Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

As the pace of human conquest of space continues to accelerate, the number of spacecraft carrying out various activities in space continues to increase, so that the available orbital space continues to decrease, the amount of space debris continues to increase, and thus the probability of orbiting spacecraft being impacted by space debris is also increasing. Research on the development of protective structures in the current state is conducive to improving the protection performance of spacecraft protective structures against space debris, reducing the occurrence of spacecraft disintegration events and spacecraft collision events, and may also promote the development of many fields through the development of new technologies.

Aim

Through the latest application and development of spacecraft, the advantages and disadvantages of various protection structures are summarized, and the development trend of academic and aerospace protection engineering is analyzed.

Methods

Through the latest representative patent research methods for spacecraft space debris, research content, and creative structure, the principle and characteristics of the protective structure are demonstrated.

Results

By comparing the application of different spacecraft space debris protection structures, the existing problems of the current protection structures are listed, and the potential development paths and research topics are put forward.

Conclusion

The development of aerospace, military, and other industries benefit from the development of protective structures, and the composite spacecraft space debris protection structures have broad development prospects.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121314299240826115204
2024-10-14
2025-06-26
Loading full text...

Full text loading...

References

  1. GuanG.S. BangB.J. NiuR.T. Investigation into Damage of AL-Mesh Bumper under Hypervelocity AL-Spheres Impact.Key Eng. Mater.2012488-489202205
    [Google Scholar]
  2. SchonbergW.P. Studies of hypervelocity impact phenomena as applied to the protection of spacecraft operating in the MMOD environment.Procedia Eng201740444310.1016/j.proeng.2017.09.723
    [Google Scholar]
  3. SunY.H. ShiC.C. LiuZ. WenD.S. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets.Shock Vib.2015201515
    [Google Scholar]
  4. WatsonE. MurilloJ.L.S. BüttnerM. MaturaP. SchimmerohnM. Simulating hypervelocity impact with a discrete element approach.Acta Astronaut2022199425435
    [Google Scholar]
  5. HuangX.G. TanX.T. LeiG.Y. RuH.Q. ZhangK.B. LuoY. YinC. Preparation and impact damage behavior of SiC/AI composite bumper for space debris shielding application.Rare Met. Mater. Eng.202251983989
    [Google Scholar]
  6. LiuY.M. YangX.N. LiM. LiuX.P. ZhaoC.Q. Fabricating spring-structure carbon nanotube-based hybrid fibers from impact of space debris.Design, Manuf. Mechatron.2016201510071013
    [Google Scholar]
  7. SekineH. ItoR. ShintateK. A single energy-based parameter to assess protection capability of debris shields.Int. J. Impact Eng.200734595897210.1016/j.ijimpeng.2006.01.004
    [Google Scholar]
  8. SotskiyM.Y. VeldanovV.A. SelivanovV.V. Growth in the quantity of debris in Space as AN effect of mutual mechanical collisions of various types.Acta Astronaut.20171351014
    [Google Scholar]
  9. WenK. ChenX.W. LuY.G. Research and development on hypervelocity impact protection using Whipple shield: An overview.Def. Technol.20211718641886
    [Google Scholar]
  10. ZhouH. GuoR. LiuR. Protection properties of stuffed corrugated sandwich structures under hypervelocity impact: Numerical simulation.J. Sandw. Struct. Mater.201921253255110.1177/1099636217697493
    [Google Scholar]
  11. BevelacquaJ.J. MortazaviS.M.J. Commentary: Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions.Front. Immunol.20189Sep202410.3389/fimmu.2018.0202430233600
    [Google Scholar]
  12. CaoJ. XuG.Q. XuF. Overview of Deep Space Exploration Space Transportation Systems and Control Technology.IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 2014 Yantai,China
    [Google Scholar]
  13. CappellettiC. PaolilloF. University microsatellites equipped with an optical system for space debris monitoring.Small Satellite Missions for Earth ObservationChamSpringer201010.1007/978‑3‑642‑03501‑2_21
    [Google Scholar]
  14. CheolheaK.O.O. KimC.K. LiuD.Y. HyukC.G. Analysis of the effectiveness of solar system internet to deep space exploration.J. Korean Soc. Aeronaut. Space Sci.201644240246
    [Google Scholar]
  15. MironovV.V. MurtazovA.K. Retrospective on the problem of space debris. part 2. monitoring of space debris of natural origin in near-earth space using optical methods of meteor astronomy.Cosm. Res.2021591364510.1134/S0010952521010056
    [Google Scholar]
  16. MuntoniG. MontisciG. PisanuT. AndronicoP. ValenteG. Crowded Space: A Review on Radar Measurements for Space Debris Monitoring and Tracking.Appl. Sci.2021114136410.3390/app11041364
    [Google Scholar]
  17. NavakatikianM.A. A method for studying the defensive conditioned reflexes of active avoidance.Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova19924248128181332306
    [Google Scholar]
  18. PlattD. MillotP. BoyG.A. Participatory Design of a Cooperative Exploration Mediation Tool for Human Deep Space Risk Mitigation.Engineering Psychology and Cognitive ErgonomicsBerlin, HeidelbergSpringer Link201410.1007/978‑3‑319‑07515‑0_37
    [Google Scholar]
  19. SongY.H. KongJ.P. The design and simulation analysis of K band large reflector antenna system for deep space exploration.Sch. Seman.2016
    [Google Scholar]
  20. WangF.Y. WangX.N. The application of spread-spectrum system in the area of remote space exploration.International Conference on Space Information Technology 2009, 2010 Beijing,China
    [Google Scholar]
  21. WangX.B. SongJ.D. ZhouX.W. Hypergraph based network model and architecture for deep space exploration.2nd International Conference on Information Computing and Applications., 2011 Qinhuangdao,China
    [Google Scholar]
  22. WuW. LiuW. QiaoD. JieD. Investigation on the development of deep space exploration.Sci. China Technol. Sci.20125541086109110.1007/s11431‑012‑4759‑z
    [Google Scholar]
  23. YangL. Design and realization of embedded platforms into mission planning system for deep space explorer.Dissertation/Thesis.2009
    [Google Scholar]
  24. YuanZ.N. SunW.J. ChengY.J. XiZ.H. Development of vacuum calibration apparatus for deep space exploration.4th IEEE International Workshop on Metrology for AeroSpace., 2017 Padua,Italy
    [Google Scholar]
  25. ZhaoM. LiG. LiH. LiS. Reliable scheduling algorithm for space debris monitoring resources using adaptive multipopulation differential evolutionary optimization with reinforcement learning.IEEE Trans. Reliab.202271268769710.1109/TR.2022.3161430
    [Google Scholar]
  26. BlazquezE. BeauregardL. Lizy-DestrezS. AnkersenF. CapolupoF. Rendezvous design in a cislunar near rectilinear Halo orbit.Aeronaut. J.2020124127682183710.1017/aer.2019.126
    [Google Scholar]
  27. HeinrichsenI. WrightE.L. The mission operations system for Wide-field Infrared Survey Explorer (WISE).Proceedings Volume 6270, Observatory Operations: Strategies, Processes, and Systems, 2006 pp. C2701-C2701 Orlando, FL
    [Google Scholar]
  28. HolzingerM. DiMatteoJ. SchwartzJ. MilamM. Passively safe receding horizon control for satellite proximity operations.47th IEEE Conference on Decision and Control, IEEE Control Syst Soc (CSS), 2008 Cancun,Mexico
    [Google Scholar]
  29. HouC.Y. YangY. YangY.K. YangK.Z. ZhangX. LuJ.Y. Electromagnetic-launch-based method for cost-efficient space debris removal.Open Astron.20202994106
    [Google Scholar]
  30. HuD. PangB. ChiR. SongZ. WuH. Survivability assessment of spacecraft impacted by orbit debris.Defence Technol202117396197010.1016/j.dt.2020.06.003
    [Google Scholar]
  31. JiX.Y. LiY.Z. LiuG.Q. WangJ. XiangS.H. YangX.N. BiY.Q. A brief review of ground and flight failures of Chinese spacecraft.Prog. Aerosp. Sci.2019107192910.1016/j.paerosci.2019.04.002
    [Google Scholar]
  32. SchonbergW.P. RatliffJ.M. Hypervelocity impact of a pressurized vessel: Comparison of ballistic limit equation predictions with test data and rupture limit equation development.Acta Astronaut.201511540040610.1016/j.actaastro.2015.06.013
    [Google Scholar]
  33. TafazoliM. A study of on-orbit spacecraft failures.Acta Astronaut.2009642-319520510.1016/j.actaastro.2008.07.019
    [Google Scholar]
  34. ZhangY. HanZ. LiM. ZhengS. Preliminary survivability analysis of manned spacecraft following orbital debris penetration.Sci China Ser E: Technol Sci20095251455145810.1007/s11431‑009‑0134‑0
    [Google Scholar]
  35. BennettA. Methods to Detect Minor Debris Strikes in Spacecraft Telemetry.2022Available From: https://hanspeterschaub.info/Papers/grads/AnneBennett.pdf
  36. LuH.J. Research on Destroys Probability of.Dissertation/Thesis.2007
    [Google Scholar]
  37. JungI.S. ChoiS.J. ChungD. Statistical Conjunction Analysis between KOMPSAT-2 and Space Debris.J Korean Soc Aeronaut Space Sci2012407885
    [Google Scholar]
  38. CherniaevA. TelichevI. Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris.J. Spacecr. Rockets2017541758910.2514/1.A33596
    [Google Scholar]
  39. PiekutowskiA.J. PoormonK.L. Effects of Scale on the Performance of Whipple Shields for Impact Velocities Ranging from 7 to 10 km/s.12th Hypervelocity Impact Symposium (HVIS), 2013 pp. 642-652 Baltimore, MD10.1016/j.proeng.2013.05.074
    [Google Scholar]
  40. CanY. GüçlüH. TürkogluI.K. KasarI. YaziciM. Impact Loading Performance of Polymer Foam Core Aluminium Sandwich Panels.Acta Phys. Pol. A201913576977110.12693/APhysPolA.135.769
    [Google Scholar]
  41. KongC.W. NamG.W. JangY.S. YiY.M. Experimental strength of composite sandwich panels with cores made of aluminum honeycomb and foam.Adv. Compos. Mater.2014231435210.1080/09243046.2013.862386
    [Google Scholar]
  42. AdachiG. OhnishiT. KameyamaM. Achievements of Space Debris Observation.Fujitsu Sci. Tech. J.2017534552
    [Google Scholar]
  43. CloseS. HeermannD. Hypervelocity Impact Events-Who Cares?10th International Workshop on Structural Health Monitoring (IWSHM), 2015 Stanford, CA
    [Google Scholar]
  44. GoelA. Detection and characterization of meteoroid and orbital debris impacts in space.2016Available From: https://searchworks.stanford.edu/view/11621678
  45. HeQ.G. ChenX. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact.Acta Astronaut.202320440241710.1016/j.actaastro.2023.01.008
    [Google Scholar]
  46. LanouetteA.-M. Evaluation of the structural effect of the impact of a micrometeorite or orbital debris on the Canada Arm 2.2014
  47. PanB. MengY. Relative attitude stability analysis of double satellite formation for gravity field exploration in space debris environment.Sci. Rep.20231311598910.1038/s41598‑023‑42627‑8
    [Google Scholar]
  48. TrisoliniM. LewisH.G. ColomboC. Predicting the vulnerability of spacecraft components: Modelling debris impact effects through vulnerable-zones.Adv. Space Res.202065112692271010.1016/j.asr.2020.03.010
    [Google Scholar]
  49. UlusoyU. EkenS. Computational Analysis of Orbital Debris Impact on Spacecraft Shields.8th International Conference on Recent Advances in Space Technologies (RAST), 2017 Istanbul, Turkey10.1109/RAST.2017.8002968
    [Google Scholar]
  50. DobritsaD.B. YashchenkoB.Y. PashkovS.V. KhristenkoY.F. Experimental Study of the Resistance of Corrugated Mesh Micrometeoroid/Orbital Debris Shields.Sol. Syst. Res.202256755356110.1134/S003809462207005X
    [Google Scholar]
  51. ReimerdesH.G. WohlersW. Mass optimization of double wall protection systems against micrometeoroids and space debris.Symposium on Space Debris and Space Traffic Management., 2003 Bremen,Germany
    [Google Scholar]
  52. NenarokomovA.V. AlifanovO.M. BudnikS.A. NetelevA.V. Research and development of heat flux sensor for ablative thermal protection of spacecrafts.Int. J. Heat Mass Transf.201697990100010.1016/j.ijheatmasstransfer.2016.02.045
    [Google Scholar]
  53. HanZ. GongL. YanS. CaoW. HngH.H. DuZ. YuY. A novel of spacecraft flexible compartment safe and stable inflatable expansion system with the environmental-friendly fuel.J. Clean. Prod.202127912384310.1016/j.jclepro.2020.123843
    [Google Scholar]
  54. BogoradA.L. DeeterM.P. AugustK.A. DoorleyG. LikarJ.J. HerschitzR. Shielding effectiveness and closeout methods for composite spacecraft structural panels.IEEE Trans. Electromagn. Compat.200850354755510.1109/TEMC.2008.926875
    [Google Scholar]
  55. RawalS. BrantleyJ. KarabudakN. Development of Carbon Nanotube-based Composite for Spacecraft Components 2013 6th International Conference on Recent Advances in Space Technologies (RAST), 2013 Istanbul, Turkey
    [Google Scholar]
  56. YouB.D. GaoZ.H. WenJ.M. SunY.M. HaoP.B. LiangD. Coupling dynamic behavior characteristics of a spacecraft beam with composite laminated structures and large-scale motions.Int J Aerospace Eng20182018111210.1155/2018/9416340
    [Google Scholar]
  57. Diaz-AguadoM.F. BonnellJ.W. BaleS.D. RezvaniS.J. KoshmakK. GigliaA. NannaroneS. GruntmanM. Experimental Investigation of Total Photoemission Yield from New Satellite Surface Materials.J. Spacecr. Rockets201956124825810.2514/1.A34245
    [Google Scholar]
  58. KimY. ChoiC. Sathish KumarS.K. KimC.G. Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures.Compos. Struct.20171761061107210.1016/j.compstruct.2017.06.035
    [Google Scholar]
  59. PooleL.L. GonzalesM. FrenchM.R. YarberryW.A.III MoustafaA.R. CorderoZ.C. Hypervelocity impact of PrintCast 316L/A356 composites.Int. J. Impact Eng.2020136Feb10340710.1016/j.ijimpeng.2019.103407
    [Google Scholar]
  60. XieA. ZhangB. GeY. PengK. XuP. WangX. FengZ. YiM. ZhouZ. Effect of the incorporation of SiC nanowire with double protective layers on SiC coating for C/C composites.J. Eur. Ceram. Soc.202343114636464410.1016/j.jeurceramsoc.2023.03.045
    [Google Scholar]
  61. HuangM. LiK.Z. LiH.J. FuQ.G. SunG.D. Double-layer oxidation protective SiC/Cr–Al–Si coating for carbon–carbon composites.Surf. Coat. Tech.2007201187842784610.1016/j.surfcoat.2007.03.025
    [Google Scholar]
  62. TooraniM. AliofkhazraeiM. NaderiR. GolabadiM. Sabour RouhaghdamA. Role of lanthanum nitrate in protective performance of PEO/epoxy double layer on AZ31 Mg alloy: Electrochemical and thermodynamic investigations.J. Ind. Eng. Chem.20175321322710.1016/j.jiec.2017.04.027
    [Google Scholar]
  63. KumarS.K.S. SeokJ.H. ParkS.H. KimY. KimY. High frictional coated multi-layer ballistic fabrics for high velocity and hypervelocity impact protection.Int. J. Impact Eng.2023179104652
    [Google Scholar]
  64. TanakaM. MoritakaY. Single bumper shields based on Vectran fibers.Advances Space Res.20043451076107910.1016/j.asr.2003.03.039
    [Google Scholar]
  65. RyanS. ThalerS. Artificial neural networks for characterising Whipple shield performance.Int. J. Impact Eng.201356617010.1016/j.ijimpeng.2012.10.011
    [Google Scholar]
  66. LeeM. Optimum structure of Whipple shield against hypervelocity impact18th Joint Int Conf of the APS Topical-Grp on Shock Compress of Condensed Matter / 24th Int Conf of the Int-Assoc-for-the-Advancement-of-High-Pressure-Sci-and-Technol, 2014 Seattle, WA10.1088/1742‑6596/500/11/112039
    [Google Scholar]
  67. IyerK.A. MehokeD.S. BatraR.C. Interplanetary dust particle shielding capability of spacecraft multi-layer insulation.2014 IEEE Aerospace Conference, 2014 Big Sky, MT, USA
    [Google Scholar]
  68. SchäfferF. PutzarR. Triple wall ballistic limit equation.2005Available From: https://conference.sdo.esoc.esa.int/proceedings/sdc4/paper/7/SDC4-paper7.pdf
  69. ZhangX. JiaG. HuangH. An approach for constituting double/multi wall BLE by single wall BLE of spacecraft shield.Int. J. Impact Eng.20146911412110.1016/j.ijimpeng.2014.02.009
    [Google Scholar]
  70. KeF. ZouS. WenK. LuoQ. WenX. HuangJ. The influences of interface effect of stuffed layer on the performance of improved Whipple shields.Int. J. Impact Eng.202317710457910.1016/j.ijimpeng.2023.104579
    [Google Scholar]
  71. MoonenJ. RyanS. KortmannL. PutzarR. ForresterC. BarterS. MarzoccaP. ShekhterA. MouritzA. Evaluating UHMWPE-stuffed aluminium foam sandwich panels for protecting spacecraft against micrometeoroid and orbital debris impact.Int. J. Impact Eng.202318010466810.1016/j.ijimpeng.2023.104668
    [Google Scholar]
  72. PydahA. BatraR.C. Blast loading of bumper shielded hybrid two-core Miura-ori/honeycomb core sandwich plates.Thin-walled Struct.2018129455710.1016/j.tws.2018.03.020
    [Google Scholar]
  73. IyerK.A. MehokeD.S. BatraR.C. Interplanetary dust particle shielding capability of blanketed spacecraft honeycomb structure.2017 IEEE Aerospace Conference, 2017 Big Sky, MT, USA
    [Google Scholar]
  74. ChenY. HeQ. ChenX. Numerical study on debris cloud and channeling effect of honeycomb sandwich shields under hypervelocity impact.Thin-walled Struct.202319111105210.1016/j.tws.2023.111052
    [Google Scholar]
  75. FowlerK. Teixeira-DiasF. Hybrid shielding for hypervelocity impact of orbital debris on unmanned spacecraft.Appl. Sci.20221214707110.3390/app12147071
    [Google Scholar]
  76. ZengH. Z. DongY. Z. ShengC. DengY. H. Light weight-type spacecraft main structure.CN Patent 107745829A, 2018.
  77. QinH. Q. TieJ. W. ZhengJ. W. Lightweight filled composite protective structure for space debris.CN Patent 102514737A, 2012.
  78. BigelowR.T. Spacercraft Shield.US Patent 2013327894A1, 2012.
  79. RedmonJ.J.W. MillerA.E. LawsonB.E. CobbW.E. Thermally isolated variable diameter deployable shield for spacecraft.US Patent 5161756A, 1992.
  80. MoodyT.C. Micrometeoroid and orbital debris shield pillow for protecting flexible thin-walled structures from through-and-through penetration damage.US Patent 11312513B2, 2022.
  81. CohenD. Shear-thickening fluid reinforced fabrics for use with an expandable spacecraft.US Patent 2008296435A1, 2008.
  82. ProsuntsovP. V. ReznikS. V. KonstantinM. Convertible screen of flexible composite material to protect spacecraft from small space debris.RU Patent 186183U1, 2019.
  83. LongD.S. Multifunctional radiation resistant laminate.US Patent 2010086729A1, 2010.
  84. FurukawaK. Protective device for spacecraft.JPH Patent 07277298A, 1995.
  85. LiM. F. WangF. H. LiL. L. ChenB. L. ZhuL. F. LiX. LiuZ. Y. Spacecraft device capable of actively protecting and collecting space debris.CN Patent 115535301A, 2022.
  86. KeF. W. HuangJ. WenX. Z. LiuS. ZouS. Y. MaZ. X. LiX. JiangW. ZhaoH. L. Support structure for aluminum foil interlayer, and aluminum foil interlayer.CN Patent 108859272A, 2018.
  87. AlbertJ. J. LavertyR. R. GabrysJ. W. GravesR. F. Integrated armor for hypervelocity impacts.WO Patent 2015138011A1, 2015.
  88. StokesP.H. Apparatus for spacecraft.US Patent 2016152355A1, 2016.
  89. KopeloveA. Micrometeoroids and orbital debris and integrated multi-layer insulating structures.US Patent 2012175467A1, 2012.
  90. ChristiansenE. L. CrewsJ. L. Flexible multi-shock shield.US Patent 2002195030A1, 2002.
  91. AbraB. Composite shielding structure for spacecraft.KR Patent 101629669B1, 2016.
  92. DvorakB.D. Multi-shock assembly for protecting a spacecraft surface from hypervelocity impactors.US Patent 6298765B1, 2001.
  93. ArkhipovV. A. YakovlevM. V. UsovikI. Y. LoginovS. S. YurashV. S. The utility model relates to a device for protecting space equipment from exposure to space garbage particles by high-speed impact.RU Patent 2680359C1, 2019.
  94. NakahachiT. AzusazawaN. Bumpers, defensive wall structures and spacecraft.JP Patent 2023109427A, 2023.
  95. XiaoD. H. GaoY. ZhangS. LiX. T. ZhouX. H. TongZ. K. Space debris protection structure.CN Patent 110155375A, 2019.
/content/journals/eng/10.2174/0118722121314299240826115204
Loading
/content/journals/eng/10.2174/0118722121314299240826115204
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test