Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

With the development of automation technology, various actuators are widely used in fields such as robotics and biomedical equipment. However, traditional mechanical actuators have some problems, such as poor movement flexibility and insufficient movement flexibility, because of the characteristics of the mechanical structure. As a new driving mode, artificial muscle actuators can provide enough power and speed while remaining light and flexible, making them highly adaptable in various applications. As a result, artificial muscle actuators are gaining increasing attention.

Objective

The purpose of this study is to give an overview of the patents related to artificial muscle actuators and introduce their principles, classifications, latest progress, and future development.

Methods

This patent paper reviews the current representative patents related to artificial muscle actuators, such as fluid pressure artificial muscle actuators, thermal deformation artificial muscle actuators, and electrical deformation artificial muscle actuators.

Results

By investigating various patents of artificial muscle actuators, the main problems of artificial muscle actuators are summarized and analyzed, such as low energy efficiency and lack of self-learning ability. In addition, the development trend of artificial muscle actuators is also discussed.

Conclusion

The optimization of artificial muscle actuators is beneficial to make the output of artificial mechanical devices more stable and more convenient for human-machine combinations. More related patents will be invented in the future.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121281062231220044142
2024-01-12
2025-04-07
Loading full text...

Full text loading...

References

  1. RicottiL. TrimmerB. FeinbergA.W. RamanR. ParkerK.K. BashirR. SittiM. MartelS. DarioP. MenciassiA. Biohybrid actuators for robotics: A review of devices actuated by living cells.Sci. Robot.2017212eaaq049510.1126/scirobotics.aaq049533157905
    [Google Scholar]
  2. HunterI.W. LafontaineS. A comparison of muscle with artificial actuators.Technical Digest IEEE Solid-State Sensor and Actuator Workshop178185199210.1109/SOLSEN.1992.228297
    [Google Scholar]
  3. HughesD. HeckmanC. CorrellN. Materials that make robots smart.Int. J. Robot. Res.20193812-131338135110.1177/0278364919856099
    [Google Scholar]
  4. HinesL. PetersenK. LumG.Z. SittiM. Soft actuators for small-scale robotics.Adv. Mater.20172913160348310.1002/adma.20160348328032926
    [Google Scholar]
  5. von Hillebrandt-AndradeC. Geophysics. Minimizing Caribbean tsunami risk.Science2013341614996696810.1126/science.123894323990549
    [Google Scholar]
  6. MuJ. Jung de AndradeM. FangS. WangX. GaoE. LiN. KimS.H. WangH. HouC. ZhangQ. ZhuM. QianD. LuH. KongahageD. TalebianS. ForoughiJ. SpinksG. KimH. WareT.H. SimH.J. LeeD.Y. JangY. KimS.J. BaughmanR.H. Sheath-run artificial muscles.Science2019365644915015510.1126/science.aaw240331296765
    [Google Scholar]
  7. GaoP. LiJ. ShiQ. A hollow polyethylene fiber-based artificial muscle.Adv. Fiber Mater.201913-421422110.1007/s42765‑019‑00019‑6
    [Google Scholar]
  8. MosadeghB. PolygerinosP. KeplingerC. WennstedtS. ShepherdR.F. GuptaU. ShimJ. BertoldiK. WalshC.J. WhitesidesG.M. Pneumatic networks for soft robotics that actuate rapidly.Adv. Funct. Mater.201424152163217010.1002/adfm.201303288
    [Google Scholar]
  9. ChangB. ChewA. NaghshinehN. MenonC. A spatial bending fluidic actuator: Fabrication and quasi-static characteristics.Smart Mater. Struct.201221404500810.1088/0964‑1726/21/4/045008
    [Google Scholar]
  10. RodrigueH. WangW. HanM.W. KimT.J.Y. AhnS.H. An overview of shape memory alloy-coupled actuators and robots.Soft Robot.20174131510.1089/soro.2016.000829182099
    [Google Scholar]
  11. KanikM. OrgucS. VarnavidesG. KimJ. BenavidesT. GonzalezD. AkintiloT. TasanC.C. ChandrakasanA.P. FinkY. AnikeevaP. Strain-programmable fiber-based artificial muscle.Science2019365644914515010.1126/science.aaw250231296764
    [Google Scholar]
  12. ForoughiJ. SpinksG. Carbon nanotube and graphene fiber artificial muscles.Nanoscale Adv.20191124592461410.1039/C9NA00038K36133125
    [Google Scholar]
  13. JiX. LiuX. CacuccioloV. ImbodenM. CivetY. El HaitamiA. CantinS. PerriardY. SheaH. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators.Sci. Robot.2019437eaaz645110.1126/scirobotics.aaz645133137720
    [Google Scholar]
  14. DudutaM. HajiesmailiE. ZhaoH. WoodR.J. ClarkeD.R. Realizing the potential of dielectric elastomer artificial muscles.Proc. Natl. Acad. Sci.201911672476248110.1073/pnas.181505311630679271
    [Google Scholar]
  15. LiC.H. WangC. KeplingerC. ZuoJ.L. JinL. SunY. ZhengP. CaoY. LisselF. LinderC. YouX.Z. BaoZ. A highly stretchable autonomous self-healing elastomer.Nat. Chem.20168661862410.1038/nchem.249227219708
    [Google Scholar]
  16. XingZ.G. LinJ. ZhaoJ.W. Review of research progress in artificial muscle actuators.Chin. J. Mech. Eng.20215709
    [Google Scholar]
  17. MirfakhraiT. MaddenJ.D.W. BaughmanR.H. Polymer artificial muscles.Mater. Today2007104303810.1016/S1369‑7021(07)70048‑2
    [Google Scholar]
  18. TrivediD. RahnC.D. KierW.M. WalkerI.D. Soft robotics: Biological inspiration, state of the art, and future research.Appl. Bionics Biomech.2008539911710.1155/2008/520417
    [Google Scholar]
  19. WangT. Soft robotics: Structure, actuation, sensing and control.Jixie Gongcheng Xuebao20175313110.3901/JME.2017.13.001
    [Google Scholar]
  20. OhtaP. ValleL. KingJ. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves.Soft Robotics201852201810.1089/soro.2017.0044
    [Google Scholar]
  21. HanK. KimN.H. ShinD. A novel soft pneumatic artificial muscle with high-contraction ratio.Soft Robot.20185555456610.1089/soro.2017.011429924698
    [Google Scholar]
  22. HeQ. WangZ. WangY. MinoriA. TolleyM.T. CaiS. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation.Sci. Adv.2019510eaax574610.1126/sciadv.aax574631646178
    [Google Scholar]
  23. SimoneF. RizzelloG. SeeleckeS. Metal muscles and nerves—a self-sensing SMA-actuated hand concept.Smart Mater. Struct.201726909500710.1088/1361‑665X/aa7ad5
    [Google Scholar]
  24. BolzmacherC. BiggsJ. SrinivasanM. Smart structures and materials 2006: Electroactive polymer actuators and devices (EAPAD. Proc. SPIE27382006
    [Google Scholar]
  25. ZhangJ. ShengJ. O’NeillC.T. WalshC.J. WoodR.J. RyuJ-H. DesaiJ.P. YipM.C. Robotic artificial muscles: Current progress and future perspectives.IEEE Trans. Robot.201935376178110.1109/TRO.2019.2894371
    [Google Scholar]
  26. AkhrasG. Smart materials and smart systems for the future.Can. Mil. J.2018132531
    [Google Scholar]
  27. MiriyevA. StackK. LipsonH. Soft material for soft actuators.Nat. Commun.20178159610.1038/s41467‑017‑00685‑328928384
    [Google Scholar]
  28. YangD. VermaM.S. SoJ.H. MosadeghB. KeplingerC. LeeB. KhashaiF. LossnerE. SuoZ. WhitesidesG.M. Buckling pneumatic linear actuators inspired by muscle.Adv. Mater. Technol.201613160005510.1002/admt.201600055
    [Google Scholar]
  29. TrubyR.L. WehnerM. GrosskopfA.K. VogtD.M. UzelS.G.M. WoodR.J. LewisJ.A. Soft somatosensitive actuators via embedded 3D printing.Adv. Mater.20183015170638310.1002/adma.20170638329484726
    [Google Scholar]
  30. CacuccioloV. ShintakeJ. KuwajimaY. MaedaS. FloreanoD. SheaH. Stretchable pumps for soft machines.Nature2019572777051651910.1038/s41586‑019‑1479‑631413364
    [Google Scholar]
  31. RobertsonM.A. SadeghiH. FlorezJ.M. PaikJ. Soft pneumatic actuator fascicles for high force and reliability.Soft Robot.201741233210.1089/soro.2016.002928289573
    [Google Scholar]
  32. WangQ.L. WangW. HaoD.X. Hysteresis modeling and application of mckibben pneumatic artificial muscles.Chin. J. Mech. Eng.20195521738010.3901/JME.2019.03.073
    [Google Scholar]
  33. HaoY. GongZ. XieZ. Universal soft pneumatic robotic gripper with variable effective length.Staff 2016 35th Chinese Control Conference20166109611410.1109/ChiCC.2016.7554316
    [Google Scholar]
  34. AsbeckA.T. SchmidtK. WalshC.J. Soft exosuit for hip assistance.Robot. Auton. Syst.20157310211010.1016/j.robot.2014.09.025
    [Google Scholar]
  35. AsbeckA.T. RossiS. HoltK.G. A biologically inspired soft exosuit for walking assistance.Nat. Chem.2015346744762
    [Google Scholar]
  36. ZhangJ. LiuY. WuS.Y. GongZ.F. WangK.J. Artificial muscle, cylinder and control method of elastic bellows with radial lace shape.CN Patent 1147501872022
    [Google Scholar]
  37. QianF.L. HuanY. ChenG.S. ChenL.N. XuY.D. A soft driver driven by electromagnetic induction.CN Patent 115288820
    [Google Scholar]
  38. HuX.H. WangJ. DingJ.N. WangY.L. ChengG.G. Bidirectional linear fast response spiral winding pneumatic artificial muscle based on braided tube.CN Patent 114102569B2021
    [Google Scholar]
  39. GengD.X. WuG.B. LiuX.M. LiuH.B. PengH. A double acting pneumatic flexible artificial muscle.CN Patent 114750187A2021
    [Google Scholar]
  40. HeY. ShenY.P. ZhuL.L. WangS.L. HuB.L. A large shrinkage high load artificial muscle.CN Patent 217530846U2021
    [Google Scholar]
  41. ShouzouM. Artificial muscle actuator device.WO Patent 2022239634A12021
    [Google Scholar]
  42. RoweM.P. PanwarS.S. PalaniswamyM. Artificial muscle drive units with load-bearing supports for improved performance.US Patent 11421664 B12021
    [Google Scholar]
  43. ShinD.J. LeeS.Y. Pneumatic artificial muscle unit using elastic energy, and operation method therefor.WO Patent 2022173076 A12021
    [Google Scholar]
  44. DoT.N. ThaiM.T. PhanP.T. HoangT.T. LovellN.H. Soft robotic technologies, artificial muscles, grippers and methods of making the same.WO Patent 2022036408A12022
    [Google Scholar]
  45. CianchettiM. LorenzonL. MaselliM. ZrinscakD. KluinJ. Artificial heart muscle.WO Patent 2021260614 A12021
    [Google Scholar]
  46. ParkY.L. KwonJ.H. YoonZ.X. Artificial muscle using pneumatic pressure.KR Patent 102301926 B12021
    [Google Scholar]
  47. DongX.F. ZhuS.F. ZhaoZ.H. Electrically controlled bidirectional bending composite artificial muscle.CN Patent 112440271A2020
    [Google Scholar]
  48. ZuoS.Y. XieD.C. LiuJ.B. Pneumatic artificial muscle based on contraction and amplification mechanism.CN Patent 112428259A2020
    [Google Scholar]
  49. RongC. XuM. ChenG.J. An artificial muscle is embedded in an optical sensor and its use and preparation method thereof.CN Patent 111975759A2020
    [Google Scholar]
  50. ZhaoH.C. LinZ.H. LiuX.J. Pneumatic artificial muscle fibers and bionic robotic arms.CN Patent 111660286A2020
    [Google Scholar]
  51. HuangJ.W. WangH.W. CuiL. LiuN.L. BaiN. Twist and contract artificial muscles.CN Patent 2112500432019
    [Google Scholar]
  52. TanD.Z. SuiL.M. GuoJ. QiuY. CaiW. Electromagnetic artificial muscle.CN Patent 111360803A2020
    [Google Scholar]
  53. YildirimM.C. BebekO. UgurluR.B. Robotic manipulator including pneumatic artificial muscle.US Patent 11465278B22022
    [Google Scholar]
  54. YinZ.X. YuZ.F. A pneumatic artificial muscle with dustproof structure.CN Patent 110695980A2021
    [Google Scholar]
  55. ChoK.J. KimW.B. A novel soft actuator based on folding structure.KR Patent 20220107988A2022
    [Google Scholar]
  56. CurhanJ. DemelloC. WomersleyT. End of arm tools for soft robotic systems.US Patent 11045959B22021
    [Google Scholar]
  57. RoweM.P. Hybrid actuation device including fluidly cooled SMA wires.US Patent 11536255B12022
    [Google Scholar]
  58. HuX.H. BaoX.F. ZhaoK. WangJ. LiH. The invention relates to a method for making large strain artificial muscle by super twisting.CN Patent 115627569A2023
    [Google Scholar]
  59. ChengY.C. JingH.L. LuB.J. WangB. ZhangH.W. The invention relates to a self-sensing magnetic response phase change drive material, preparation method and application thereof.CN Patent 115558467A2021
    [Google Scholar]
  60. YangG.L. ZhangH. DuQ.H. ShenW.J. ZhengT.J. The invention relates to an electrically driven metal wire skeleton-spandex fiber twist-type composite artificial muscle and a preparation method thereof.CN Patent 112936250B2021
    [Google Scholar]
  61. LiuY.Q. LiX.X. FangJ. PanZ.J. The invention relates to optical drive driven artificial muscle material, preparation method and application thereof.CN Patent 113089150B2021
    [Google Scholar]
  62. ParkC.H. KimS. SongS.H. SeoH. JungH.M. Spring-woven fabric, manufacturing method therefor, flexible actuator using same, wearable robot comprising flexible actuator, and massage device comprising flexible actuator.WO Patent 2022203133A12022
    [Google Scholar]
  63. LiG.Q. LiS. FanJ.Z. FengX.M. Free-standing artificial muscles containing polymeric actuators.US Patent 2022297288A12022
    [Google Scholar]
  64. VillanuevaA.A. SmithC. PriyaS. Shape memory alloy (SMA) actuators and devices including bio-inspired shape memory alloy composite actuators.US Patent 2012174571A12021
    [Google Scholar]
  65. LangerR.S. MirvakiliS.M. Light-driven pneumatic artificial muscles/soft robots.US Patent 2022065271A12022
    [Google Scholar]
  66. MirvakiliS.M. HunterI. LangerR. Wireless actuators.WO Patent 2021183924A12021
    [Google Scholar]
  67. LiY.G. ZhangL.K. WangH.Z. HouC.Y. ZhangQ.H. The invention relates to an electrostrictive spiral artificial muscle, preparation and application thereof.CN Patent 112201744A2021
    [Google Scholar]
  68. GoktepeO. GoktepeF. LiN. FangS.L. BaughmanR.H. Actuating textiles containing polymer fiber muscles.US Patent 2021198817A12021
    [Google Scholar]
  69. GodmanN.P. WhiteT.J. KoernerH. KowalskiB.A. AugusteA.D. GuinT.C. Liquid crystal elastomers.US Patent 11214642B22022
    [Google Scholar]
  70. KotikianA. LewisJ.A. MoralesF.J.M. BoleyJ.W. Actuator comprising an innervated liquid crystal elastomer.US Patent 2023049026A12021
    [Google Scholar]
  71. WilsonT.S. BearingerJ.P. Shape memory polymers.US Patent 2020131299A12023
    [Google Scholar]
  72. SafranskiD. SmithK. GriffisI.J.C. Shape memory polymer fabrics.US Patent 10582998B12020
    [Google Scholar]
  73. VerkerR. MargoyD. GouzmanI. GrossmanE. BolkerA. Shape memory polymer actuators.US Patent 2022065232A12020
    [Google Scholar]
  74. ParkJ.Y. KangM.L. YiS.W. Temperature-dependent shape memory polymer.WO Patent 2021261915A12022
    [Google Scholar]
  75. DuH.Y. LiangY.M. ZhangY.Y. BaiY.H. QianC. A kind of rapidly responsive, thermally driven, spiral-coiling type artificial muscles.CN Patent 116276939A2023
    [Google Scholar]
  76. RoweM.P. TsurutaR. PanwarS.S. PalaniswamyM. HerzogM.P. Hybrid actuation device.US Patent 11542925B12023
    [Google Scholar]
  77. QiR. WangF. ZhongK. ShenW. A worm-like soft robot based on a flexible ionic artificial muscle actuator.CN Patent 115648191A2022
    [Google Scholar]
  78. GuoD.J. LiH.X. MeiL.X. MaL. MiaoX.Y. Self-sensing IPMC artificial muscle and preparation method thereof.CN Patent 115493728A2022
    [Google Scholar]
  79. YuanJ.B. Artificial muscle device.CN Patent 113524144B2021
    [Google Scholar]
  80. LengJ.S. XiaY.L. MuT. LiuY.J. A 4D printing continuous fiber reinforced liquid crystal elastomer artificial muscle and its application.CN Patent 114851551B2022
    [Google Scholar]
  81. WuY.C. WUC.F. ZengZ. PengB. WangP. The invention relates to a dielectric elastomer artificial muscle based on laser carbonization and a preparation method thereof.CN Patent 114750141A2022
    [Google Scholar]
  82. WangX.C. WangY.Y. YueX.K. ZhangT. An electrically driven artificial muscle based on a tensegrity structure.CN Patent 114872032A2022
    [Google Scholar]
  83. RenL. YangH.S. WeiG.W. QianZ.H. A compact artificial muscle module with mechanical flexibility.CN Patent 113146605B2021
    [Google Scholar]
  84. DongX.F. ZhaoZ.H. ZhuS.F. An electronic control telescopic compound artificial muscle.CN Patent 111618837B2020
    [Google Scholar]
  85. WangK.Y. LiB.Q. LiangW. ZhaoS. LuX.W. An artificial muscle combination driver.CN Patent 115122313A2022
    [Google Scholar]
  86. PeiQ.B. AskounisE. ShiY. A processable, high-performance dielectric elastomer and multilayer dielectric elastomer actuator.WO Patent 2022241313A12022
    [Google Scholar]
  87. ParkM.J. HamH.S. BarpuazaryD. Low-voltage soft actuator capable of linear motion in air.US Patent 2022199894A12022
    [Google Scholar]
  88. ChibaS. WakiM. TanakaY. OkamotoK. NagaseK. Dielectric elastomer motor.US Patent 10411617B22020
    [Google Scholar]
  89. CamlicaF.B. An actuator mechanism.WO Patent 2022019858A12022
    [Google Scholar]
  90. RiveraR. Dielectric elastomer microfiber actuators.WO Patent 2021230993A22021
    [Google Scholar]
  91. FangT.R. ChengF. Electric spring artificial muscle device.CN Patent 112223269A2020
    [Google Scholar]
  92. LiuX. WangZ.Y. JiH. Carbon nanotube fiber ion gel relates to an artificial muscle preparation mold and a preparation method thereof.CN Patent 111978564A2021
    [Google Scholar]
  93. LiT.F. YinS.Y. ZhangM.Q. CaoX.N. XuY. The invention relates to an artificial muscle module and a manufacturing method thereof.CN Patent 111390895A2020
    [Google Scholar]
  94. ChengY.C. HuaL.T. NiuY.M. ZhaoZ.H. ShaoY.C. The invention relates to an artificial muscle based on a dielectric elastomer and an intelligent fluid with adjustable stiffness and a preparation method thereof.CN Patent 110757434A2021
    [Google Scholar]
  95. JohnsonM.T. FishD.A. Actuator device based on an electroactive polymer.US Patent 11139426B22021
    [Google Scholar]
  96. ZouJ. TangW. ZhangC. Flexible electrohydrodynamics driver.WO Patent 2021143085A12021
    [Google Scholar]
  97. JakliA. FengC.R. RajapakshaC. KaphleV. KyuT. Electro-responsive ionic liquid crystal elastomer.US Patent 2021214613A12021
    [Google Scholar]
  98. HoribeR. Dielectric elastomer actuator device.JP Patent 2020061878A2020
    [Google Scholar]
  99. KanzakiT. OguchiS.J. SugiyamaK. NodaE. Actuator device.JP Patent 2021149585A2021
    [Google Scholar]
  100. HanZ.W. LiuL.P. ZhangJ.Q. WangD.K. SunT. Sensing and execution integrated bionic flexible actuator and method for preparing same.WO Patent 2020181777A12020
    [Google Scholar]
/content/journals/eng/10.2174/0118722121281062231220044142
Loading
/content/journals/eng/10.2174/0118722121281062231220044142
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test