Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

With the increasing arithmetic power of computers, computer-based numerical simulation provides a more advantageous method for building wave tanks.

Objective

By introducing the principles of numerical wave tanks and analyzing the latest progress in numerical wave tank research, we consider the future direction of numerical wave tanks and propose the feasibility of future development for the readers' reference.

Methods

This paper systematically describes the history of the development of numerical wave tanks. It summarizes the current development and research status of numerical wave tanks by analyzing the current literature and patents on their study to pave the way for the subsequent discussion and outlook on critical technologies.

Results

Through the research and analysis of numerical wave tanks, the current research status of critical technologies of numerical wave tanks is summarized to derive the key technologies applied to establish numerical wave tanks, discuss each key technology, and look forward to the direction of future development of numerical tanks.

Conclusion

Finally, based on analyzing and comparing the current situation and critical technologies of numerical tanks, the future development trend of numerical wave tanks is predicted, and it is believed that numerical wave tanks will also have more efficient performance with the development of computer arithmetic power.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121315432240625070950
2024-01-12
2025-05-30
Loading full text...

Full text loading...

References

  1. JiaoJ.L. HuangS.X. SoaresC.G. Numerical investigation of ship motions in cross waves using CFD.Ocean Eng.2021223108711
    [Google Scholar]
  2. SuzukiR. UenoM. TsukadaY. Numerical simulation of 6-degrees-of-freedom motions for a manoeuvring ship in regular waves.Appl. Ocean. Res.2021113102732
    [Google Scholar]
  3. LeyJ. el MoctarO. A comparative study of computational methods for wave-induced motions and loads.J. Mar. Sci. Eng.2021918310.3390/jmse9010083
    [Google Scholar]
  4. KimC.H. ClementA.H. TanizawaK. Recent research and development of numerical wave tanks : A review.Int. J. Offshore Polar Eng.1999904
    [Google Scholar]
  5. WindtC. DavidsonJ. SchmittP. RingwoodJ. On the assessment of numerical wave makers in CFD simulations.J. Mar. Sci. Eng.2019724710.3390/jmse7020047
    [Google Scholar]
  6. WangW. KamathA. MartinT. PákozdiC. BihsH. A comparison of different wave modelling techniques in an open-source hydrodynamic framework.J. Mar. Sci. Eng.20208752610.3390/jmse8070526
    [Google Scholar]
  7. ZhangG.Y. WangS.K. SunZ. XiaoQ.H. Research developments in numerical methods of fluid-structure interactions in naval architecture and ocean engineering.Chin. J. Ship. Res.20221755273
    [Google Scholar]
  8. KimC.H. Recent progress in numerical wave tank research: A review.In Proceedings of the Fifth International Offshore and Polar Engineering Conference,The Hague, Netherlands, June 11-15, 1995, ISOPE-I-95-180.
    [Google Scholar]
  9. WasedaT. RheemC.K. SawamuraJ. YuharaT. KinoshitaT. TanizawaK. TomitaH. Extreme wave generation in laboratory wave tank.In Proceedings of the Fifteenth International Offshore and Polar Engineering Conference,Seoul, Korea, June 19-24, ISOPE-I-05-241,2005.
    [Google Scholar]
  10. JinF. GuoL. WeiP. ZhangZ. FengD. Development of a 3D numerical viscous wave tank.In Proceedings of the Thirteenth ISOPE Pacific/Asia Offshore Mechanics Symposium,Jeju, Korea, pp.18-073,2018.
    [Google Scholar]
  11. ChizhiumovS.D. Numerical modeling of ship motion in heavy sea conditions.In Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium,Vladivostok, Russia, pp.04-034 ,2004.
    [Google Scholar]
  12. XueY. LiuR. LiZ. HanD. A review for numerical simulation methods of ship–ice interaction.Ocean Eng.2020215107853
    [Google Scholar]
  13. LvC. ZhaoX. LiM. XieY. An improved wavemaker velocity boundary condition for generating realistic waves in the numerical wave tank.Ocean Eng.2022261112188
    [Google Scholar]
  14. KimJ. BaquetA. JangH. Wave propagation in CFD-based numerical wave tank.ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering,June 9–14,Glasgow, Scotland, UK,pp.1-8,2019.10.1115/OMAE2019‑96460
    [Google Scholar]
  15. KhaitA. ShemerL. Nonlinear wave generation by a wavemaker in deep to intermediate water depth.Ocean Eng.201918222223410.1016/j.oceaneng.2019.04.065
    [Google Scholar]
  16. RosénA. GarmeK. RazolaM. BegovicE. Numerical modelling of structure responses for high-speed planing craft in waves.Ocean Eng.2020217107897
    [Google Scholar]
  17. PapillonL. CostelloR. RingwoodJ.V. Boundary element and integral methods in potential flow theory: A review with a focus on wave energy applications.J. Ocean. Eng. Marine. Ener.20206330333710.1007/s40722‑020‑00175‑7
    [Google Scholar]
  18. YuanS. ZouZ.J. Influence of fluid viscosity on the motion of a ship sailing against waves and wave drag enhancement.Hydrodyn. Res. Prog.20203502179187
    [Google Scholar]
  19. ZhengY. Numberical sutdy of ship’s self-propulsion performance with an iterative body-force propeller model.M.S. thesis, Shanghai Jiao Tong University, shanghai, China,2015
    [Google Scholar]
  20. TianX. WangQ. LiuG. DengW. GaoZ. Numerical and experimental studies on a three-dimensional numerical wave tank.IEEE Access201866585659310.1109/ACCESS.2018.2794064
    [Google Scholar]
  21. SuG.Q. Research on the numerical simulation of the wave flow field in the grid-type cage.M.S. thesis, Shanghai Jiao Tong University, shanghai, China,2022
    [Google Scholar]
  22. ZhangL.T. Numerical simulation of water wave generation.M.S. thesis, Purdue University, West Lafayett, Indiana, US state,2021
    [Google Scholar]
  23. LiL.F. ZhuR.Q. LuJ.W. Numerical simulation of wave drag enhancement on container ships based on numerical pools.China Water Transport201919108082
    [Google Scholar]
  24. GuT.F. Simulation of wave generation in ocean engineering basin.M.S. thesis, Harbin Institute of Teehnology,Harbin,China,2009
    [Google Scholar]
  25. HeX. Study of the improved kernel approximation form of the SPH method and simulation of wave-making.M.S. thesis, Harbin Engineering University, Harbin, China,2022
    [Google Scholar]
  26. HeF. ZhangY.F. JiangH.N. ZhaoH.Y. An ocean wave simulation method based on a coupled numerical model of SPH and FPM".C.N Patent 117494537A,2023.
    [Google Scholar]
  27. ZhangN.F. XiaoL.F. ChenG. A review of numerical studies of wave impacts on marine structures.J. Shanghai Jiaotong Univ.20245802127140
    [Google Scholar]
  28. WangK. ZhangX. HeD.C. XinY. A numerical wave flume wave generation based on Fluent UDF method.C.N Patent 111241756A,2020.
    [Google Scholar]
  29. LiH. HeH.Z. YangS.H. Study on methods of wave generation and absorption in a numerical wave tank.Jimei Daxue Xuebao. Ziran Kexue Ban20152006457462
    [Google Scholar]
  30. LiS.Z. Study on 2-D numerical wave tank based on the soft ware fluent.M.S. thesis, Harbin Institute of Teehnology,Harbin,China,2006
    [Google Scholar]
  31. HeJ.M. ZhuL.S. Numerical generation of waves based on the boundary wavemaking method.Kexue Jishu Yu Gongcheng2010103074
    [Google Scholar]
  32. ZhongJ.Z. XieZ.Q. WangC.X. ShenD. FanM.W. An efficient wave-raising method for ship numerical tank. C.N Patent 108763692A, 2018.
    [Google Scholar]
  33. YuY.F. Numerical simulation of wave and analysis of its flow field structure.M.S. thesis, Harbin Institute of Teehnology,Harbin,China,2013
    [Google Scholar]
  34. TongC.F. WeiZ.Y. MengY.Q. Wave making effect of vertical two-dimension numerical wave tank based on FLUENT.Port.Waterwa. Eng.2020031320
    [Google Scholar]
  35. LiZ. XieP. YinT.C. ZhaoZ.J. XiaN. QiX.B. WeiG.L. LiuX.Y. A neural network based self-learning intelligent approach for creating distortion waves in tank.C.N Patent 111141483B,2020.
    [Google Scholar]
  36. UddinM.N. AtkinsonM. OpokuF. A computational fluid dynamics investigation of a numerically simulated wave tank.Am. J. Mechan. Eng.20208014049
    [Google Scholar]
  37. WuM. YingR.R. CaiF. YangB. WangX. Analysis of factors influencing the accuracy of numerical simulation of irregular wave.Ship Sci. Technol.202042177581
    [Google Scholar]
  38. SinghD.K. YadavS.S. RoyP.D. Analysis of viscous wave generation at low Ursell number in an optimal numerical wave tank using inlet velocity method.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.2023237380581610.1177/09544089221107994
    [Google Scholar]
  39. ZhouC.J. WangB.L. LanY.M. LiuY. Numerical simulation of wave overtopping over seawall.Chin. quart. mechan.20052604629633
    [Google Scholar]
  40. LiuX. TanG.H. WangD.G. Numerical simulation of second-order Stokes based on wave-generation method of defining inlet boundary conditions.J. Liaon. Techn. Univ.2010291107111
    [Google Scholar]
  41. JacobsenN.G. FuhrmanD.R. FredsøeJ. A wave generation toolbox for the open‐source CFD library: OpenFoam®.Int. J. Numer. Methods Fluids20127091073108810.1002/fld.2726
    [Google Scholar]
  42. HigueraP. LaraJ.L. LosadaI.J. Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation.Coast. Eng.20148324325810.1016/j.coastaleng.2013.08.010
    [Google Scholar]
  43. LiZ. YouY.U. ZheS. ZangJ.M. LiZ.H. YuZ.B. CFD simulation of internal solitary wave using the volume-of-fluid method within openFOAM.DEStech Transac. Comp. Sci. Eng.2017201719617
    [Google Scholar]
  44. WangG.Y. GuX.H. QinS.J. YuM. ZhangE.M. OpenFOAM-based baffled through-air breakwater. numerical analysis of hydrodynamic characteristics.Adv. Sci. Technol. Wat. Res.202141026369
    [Google Scholar]
  45. ZengC. YinY.R. ZhouJ. QiuF. BaiY.M. WangL.L. Optimization of a numerical wave tank based on simulations of 2nd order regular waves.J. Hohai. Univ.202351043340
    [Google Scholar]
  46. ChoiY.M. KimY.J. BouscasseB. SengS. GentazL. FerrantP. Performance of different techniques of generation and absorption of free-surface waves in Computational Fluid Dynamics.Ocean Eng.202021410757510.1016/j.oceaneng.2020.107575
    [Google Scholar]
  47. YanM.W. Investigation of wave-payload interaction using OpneFOAM.M.S. thesis, Shandong University , Shandong, China,2021
    [Google Scholar]
  48. PengN.N. ChowK.W. A numerical wave tank with large eddy simulation for wave breaking.Ocean Eng.2022266112555
    [Google Scholar]
  49. LiuX. Numerical simulation of Piston-type active absorption wave making based on OpenFOAM.M.S. thesis, Tianjin University,Tianjin,China,2022
    [Google Scholar]
  50. KhalafH.A. AliM.S. MosaH.H. A computational fluid dynamics model for transient two-dimensional free surface flows.J. Univ. Thi-Qar2015510123
    [Google Scholar]
  51. MiquelA. KamathA. Alagan ChellaM. ArchettiR. BihsH. Analysis of different methods for wave generation and absorption in a CFD-based numerical wave tank.J. Mar. Sci. Eng.2018627310.3390/jmse6020073
    [Google Scholar]
  52. NiuG.X. LuoX.M. ZhangB.C. PanK.K. JinH. Realization of multiple columns of waves with different parameters based on Flow-3D software imitating physical wave-making means.C.N Patent 1113532532020.
    [Google Scholar]
  53. WangW. GuoH.Y. WangF. MiaoD.S. MaD. Numerical simulation study of internal isolated wave-induced flow field.Oceanol. Limnol. Sin.20164703502508
    [Google Scholar]
  54. ZhangL. LiX.M. FanG.X. ZhangL. GuoH.Y. WangX.X. Fluent-based wave generation method for internal isolated wave mass sources.Haiyang Huzhao Tongbao20180118
    [Google Scholar]
  55. WangZ.K. HeG.H. LiuS. ZhangZ.G. Numerical study of wave creation and dissipation of internal isolated waves.16th National Hydrodynamics Conference and the 32nd National Symposium on Hydrodynamics,Wuxi, Jiangshu, China,pp. 05, 2021.
    [Google Scholar]
  56. WuY.H. Numerical simulation of ship motion characteristics in cross wave.M.S. thesis, Huazhong University of Science and Technology, Wuhan, China,2022
    [Google Scholar]
  57. JiaoJ.L. DingS. A SPH-based simulation of square waves in numerical tanks.C.N Patent 113312857A,2021.
    [Google Scholar]
  58. ZhangT. HuangZ. TianF. WangD.T. Numerical simulation of wave field in harbor based on OpenFOAM.Port.Waterw. Eng.20240218
    [Google Scholar]
  59. LiX.Y. ZhangZ.H. GuoW.J. DengJ.J. ZhouQ.P. LuD.W. A calculation method for wave interaction with curved slab breakwaters.C.N Patent 113312857A,2018.
    [Google Scholar]
  60. CaoF.F. JiangX.Q. ShiH.D. ZhangC.W. XuY.Z. ChenZ. Parametric pendulum wave energy devices for energy acquisition analyses.C.N Patent 117113725B,2024.
    [Google Scholar]
  61. WangX.Y. LuZ.W. ChenJ.C. FuX.Q. TongM.B. A numerical prediction method for the response of a seaplane's nonlinear regular-wave choppy water surface glide motion.C.N Patent 117150967A,2023.
    [Google Scholar]
  62. ChenJ.K. DuanW.X. A three-dimensional numerical simulation method for large transverse rocking motion of ships.C.N Patent 1109325309B,2022.
    [Google Scholar]
  63. MaX. YanM.W. SongR. RongX.W. LiY.B. OpenFOAM-based 3D wave-load interaction numerical value simulation modelling approach.C.N Patent 110348171B,2021.
    [Google Scholar]
  64. JiaoJ.L. DingS. A SPH-based method for predicting ship wave resistance in bidirectional waves. C.N Patent 113673007A, 2021.
    [Google Scholar]
  65. GuanX.S. SunP.N. LiJ.H. SunL.Q. Numerical simulation of the water entry of projectiles in waves based on SPH method.Kongqi Donglixue Xuebao202442028595
    [Google Scholar]
  66. ZhanH.Y. Method and system for prediction of offshore wind power cable exposure based on numerical simulation of water and sand.C.N Patent 115392098B,2023.
    [Google Scholar]
  67. FerrantP. GentazL. AlessandriniB. Le TouzéD. NantesE.C.D. A potential/RANSE approach for regular water wave diffraction about 2-D structures.Ship Technol. Res.200350416517110.1179/str.2003.50.4.004
    [Google Scholar]
  68. GentazL. LuquetR. AlessandriniB. FerrantP. Numerical simulation of the 3D viscous flow around a vertical cylinder in non-linear waves using an explicit incident wave model23rd International Conference on Offshore Mechanics and Arctic Engineering,Trondheim, Norway,pp.157-163,2004.10.1115/OMAE2004‑51098
    [Google Scholar]
  69. VukčevićV. JasakH. MalenicaŠ. Decomposition model for naval hydrodynamic applications, Part I: Computational method.Ocean Eng.2016121374610.1016/j.oceaneng.2016.05.022
    [Google Scholar]
  70. LiZ. BouscasseB. GentazL. DucrozetG. FerrantP. Progress in coupling potential wave models and two-phase solvers with the SWENSE methodology.ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering,June 17–22, Madrid, Spain, vol.9, pp.1-10, 2018.10.1115/OMAE2018‑77466
    [Google Scholar]
  71. IafratiA. CampanaE.F. A domain decomposition approach to compute wave breaking (wave‐breaking flows).Int. J. Numer. Methods Fluids200341441944510.1002/fld.448
    [Google Scholar]
  72. ColicchioG. GrecoM. FaltinsenO.M. A BEM-level set domain-decomposition strategy for non-linear and fragmented interfacial flows.Int. J. Numer. Methods Eng.200667101385141910.1002/nme.1680
    [Google Scholar]
  73. KimS.H. YamashiroM. YoshidaA. A simple two-way coupling method of BEM and VOF model for random wave calculations.Coast. Eng.20105711-121018102810.1016/j.coastaleng.2010.06.006
    [Google Scholar]
  74. ZhangY. PeszynskaM. YimS. Coupling of viscous and potential flow models with free surface for near and far field wave propagation.Int. J. Numer. Anal. Model.2013403256282
    [Google Scholar]
  75. ZhongW.J. ChenF. WanD.C. Numerical wave generation based on a two-way coupled potential-viscous flow model.Shipbuilding of China202263023040
    [Google Scholar]
  76. KimJ. ParkS. KyoungJ. BaquetA. ShenZ. HaY.J. KimK.H. A hybrid numerical wave model for extreme wave kinematics.ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering,June 5–10, Hamburg, Germany,vol.1, pp.1-11, 2022.10.1115/OMAE2022‑87901
    [Google Scholar]
  77. OzbulutM. RamezanzadehS. YildizM. GorenO. Modelling of wave generation in a numerical tank by SPH method.J. Ocean. Eng. Mari. En.20206212113610.1007/s40722‑020‑00163‑x
    [Google Scholar]
  78. ZhangX. WangJ. WanD. Numerical techniques for coupling hydrodynamic problems in ship and ocean engineering.J. Hydrodynam.202032221223310.1007/s42241‑020‑0021‑5
    [Google Scholar]
  79. MoinP. MaheshK. Direct numerical simulation: a tool in turbulence research.Annu. Rev. Fluid Mech.199830153957810.1146/annurev.fluid.30.1.539
    [Google Scholar]
  80. RodiW. Turbulence modeling and simulation in hydraulics: A historical review.J. Hydraul. Eng.201714350311700110.1061/(ASCE)HY.1943‑7900.0001288
    [Google Scholar]
  81. FengX. WuW. Generation of water waves using momentum source wave-maker applied to a RANS solver.Math. Probl. Eng.2019201911110.1155/2019/1308960
    [Google Scholar]
  82. MedinaH. BeechookA. FadhilaH. AleksandrovaS. BenjaminS. A novel laminar kinetic energy model for the prediction of pretransitional velocity fluctuations and boundary layer transition.Int. J. Heat Fluid Flow20186915016310.1016/j.ijheatfluidflow.2017.12.008
    [Google Scholar]
  83. Che SidikN.A. YusufS.N.A. AsakoY. MohamedS.B. Aziz JapaW.M.A. A short review on rans turbulence models.CFD Letters20201211839610.37934/cfdl.12.11.8396
    [Google Scholar]
  84. SchäfferH.A. Second-order wavemaker theory for irregular waves.Ocean Eng.1996231478810.1016/0029‑8018(95)00013‑B
    [Google Scholar]
  85. YangJ.P. Numerical Simulation of Wave Flume in the CFX.M.S. thesis, Harbin Engineering University, Harbin, China,2006
    [Google Scholar]
  86. BrorsenM. LarsenJ. Source generation of nonlinear gravity waves with the boundary integral equation method.Coast. Eng.19871129311310.1016/0378‑3839(87)90001‑9
    [Google Scholar]
  87. LiuS.S. GuY.J. HuiW.X. YangK. Wave numerical simulation based on wave-generation method of defining inlet boundary conditions.Renew. Ener. Res.20133102100103
    [Google Scholar]
  88. LuJ.J. The research of 3-D numerical wave tank based on wave-generation method of defining inlet boundary conditions.M.S. thesis, Huazhong University of Science and Technology, Wuhan, China,2018
    [Google Scholar]
  89. KimJ. O’SullivanJ. ReadA. Ringing analysis of a vertical cylinder by euler overlay method.ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering,July 1–6, Rio de Janeiro, Brazil, pp.855-856, 2012.10.1115/OMAE2012‑84091
    [Google Scholar]
  90. GibouF. FedkiwR. OsherS. A review of level-set methods and some recent applications.J. Comput. Phys.20183538210910.1016/j.jcp.2017.10.006
    [Google Scholar]
  91. ZhangJ. FangJ. FanB.Q. A review of the theory and applications of VOF methods.Adv. Sci. Technol. Wat. Reso.200525026770
    [Google Scholar]
  92. McKeeS. ToméM.F. FerreiraV.G. CuminatoJ.A. CasteloA. SousaF.S. MangiavacchiN. The MAC method.Comput. Fluids200837890793010.1016/j.compfluid.2007.10.006
    [Google Scholar]
  93. GuoL.X. YuJ.W. ChenJ.J. JiangK.J. FengD.K. Unsteady viscous CFD simulations of KCS behaviour and performance in head seas.Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering OMAE,June 9-14, Glasgow, Scotland, UK, pp.1-8, 2018.10.1115/OMAE2018‑77330
    [Google Scholar]
  94. DevolderB. SchmittP. RauwoensP. ElsaesserB. TrochP. A review of the implicit motion solver algorithm in OpenFOAM® to simulate a heaving buoy.18th Numerical Towing Tank Symposium (NuTTS'15),Cortona, Italy, pp.1-15, 2015.
    [Google Scholar]
/content/journals/eng/10.2174/0118722121315432240625070950
Loading
/content/journals/eng/10.2174/0118722121315432240625070950
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): CFD; numerical simulation; ocean engineering; solution algorithms; turbulence; wave tanks
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test