Renew. Sustain. Energy Rev. 2008 12 2 472 487 10.1016/j.rser.2006.10.008
    [Google Scholar]
  15. Sharma R. Sharma S. Tiwari S. Design optimization of solar PV water pumping system. Mater. Today Proc. 2020 21 1673 1679 10.1016/j.matpr.2019.11.322
    [Google Scholar]
  16. Mokeddem A. Midoun A. Kadri D. Hiadsi S. Raja I.A. Performance of a directly-coupled PV water pumping system. Energy Convers. Manage. 2011 52 10 3089 3095 10.1016/j.enconman.2011.04.024
    [Google Scholar]
  17. Singh R.R. Mohan H. Chelliah T.R. Performance of doubly fed machines influenced to electrical perturbation in pumped storage plant - A comparative electromechanical analysis. 7th India International Conference on Power Electronics (IICPE) Patiala, India, 17-19 Nov, 2016, pp. 1-6. 10.1109/IICPE.2016.8079516
    [Google Scholar]
  18. Marmoush M.M. Rezk H. Shehata N. Henry J. Gomaa M.R. A novel merging tubular daylight device with solar water heater – Experimental study. Renew. Energy 2018 125 947 961 10.1016/j.renene.2018.03.031
    [Google Scholar]
  19. Al-Dhaifallah M. Nassef A.M. Rezk H. Nisar K.S. Optimal parameter design of fractional order control based INC-MPPT for PV system. Sol. Energy 2018 159 650 664 10.1016/j.solener.2017.11.040
    [Google Scholar]
  20. Rezk H. Fathy A. A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm. Sol. Energy 2017 157 778 791 10.1016/j.solener.2017.08.084
    [Google Scholar]
  21. Fathy A. Rezk H. Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 2017 111 307 320 10.1016/j.renene.2017.04.014
    [Google Scholar]
  22. Rezk H. Dousoky G.M. Technical and economic analysis of different configurations of stand-alone hybrid renewable power systems – A case study. Renew. Sustain. Energy Rev. 2016 62 941 953 10.1016/j.rser.2016.05.023
    [Google Scholar]
  23. Rezk H. Shoyama M. Techno-economic optimum sizing of stand-alone photovoltaic/fuel cell renewable system for irrigation water pumping applications. IEEE International Conference on Power and Energy (PECon) Kuching, Malaysia, 01-03 Dec, 2014, pp. 182-186. 10.1109/PECON.2014.7062437
    [Google Scholar]
  24. Rezk H. A comprehensive sizing methodology for stand-alone battery-less photovoltaic water pumping system under the Egyptian climate. Cogent Eng. 2016 3 1 1242110 10.1080/23311916.2016.1242110
    [Google Scholar]
  25. Rezk H. El-Sayed A.H.M. Sizing of a stand alone concentrated photovoltaic system in Egyptian site. Int. J. Electr. Power Energy Syst. 2013 45 1 325 330 10.1016/j.ijepes.2012.09.001
    [Google Scholar]
  26. Rezk H. Tyukhov I. Al-Dhaifallah M. Tikhonov A. Performance of data acquisition system for monitoring PV system parameters. Measurement 2017 104 204 211 10.1016/j.measurement.2017.02.050
    [Google Scholar]
  27. Khan M.T.A. Ahmed M.R. Ahmed S.I. Khan S.I. Design and performance analysis of water pumping using solar PV. 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012) Dhaka, Bangladesh,05-07 Jan, 2012, pp. 1-4.
    [Google Scholar]
  28. Rezk H. Tyukhov I. Raupov A. Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system. Int. Trans. Electr. Energy Syst. 2015 25 12 3573 3585 10.1002/etep.2053
    [Google Scholar]
  29. Tolba M. Rezk H. Diab A.A.Z. Al-Dhaifallah M. A novel robust methodology based salp swarm algorithm for allocation and capacity of renewable distributed generators on distribution grids. Energies 2018 11 10 2556 10.3390/en11102556
    [Google Scholar]
  30. Rezk H. Hasaneen E.S. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Eng. J. 2015 6 3 873 881 10.1016/j.asej.2015.03.001
    [Google Scholar]
  31. Rezk H. Eltamaly A.M. A comprehensive comparison of different MPPT techniques for photovoltaic systems. Sol. Energy 2015 112 1 11 10.1016/j.solener.2014.11.010
    [Google Scholar]
  32. Shukla S. Singh B. Reduced-sensor-based pv array-fed direct torque control induction motor drive for water pumping. IEEE Trans. Power Electron. 2019 34 6 5400 5415 10.1109/TPEL.2018.2868509
    [Google Scholar]
  33. Kumar N. Singh B. Panigrahi B.K. Integration of solar PV with low-voltage weak grid system: Using maximize-M kalman filter and self-tuned P&O algorithm. IEEE Trans. Ind. Electron. 2019 66 11 9013 9022 10.1109/TIE.2018.2889617
    [Google Scholar]
  34. Hamidat A. Benyoucef B. Hartani T. Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew. Energy 2003 28 7 1081 1096 10.1016/S0960‑1481(02)00058‑7
    [Google Scholar]
  35. Benghanem M. Daffallah K.O. Joraid A.A. Alamri S.N. Jaber A. Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia. Energy Convers. Manage. 2013 65 50 56 10.1016/j.enconman.2012.08.013
    [Google Scholar]
  36. Izmailov A.Y. Lobachevsky Y.P. Shepovalova O.V. Complex energy supply systems for individual sites. Energy Procedia 2019 157 1445 1455 10.1016/j.egypro.2018.11.309
    [Google Scholar]
  37. Izmailov A.Yu. Lobachevsky YaP. Shepovalova O.V. Comparison and selection of off-grid PV systems. AIP Conf. Proc. 2018 1968 1 10.1063/1.5039188
    [Google Scholar]
  38. Lidorenko N.S. Nabiullin F.Kh. Tarnizhevsky B.V. Experimental solar power plant. Appl. Solar Energy 1965 1 3
    [Google Scholar]
  39. Tarnizhevsky B.V. Rodichev B.Ya. Test results for solar energy installations with photoelectric converters. Appl. Solar Energy 1966 2
    [Google Scholar]
  40. Tarnizhevsky B.V. Rodichev B.Ya. Characteristics of water lifting system powered from solar energy plants. Appl. Solar Energy 1968 3
    [Google Scholar]
  41. Belenov A.T. Tarnizhevsky B.V. Selecting optimal diagrams for solar generator connection to electric drives. Appl. Solar Energy 1969 3 6 11
    [Google Scholar]
  42. Akker J. Lipp J. The power of human unity: Renewable energy in Auroville. Refocus 2004 3 5 26 29 10.1016/S1471‑0846(04)00139‑8
    [Google Scholar]
  43. Belenov A.T. Some characteristics of electric drives of solar water pump unit. Designing of Systems of Electric Drives For Agricultural Machinery Zernograd 114 115 1967
    [Google Scholar]
  44. Belenov A.T. Voronetsky B.B. Mechanical characteristics of DC motors powered from solar photovoltaic generator. Electrotechnics 1968 8
    [Google Scholar]
  45. Belenov A.T. Voronetsky B.B. Mechanical characteristics of electric motors for agricultural drives powered from photovoltaic generator of comparable capacity. Automated Electric Drives in National Economy. Proc. All-union Conf. on Automated Electric Drives Moscow Energiya Publication 1971 4 173 175
    [Google Scholar]
  46. Shepovalova O.V. Belenov A.T. Investigation of DC motors mechanical characteristics with powered by comparable capacity PV array. Energy Procedia 2017 119 990 994 10.1016/j.egypro.2017.07.132
    [Google Scholar]
  47. Chilikin M.G. Sandler A.S. Geberal Course of Electric Drive Moscow Energoizdat Publication 1981
    [Google Scholar]
  48. Ali H. Mahmood M. Bashir M. Ali M. Siddiqui A. Outdoor testing of photovoltaic modules during summer in Taxila, Pakistan. Therm. Sci. 2016 20 1 165 173 10.2298/TSCI131216025A
    [Google Scholar]
  49. Ali I. Shafiullah G.M. Urmee T. A preliminary feasibility of roof-mounted solar PV systems in the Maldives. Renew. Sustain. Energy Rev. 2018 83 18 32 10.1016/j.rser.2017.10.019
    [Google Scholar]
  50. Aliyu M. Hassan G. Said S.A. Siddiqui M.U. Alawami A.T. Elamin I.M. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018 87 61 76 10.1016/j.rser.2018.02.010
    [Google Scholar]
  51. Allouhi A. Buker M.S. El-houari H. Boharb A. Benzakour Amine M. Kousksou T. Jamil A. PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation. Renew. Energy 2019 132 798 812 10.1016/j.renene.2018.08.019
    [Google Scholar]
  52. Alshamani A. 2018 Design and modelling of a large-scale solar water pumping system for irrigation in Saudi Arabia. MSc. Thesis, Memorial University of Newfoundland.
    [Google Scholar]
  53. Amira L. Tahar B. Abdelkrim M. Design and analysis of solar water pumping system. Advanced Research in Solar Energy Grinrey Pune, India 15 24 2021
    [Google Scholar]
  54. Azzain G. Lali I. An economical-technical comparison of solar electrical water pumping system versus conventional electrical water pumping system for agricultural purposes in the area of “Awjila”. Sol. Energy Sustain. Dev. 2016 5 1 30 43
    [Google Scholar]
  55. Ba A. Aroudam E. Chighali O.E. Hamdoun O. Mohamed M.L. Performance optimization of the PV pumping system. Procedia Manuf. 2018 22 788 795 10.1016/j.promfg.2018.03.112
    [Google Scholar]
  56. Benghanem M. Daffallah K.O. Almohammedi A. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data. Results Phys. 2018 8 949 954 10.1016/j.rinp.2018.01.022
    [Google Scholar]
  57. a Bhatia S.C. Gupta R.K. Textbook of Renewable Energy Woodhead Publishing India 2109
    [Google Scholar]
  58. b Bradford T. Solar Revolution: The Economic Transformation of the Global Energy Industry The MIT Press 2019 10.7551/mitpress/6331.001.0001
    [Google Scholar]
  59. Campana P.E. Li H. Zhang J. Zhang R. Liu J. Yan J. Economic optimization of photovoltaic water pumping systems for irrigation. Energy Convers. Manage. 2015 95 32 41 10.1016/j.enconman.2015.01.066
    [Google Scholar]
  60. Chahartaghi M. Nikzad A. Exergy, environmental, and performance evaluations of a solar water pump system. Sustain. Energy Technol. Assess. 2021 43 100933 10.1016/j.seta.2020.100933
    [Google Scholar]
  61. Chilundo R.J. Mahanjane U.S. Neves D. 2018 Design and performance of photovoltaic water pumping systems: Comprehensive review towards a renewable strategy for mozambique. J. Power Energy Eng. 6 7 32 63 10.4236/jpee.2018.67003
    [Google Scholar]
  62. Dolan D.S.L. Prodanov V. Salter P. Cheein F. Dolan J. Reducing performance loss due to backtracking error through use of half cut cell modules. 9th International Conference on Power and Energy Systems (ICPES) Perth, WA, Australia, 10-12 Dec, 2019, pp. 1-4. 10.1109/ICPES47639.2019.9105393
    [Google Scholar]
  63. Ali Sadat S. Faraji J. Nazififard M. Ketabi A. The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment. Sustain. Energy Technol. Assess. 2021 47 101542 10.1016/j.seta.2021.101542
    [Google Scholar]
  64. Chowdhury M.S. Rahman K.S. Chowdhury T. Nuthammachot N. Techato K. Akhtaruzzaman M. Tiong S.K. Sopian K. Amin N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strat. Rev. 2020 27 100431 10.1016/j.esr.2019.100431
    [Google Scholar]
  65. Verma S. Mishra S. Chowdhury S. Gaur A. Mohapatra S. Soni A. Verma P. Solar PV powered water pumping system – A review. Mater. Today Proc. 2021 46 5601 5606 10.1016/j.matpr.2020.09.434
    [Google Scholar]
  66. Mishra S. Verma S. Chowdhury S. Dwivedi G. Analysis of recent developments in greenhouse dryer on various parameters - A review. Mater. Today Proc. 2021 38 371 377 10.1016/j.matpr.2020.07.429
    [Google Scholar]
  67. Bhosale S.K. Development of a solar-powered submersible pump system without the use of batteries in agriculture. Indones. J. Edu. Res. Tech. 2022 2 1 57 64 10.17509/ijert.v2i1.37956
    [Google Scholar]
  68. Rajendran M. Chinnasamy M. Muthusamy S. Nair M. Introduction to solar energy conversion. Materials for Solar Energy Conversion: Materials, Methods and Applications Wiley Rajasekar R. Moganapriya C. Mohankumar A. 2021 1 31 10.1002/9781119752202.ch1
    [Google Scholar]
  69. Zhang H. Lu Y. Han W. Zhu J. Zhang Y. Huang W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020 393 124766 10.1016/j.cej.2020.124766
    [Google Scholar]
  70. Liu K. Sun B. Gao X. Zhang Y. Sun W. Feng Q. Yang W. Optimal sizing of the stand-alone photovoltaic system for a solar-powered translational sprinkler irrigation machine considering the loss of power supply probability. Math. Probl. Eng. 2022 2022 1 10 10.1155/2022/6133969
    [Google Scholar]
  71. Waleed A. Solar (PV) water irrigation system with wireless control. International Symposium on Recent Advances in Electrical Engineering (RAEE) Islamabad, Pakistan, 1 Aug. 2019, pp. 1–4. 10.1109/RAEE.2019.8886970
    [Google Scholar]
  72. Louis R. Pulsing steam solar water pump. US Patent 4309148A 1979
/content/journals/eng/10.2174/0118722121336917241029062947
Loading
/content/journals/eng/10.2174/0118722121336917241029062947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test