Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

With the advent and rapid development of 5G technology, many electronic products have been developed in the miniaturized direction. However, excessive operating temperature generated by these electronic products in a small space results in serious runaway problems, such as battery failure and dead equipment. To solve the heat dissipation problem of small electronic products, ultra-thin vapour chambers are widely used in the heat dissipation field of these electronic products due to the characteristic of rapid heat conduction and thermal expansion. Therefore, optimizing the performance of ultra-thin vapour chambers is critical. Over the years, optimizing the performance of ultra-thin vapour chambers has piqued the industry's interest.

Objective

This study aimed at exploring the structural features, optimization method, and development status of the ultra-thin vapour chambers.

Methods

This patent study reviews various representative patents related to ultra-thin vapour chambers and discusses the problems existing in the process of achieving ultra-thinning to provide a reference for designers of ultra-thin vapour chambers in the future.

Results

Through the investigation of a large number of patents on ultra-thin vapour chamber, some existing problems are summarized and analyzed. Finally, the future trend of ultra-thin vapour chambers is discussed.

Conclusion

The optimization of ultra-thin vapour chambers benefits the heat dissipation of small electronic products and improves product safety. More related patents will be published in the future.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121261799230926103251
2023-10-06
2025-04-09
Loading full text...

Full text loading...

References

  1. Sohel MurshedS.M. Nieto de CastroC.A. A critical review of traditional and emerging techniques and fluids for electronics cooling.Renew. Sustain. Energy Rev.20177882183310.1016/j.rser.2017.04.112
    [Google Scholar]
  2. AhamedM.S. SaitoY. MashikoK. MochizukiM. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices.Heat Mass Transf.201753113241324710.1007/s00231‑017‑2022‑7
    [Google Scholar]
  3. ChenG. JiaM. ZhangS. TangY. WanZ. Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling.Int. J. Heat Mass Transf.202015611983610.1016/j.ijheatmasstransfer.2020.119836
    [Google Scholar]
  4. SunY. ChenG. ZhangS. TangY. ZengJ. YuanW. Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities.Appl. Therm. Eng.201712543244210.1016/j.applthermaleng.2017.07.044
    [Google Scholar]
  5. QuJ. WuH. ChengP. WangQ. SunQ. Recent advances in MEMS-based micro heat pipes.Int. J. Heat Mass Transf.201711029431310.1016/j.ijheatmasstransfer.2017.03.034
    [Google Scholar]
  6. WangH. WangF. LiZ. TangY. YuB. YuanW. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material.Appl. Energy201617622123210.1016/j.apenergy.2016.05.050
    [Google Scholar]
  7. ChenG. TangY. DuanL. TangH. ZhongG. WanZ. ZhangS. FuT. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors.Renew. Energy20201462234224210.1016/j.renene.2019.08.083
    [Google Scholar]
  8. KoukoravasT.P. DamoulakisG. MegaridisC.M. Experimental investigation of a vapor chamber featuring wettability-patterned surfaces.Appl. Therm. Eng.202017811552210.1016/j.applthermaleng.2020.115522
    [Google Scholar]
  9. HuangJ. ZhouW. XiangJ. LiuC. GaoY. LiS. LingW. Development of novel flexible heat pipe with multistage design inspired by structure of human spine.Appl. Therm. Eng.202017511539210.1016/j.applthermaleng.2020.115392
    [Google Scholar]
  10. LingW. ZhouW. YuW. LiuR. HuiK.S. Thermal performance of loop heat pipes with smooth and rough porous copper fiber sintered sheets.Energy Convers. Manage.201715332333410.1016/j.enconman.2017.10.009
    [Google Scholar]
  11. ChengX. YangG. WuJ. Recent advances in the optimization of evaporator wicks of vapor chambers: From mechanism to fabrication technologies.Appl. Therm. Eng.202118811661110.1016/j.applthermaleng.2021.116611
    [Google Scholar]
  12. TangH. TangY. WanZ. LiJ. YuanW. LuL. LiY. TangK. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling.Appl. Energy201822338340010.1016/j.apenergy.2018.04.072
    [Google Scholar]
  13. LuoY. LiuW. GouJ. Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure.J. Bionics Eng.201916582884110.1007/s42235‑019‑0100‑x
    [Google Scholar]
  14. SubediB. KimS.H. JangS.P. KedzierskiM.A. Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks.Int. J. Heat Mass Transf.201913153754510.1016/j.ijheatmasstransfer.2018.11.08631097839
    [Google Scholar]
  15. LeeD. ByonC. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures.Int. J. Heat Mass Transf.201812230631410.1016/j.ijheatmasstransfer.2018.01.135
    [Google Scholar]
  16. PatankarG. WeibelJ.A. GarimellaS.V. Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices.Int. J. Heat Mass Transf.201610192793610.1016/j.ijheatmasstransfer.2016.05.093
    [Google Scholar]
  17. PatankarG. WeibelJ.A. GarimellaS.V. Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers.Int. J. Heat Mass Transf.201710664865410.1016/j.ijheatmasstransfer.2016.09.038
    [Google Scholar]
  18. ChangS.W. ChiangK.F. CaiW.L. Thermal performance evaluation of thin vapor chamber.Appl. Therm. Eng.201914922023010.1016/j.applthermaleng.2018.12.034
    [Google Scholar]
  19. LiW. WangZ. YangF. AlamT. JiangM. QuX. KongF. KhanA.S. LiuM. AlwazzanM. TongY. LiC. Supercapillary architecture-activated two-phase boundary layer structures for highly stable and efficient flow boiling heat transfer.Adv. Mater.2020322190511710.1002/adma.20190511731709595
    [Google Scholar]
  20. ReayD. KewP. McglenR. Heat pipes: Theory, design and applications.6th edAmsterdamElsevier2013
    [Google Scholar]
  21. ChenX. YeH. FanX. RenT. ZhangG. A review of small heat pipes for electronics.Appl. Therm. Eng.20169611710.1016/j.applthermaleng.2015.11.048
    [Google Scholar]
  22. BulutM. KandlikarS.G. SozbirN. A review of vapour chambers.Heat Transf. Eng.201940191551157310.1080/01457632.2018.1480868
    [Google Scholar]
  23. KimS.B. KimK.H. JangS.P. KedzierskiM.A. Thermal characteristics of silicon wafer-based TVCs (thin vapor chambers) with disk-shape using DI water.Int. J. Heat Mass Transf.201812752653410.1016/j.ijheatmasstransfer.2018.06.100
    [Google Scholar]
  24. ShiB. ZhangH. ZhangP. YanL. Performance test of an ultra-thin flat heat pipe with a 0.2 mm thick vapor chamber.J. Micromech. Microeng.2019291111501910.1088/1361‑6439/ab42b3
    [Google Scholar]
  25. YangY. LiaoD. WangH. QuJ. LiJ. QiuH. Development of ultrathin thermal ground plane with multiscale micro/nanostructured wicks.Case Stud. Therm. Eng.20202210073810.1016/j.csite.2020.100738
    [Google Scholar]
  26. ChenZ. LiY. ZhouW. DengL. YanY. Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices.Energy Convers. Manage.201918722123110.1016/j.enconman.2019.03.038
    [Google Scholar]
  27. ZhangL.Y. LiuY.Y. GuoX. MengX.Z. JinL.W. ZhangQ.L. HuW.J. Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station.Appl. Energy201719449950710.1016/j.apenergy.2016.06.023
    [Google Scholar]
  28. XuS. LewisR.J. LiewL.A. LeeY-C. YangR. Development of ultra-thin thermal ground planes by using stainless-steel mesh as wicking structure.J. Microelectromech. Syst.201625584284410.1109/JMEMS.2016.2596142
    [Google Scholar]
  29. McNallyD.P. LewisR. LeeY.C. Characterization of hybrid wicking structures for flexible vapour chambers.J. Electron. Packag.2019141101100510.1115/1.4042255
    [Google Scholar]
  30. OshmanC. LiQ. LiewL.A. YangR. BrightV.M. LeeY.C. Flat flexible polymer heat pipes.J. Micromech. Microeng.201323101500110.1088/0960‑1317/23/1/015001
    [Google Scholar]
  31. LiewL.A. LinC.Y. LewisR. SongS. LiQ. YangR. LeeY.C. Flexible thermal ground planes fabricated with printed circuit board technology.J. Electron. Packag.2017139101100310.1115/1.4035241
    [Google Scholar]
  32. HuangZ. JianQ. ZhaoJ. Thermal management of open-cathode proton exchange membrane fuel cell stack with thin vapor chambers.J. Power Sources202148522931410.1016/j.jpowsour.2020.229314
    [Google Scholar]
  33. HuangG. LiuW. LuoY. DengT. LiY. ChenH. Research and optimization design of limited internal cavity of ultra-thin vapor chamber.Int. J. Heat Mass Transf.202014811910110.1016/j.ijheatmasstransfer.2019.119101
    [Google Scholar]
  34. ZhouW. LiY. ChenZ. DengL. GanY. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices.Energy Convers. Manage.201918076978310.1016/j.enconman.2018.11.031
    [Google Scholar]
  35. ZhouW. LiY. ChenZ. DengL. GanY. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe.Appl. Therm. Eng.201916211421510.1016/j.applthermaleng.2019.114215
    [Google Scholar]
  36. ZhouW. LiY. ChenZ. DengL. GanY. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones.Int. J. Heat Mass Transf.202014611879210.1016/j.ijheatmasstransfer.2019.118792
    [Google Scholar]
  37. LvL. LiJ. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick.Appl. Therm. Eng.201712259360010.1016/j.applthermaleng.2017.05.050
    [Google Scholar]
  38. LiJ. LvL. ZhouG. LiX. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips.Energy Convers. Manage.201920111220210.1016/j.enconman.2019.112202
    [Google Scholar]
  39. HuangG. LiuW. LuoY. LiY. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices.Appl. Therm. Eng.202016711472610.1016/j.applthermaleng.2019.114726
    [Google Scholar]
  40. TangH. TangY. YuanW. PengR. LuL. WanZ. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes.Appl. Therm. Eng.201812990791510.1016/j.applthermaleng.2017.10.091
    [Google Scholar]
  41. LiJ. LvL. Experimental studies on a novel thin flat heat pipe heat spreader.Appl. Therm. Eng.20169313914610.1016/j.applthermaleng.2015.09.038
    [Google Scholar]
  42. LvL. LiJ. Effect of charging ratio on thermal performance of a miniaturized two-phase super-heat-spreader.Int. J. Heat Mass Transf.201710448949210.1016/j.ijheatmasstransfer.2016.08.087
    [Google Scholar]
  43. DingX.Q. XieY. An ultra-thin and lightweight vapour chamber.CN Patent 216930588 U, 2022
    [Google Scholar]
  44. ChenG. XuY.S. TangY. ZhongG.S. ZhangS.W. A grooved ultra-thin aluminum-based vapour chamber.CN Patent 212552551 U, 2021
    [Google Scholar]
  45. YanC.M. LiuH. HuangH.Y. ZhangS.W. TangY. An ultra-thin flexible vapour chamber.CN Patent 217110610 U, 2022
    [Google Scholar]
  46. DingX.Q. LiK.K. Ultra-thin vapour chamber.CN Patent 207543468 U, 2018
    [Google Scholar]
  47. LiX.Q. WenJ. WangN. A kind of sintered ultra-thin vapour chamber.CN Patent 214470284 U, 2021
    [Google Scholar]
  48. ChenQ. TangW.J. WuX.Y. ZhuG.F. An ultra-thin asymmetric vapour chamber based on copper foam.CN Patent 211860889 U, 2020
    [Google Scholar]
  49. WeiY.T. LuZ.Y. LiuS. ShiP.N. ZouG.L. An ultra-thin vapour chamber.CN Patent 215991695 U, 2022
    [Google Scholar]
  50. ZhengH.H. LiuK.H. YuC.C. An ultra-thin flexible vapour chamber.CN Patent 215898277 U, 2022
    [Google Scholar]
  51. XieX.B. XuJ.Y. A new type of ultra-thin vapour chamber and electronic equipment.CN Patent 216011893 U, 2022
    [Google Scholar]
  52. LuoQ. Ultra-thin vapour chamber based on self-wetting fluid as working fluid.CN Patent 214177905 U, 2021
    [Google Scholar]
  53. LiX.W. ZhuG.Z. ChenX.J. ZhangF. An ultra-thin vapour chamber. CN Patent 213120222 U, 2021
    [Google Scholar]
  54. ChenQ. WuX.N. A high-strength and lightweight ultra-thin vapour chamber.CN Patent 212658107 U, 2021
    [Google Scholar]
  55. WeiY.T. MuJ.J. WuT.H. ShiP.N. OuW.J. An ultra-thin vapour chamber.CN Patent 212324593 U, 2021
    [Google Scholar]
  56. YuQ.Y. LiangP.P. LiX.H. An ultra-thin vapour chamber.CN Patent 211041903 U, 2020
    [Google Scholar]
  57. HuangW.G. LiY. ZhouW.J. HeB.L. ChenH.Y. An ultra-thin vapour chamber structure.CN Patent 207214880 U, 2018
    [Google Scholar]
  58. ChenQ. WuX.N. TangW.J. HuX.L. TangL. An ultra-thin vapour chamber for gas-liquid channel separation.CN Patent 111536817 A, 2020
    [Google Scholar]
  59. ChunT.Y. ChinL.L. Vapour chamber and method for manufacturing thereof.US Patent 0312640 A1, 2022
    [Google Scholar]
  60. ChinH.W. Vapour chamber.US Patent 11486651 B2, 2022
    [Google Scholar]
  61. PuJ.L. YingC. Vapour chamber device and manufacturing method thereof.US Patent 11460255 B2, 2022
    [Google Scholar]
  62. JiangS.Y. WangL. A kind of heat dissipation suitable for medium and high temperature heating electronic components Ultra-thin VC vapour chamber.CN Patent 217363625 U, 2022
    [Google Scholar]
  63. JiangS.Y. WangL. An ultra-thin VC vapour chamber suitable for heat dissipation in a small and medium area.CN Patent 217064389 U, 2022
    [Google Scholar]
  64. ZhouF. ZhouG.H. ZhouJ.Z. HuaiX.L. JiangY.W. Ultra-thin vapour chambers and electronic equipment.CN Patent 217486819 U, 2022
    [Google Scholar]
  65. SunM.M. An ultra-thin vapour chamber spatial distributed composite micro-nano aspiration coreCN Patent 215930656 U, 2022
    [Google Scholar]
  66. HanY.D. YuQ.Y. LiangP.P. Semi-stamped ultra-thin vapour chamber.CN Patent 213028997 U, 2021
    [Google Scholar]
  67. ZhangW.M. A new type of ultra-thin vapour chamber.CN Patent 211696005 U, 2020
    [Google Scholar]
  68. PanM.Q. HuangP.N. LiC. ChenY. LiuQ.Y. An ultra-thin vapour chamber with a composite suction core structure.CN Patent 211297499 U, 2020
    [Google Scholar]
  69. HuangG.W. LiY. ZhouW.J. HeB.L. ChenH.M. Ultra-thin flexible vapour chamberCN Patent 207515592 U, 2018
    [Google Scholar]
  70. LiY. DengL.Q. ChenZ.S. ChenH.M. YuJ. An ultra-thin vapour chamber and preparation method thereof.CN Patent 113606970 B, 2022
    [Google Scholar]
  71. RenZ.M. RenZ.Y. LiaoX.F. Ultra-thin vapour chamber of graphite liquid absorbent core and preparation method thereof.CN Patent 111750719 B, 2022
    [Google Scholar]
  72. ZhouF. ZhouJ.Z. ZhouG.H. HuaiX.L. Ultra-thin vapour chamber and its preparation method, electronic equipmentCN Patent 114857967 A, 2022
    [Google Scholar]
  73. JiangS.Y. WangL. Ultra-thin VC vapour chamber with partition heat dissipation and its design method.
    [Google Scholar]
  74. WangL. An ultra-thin VC vapour chamber with involute etched channels and its design methodology.
    [Google Scholar]
  75. ZhouY.K. ZouT. TangH.J. XingC.T. An ultra-thin vapour chamber and its production method.CN Patent 113115576 A, 2021
    [Google Scholar]
  76. GuoH. WuN. XieZ.N. ZhangX.M. HuangS.H. An ultra-thin imitation snowflake vapour chamber for heat dissipation from multiple heat sources.CN Patent 114279247 A, 2022
    [Google Scholar]
  77. ZhouX.M. Ultra-thin soaking plate ultra-hydrophilic micro-nanostructure liquid absorbent core and preparation method.US Patent 11454455 B2, 2022
    [Google Scholar]
  78. LiuW.Y. HuangG.W. LuoY.Q. TianP.F. An ultra-thin loop vapour chamber.CN Patent 109579584 A, 2019
    [Google Scholar]
  79. ChenW.C. LiuC.F. LiuG.C. Vapour chamber and heat dissipation device with same.US Patent 11454455 B2, 2022
    [Google Scholar]
  80. KuoC.W. ChenC.W. ChangT.Y. ChuangH.C. ChenP.J. Disturb able vapour chamber.TW Patent M 633235 U, 2022
    [Google Scholar]
  81. MaoL.C. ZhouX.X. ZhangX.X. LiuH.M. Vapour chamber with enhanced two-phase flow boiling structure.TW Patent I 779873 B, 2022
    [Google Scholar]
  82. HansmannH.-K. Vapour-Chamber-MikrokuhlerDE Patent 202011004472 U1, 2011
    [Google Scholar]
  83. BaiP.F. ChenP. An ultra-thin vapour chamber and its production method.CN Patent 105865241 B, 2018
    [Google Scholar]
  84. DingX.Q. Ultra-thin vapour chamber> CN Patent 207118198 U, 2018
    [Google Scholar]
  85. ChenP. GaoM.Z. A new type of ultra-thin vapour chamberCN Patent 206556484 U, 2017
    [Google Scholar]
  86. PanM.Q. HuangP.N. ChenZ.L. An ultra-thin flexible vapour chamber and manufacturing method thereof.CN Patent 112888267 B, 2022
    [Google Scholar]
  87. WuY.J. MingT.Z. ChenS. An ultra-thin vapour chamber with a gradient copper fiber capillary mesh.CN Patent 111076588 B, 2021
    [Google Scholar]
  88. BaiP.F. ChenP. An ultra-thin vapour chamber and its production method.CN Patent 105658032 B, 2019
    [Google Scholar]
  89. HuL.R. XiangX.H. TangB. Copper powder for ultra-thin vapour chamber and production method thereof.CN Patent 105108163 B, 2017
    [Google Scholar]
  90. ShiZ.L. WangH. ShiZ.W. QiuC.Y. A heat sink material is a manufacturing method for ultra-thin vapour chamber of the bottom plate.CN Patent 105307452 B, 2018
    [Google Scholar]
  91. ZhengQ.X. JinJ.D. XuJ.W. YangT.T. GengH.K. A low-temperature process visualization ultra-thin flexible vapour chamber and preparation method thereof.CN Patent 114993083 A, 2022
    [Google Scholar]
  92. WangS.F. LiuT.Q. YanW.T. YangX. An ultra-thin vapour chamber radiator with a liquid reservoir core and how to use it.CN Patent 113701536 A, 2021
    [Google Scholar]
  93. DengD.X. ZhongN.B. LiuY. SunJ. YaoY.X. Flexible ultra-thin vapour chamber and preparation method thereof.CN Patent 113606972 A, 2021
    [Google Scholar]
  94. SunW. SunC. Ultra-thin vapour chamber 3D copper mesh capillary structure.CN Patent 115111948 A, 2022
    [Google Scholar]
  95. ChenQ. WuX.N. TangW.J. HuX.L. TangL. An ultra-thin vapour chamber with symmetrical structure.CN Patent 111637772 A, 2020
    [Google Scholar]
  96. TangY. NieC. LiuY.L. QiL.F. ChenG. Ultra-thin vapour chamber and its preparation method, electronic equipment.CN Patent 113498295 A, 2021
    [Google Scholar]
  97. YuQ.Y. LiangP.P. LiX.H. An ultra-thin vapour chamber and manufacturing method thereof.CN Patent 110966880 A, 2020
    [Google Scholar]
  98. KenyaK. YoshikatsuI. HirofumiA. HiroshiO. YosukeW. Vapour chamber.WO Patent 210838 A1, 2022
    [Google Scholar]
  99. YangW.J. LinH.Y. WangX.H. ZengC.Y. Ultra-thin vapour chamber.TW Patent 41281 A, 2016
    [Google Scholar]
  100. TakahashiS.L. OtaY. Vesicants, electronic devices, sheets for pa-chambers, and base-chambers Method for producing bibe-pa-chamba.JP Patent 124446 A, 2019
    [Google Scholar]
  101. YamashitaK. Metal sheets for vessel chambers, electronics and ves chambers.JP Patent 70512 A, 2019
    [Google Scholar]
  102. HansmannH.-K. Vapor chamber cooler with circulating heat pipe.DE Patent 202009017594 U1, 2010
    [Google Scholar]
  103. AhmedE.H. AmjedA.F. The Development and Validation of an Autonomous UVC(Ultraviolet - C) Disinfection Robot System.Int. J. Emerg. Technol. Adv. Eng.20221222502459
    [Google Scholar]
  104. Al-FahoumA. DaghlasK. Virtual Thermodynamics Laboratory - Refrigeration Cycle “RC”.Neuroquantology20222058985911
    [Google Scholar]
/content/journals/eng/10.2174/0118722121261799230926103251
Loading
/content/journals/eng/10.2174/0118722121261799230926103251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test