Skip to content
2000
image of Research on Quadruped Crawling Robot Control with Finite-Time Observer in Continuous Convex Terrain

Abstract

Background

In recent years, observers have been crucial for controlling quadruped crawling robots, especially for feed-forward compensation in complex terrains. However, their tracking performance in continuous convex terrains requires optimization.

Objective

In order to improve the mobility of quadruped crawling robots by reducing posture adjustment time in continuous convex terrain, a finite-time observer with integration elements and optimized gait planning is proposed.

Methods

First, a buffer phase is introduced into the tripod gait planning to adapt to terrain changes, and the velocity error of the robot's center of mass is analyzed. Second, a coupled robot dynamics model is developed and the disturbance component structure is derived to ensure accurate estimation of the system state, especially in maintaining stability in the face of external disturbances. Finally, the auxiliary variable of the observer is based on the velocity error, with disturbance estimation terms combining power and sign functions, and the cumulative error is introduced by integrating the adjustment functions to improve the tracking performance.

Results

The proposed observer reduces the maximum estimation error at knee and hip joints by 0.63 and 0.425 degrees, respectively, compared to a non-integrated observer. The integral of the absolute error during leg swing is 17.44% to 35.04% of the latter's, and the integral of the squared deviation error is 1.90% to 8.38%. These results demonstrate that the proposed observer can track the state information of the robot with greater accuracy.

Conclusion

The proposed finite-time observer significantly improves motion control for robots in continuous convex terrain and offers insights for enhancing stability in complex environments, which is expected to address the challenges of other robotic manipulator systems in overcoming the effects of external disturbances.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121312714240821115952
2024-10-02
2025-01-18
Loading full text...

Full text loading...

References

  1. Goyal N. Singh H. A design of customer service request desk to improve the efficiency using robotics process automation. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 07-09 October 2021, pp. 21-24.
    [Google Scholar]
  2. Chen Z. Zhan F. Jiang J. A review on soft hand rehabilitation robot. Recent Pat. Eng. 2023 17 3 12 13
    [Google Scholar]
  3. Jiang J.G. Ma X.F. Huo B. Zhang Y-D. Yu X-Y. Recent advances on lower limb exoskeleton rehabilitation robot. Recent Pat. Eng. 2017 11 3 194 207 10.2174/1872212111666170614111623
    [Google Scholar]
  4. Liu Y. Alias A.H. Haron N.A. Bakar N.A. Wang H. Technology status tracing and trends in construction robotics: A patent analysis. World Pat. Inf. 2024 76 102259 10.1016/j.wpi.2023.102259
    [Google Scholar]
  5. Abdulwahab A.H. Mazlan A.Z.A. Hawary A.F. Hadi N.H. Quadruped robots mechanism, structural design, energy, gait, stability, and actuators: A review study. Int. J. Mech. Eng. Robot. Res. 2023 12 6 385 395 10.18178/ijmerr.12.6.385‑395
    [Google Scholar]
  6. Luneckas M. Luneckas T. Kriaučiūnas J. Udris D. Plonis D. Damaševičius R. Maskeliūnas R. Hexapod robot gait switching for energy consumption and cost of transport management using heuristic algorithms. Appl. Sci. 2021 11 3 1339 10.3390/app11031339
    [Google Scholar]
  7. Kang R. Meng F. Chen X. Yu Z. Fan X. Ming A. Huang Q. Structural design and crawling pattern generator of a planar quadruped robot for high-payload locomotion. Sensors 2020 20 22 6543 10.3390/s20226543 33207708
    [Google Scholar]
  8. Jenelten F. Miki T. Vijayan A.E. Bjelonic M. Hutter M. Perceptive locomotion in rough terrain–online foothold optimization. IEEE Robot. Autom. Lett. 2020 5 4 5370 5376 10.1109/LRA.2020.3007427
    [Google Scholar]
  9. Liu X. Wang P. Dong R. Research on foothold optimization of the quadruped crawling robot based on reinforcement learning. Recent Pat. Mech. Eng. 2024 17 1 11 22 10.2174/0122127976252847230925104722
    [Google Scholar]
  10. Ju Z. Wei K. Jin L. Xu Y. Investigating stability outcomes across diverse gait patterns in quadruped robots: A lysis. IEEE Robot. Autom. Lett. 2024 9 1 795 802 10.1109/LRA.2023.3338064
    [Google Scholar]
  11. Shen Z.H. Larson P.L. Seipel J.E. Rotary and radial forcing effects on center-of-mass locomotion dynamics. Bioinspir. Biomim. 2014 9 3 036020 10.1088/1748‑3182/9/3/036020 25162748
    [Google Scholar]
  12. Wang P. Dong R. Sun T. Tang Q. Gait design and analysis of quadruped crawling robot climbing over the raised terrain of slope. Recent Pat. Mech. Eng. 2022 15 1 50 60 10.2174/2212797614666210413145741
    [Google Scholar]
  13. Chen Z. Liu J. Gao F. Real-time gait planning method for six-legged robots to optimize the performances of terrain adaptability and walking speed. Mechanism Mach. Theory 2022 168 104545 10.1016/j.mechmachtheory.2021.104545
    [Google Scholar]
  14. Lipeng Y. Bing L. Research on gait switching control of quadruped robot based on dynamic and static combination. IEEE Access 2023 11 14073 14088 10.1109/ACCESS.2023.3240190
    [Google Scholar]
  15. Huang B. Zhao J. Sun L. Straight walking and stair climbing gait of quadruped robot based on static balance. ROBOT 2010 32 2 226 232 10.3724/SP.J.1218.2010.00226
    [Google Scholar]
  16. Hao Q. Wang Z. Wang J. Chen G. Stability-guaranteed and high terrain adaptability static gait for quadruped robots. Sensors 2020 20 17 4911 10.3390/s20174911 32878028
    [Google Scholar]
  17. Chen J. Xu K. Ding X. Adaptive gait planning for quadruped robot based on center of inertia over rough terrain. Biomimetic Intelligence and Robotics 2022 2 1 100031 10.1016/j.birob.2021.100031
    [Google Scholar]
  18. Han Y. Liu G. Lu Z. Zong H. Zhang J. Zhong F. Gao L. A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning. J. Zhejiang Univ. Sci. A 2023 24 6 516 530 10.1631/jzus.A2200310
    [Google Scholar]
  19. Li S. Xing B. Ren X. Model predictive control of quadruped robots in crawling gait. Chinese Intelligent Systems Conference. Singapore: Springer Nature Singapore, 2022: pp. 340-349.
    [Google Scholar]
  20. Meng X. Liu W. Tang L. Lu Z. Lin H. Fang J. Trot gait stability control of small quadruped robot based on MPC and ZMP methods. Processes 2023 11 1 252 10.3390/pr11010252
    [Google Scholar]
  21. Li J Wang J Yang S X Gait planning and stability control of a quadruped robot. Comput. Intell. Neurosci. 2016 2016
    [Google Scholar]
  22. Fink G. Semini C. Proprioceptive sensor fusion for quadruped robot state estimation. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020 - 24 January 2021, pp. 10914-10920.
    [Google Scholar]
  23. Alfathdyanto K Darmawan A Alasiry A H Walking control for quadruped stair climbing based on PD controller for the KRSRI competition. ELKHA: J. Tek. Elektro 15 2 146 151
    [Google Scholar]
  24. Nan B. Zhu X. Ruan X. Trot gait control for unstructured terrain of quadruped robots based on VMC. 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24-26 July 2023, pp. 2400-2405.
    [Google Scholar]
  25. Aldair A.A. Al-Mayyahi A. Wang W. Design of a stable an intelligent controller for a quadruped robot. J. Electr. Eng. Technol. 2020 15 2 817 832 10.1007/s42835‑019‑00332‑5
    [Google Scholar]
  26. Gonzalez-Luchena I. Gonzalez-Rodriguez A.G. González-Rodríguez A. Adame-Sanchez C. Castillo-Garcia F.J. A new algorithm to maintain lateral stabilization during the running gait of a quadruped robot. Robot. Auton. Syst. 2016 83 57 72 10.1016/j.robot.2016.06.004
    [Google Scholar]
  27. Robotic and Drone Technology. CRC Press 2022
    [Google Scholar]
  28. Sharma S. Mittal R. Goyal N. An assessment of machine learning and deep learning techniques with applications. ECS Trans. 2022 107 1 8979 8988 10.1149/10701.8979ecst
    [Google Scholar]
  29. Zhu Q. Huang D. Yu B. Ba K. Kong X. Wang S. An improved method combined SMC and MLESO for impedance control of legged robots’ electro-hydraulic servo system. ISA Trans. 2022 130 598 609 10.1016/j.isatra.2022.03.009 35361486
    [Google Scholar]
  30. He W. Sun Y. Yan Z. Yang C. Li Z. Kaynak O. Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2020 31 5 1735 1746 10.1109/TNNLS.2019.2923241 31425054
    [Google Scholar]
  31. Wen-Hua Chen Ballance D.J. Gawthrop P.J. O’Reilly J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 2000 47 4 932 938 10.1109/41.857974
    [Google Scholar]
  32. Mohammadi A. Tavakoli M. Marquez H.J. Hashemzadeh F. Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 2013 21 3 253 267 10.1016/j.conengprac.2012.10.008
    [Google Scholar]
  33. Zhu X. Wan J. Xu W. Zhou C. Robust attitude stabilisation reactive control of a quadruped robot under load disturbance. Int. J. Autom. Control. 2022 16 6 649 669 10.1504/IJAAC.2022.126080
    [Google Scholar]
  34. Ding C. Zhou L. Li Y. Rong X. A novel dynamic locomotion control method for quadruped robots running on rough terrains. IEEE Access 2020 8 150435 150446 10.1109/ACCESS.2020.3016312
    [Google Scholar]
  35. Kang P. Mu X. Xu W. Xu Y. State estimation and traversability map construction method of a quadruped robot on soft uneven terrain. J. Field Robot. 2023 40 5 1130 1150 10.1002/rob.22175
    [Google Scholar]
  36. Lu G. Chen T. Rong X. Zhang G. Bi J. Cao J. Jiang H. Li Y. Whole‐body motion planning and control of a quadruped robot for challenging terrain. J. Field Robot. 2023 40 6 1657 1677 10.1002/rob.22197
    [Google Scholar]
  37. Morlando V. Teimoorzadeh A. Ruggiero F. Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots. Mechanism Mach. Theory 2021 164 104412 10.1016/j.mechmachtheory.2021.104412
    [Google Scholar]
  38. Farid Y. Majd V.J. Ehsani-Seresht A. Observer‐based robust adaptive force‐position controller design for quadruped robots with actuator faults. Int. J. Adapt. Control Signal Process. 2018 32 10 1453 1472 10.1002/acs.2923
    [Google Scholar]
  39. Dini N. Majd V.J. Sliding-Mode tracking control of a walking quadruped robot with a push recovery algorithm using a nonlinear disturbance observer as a virtual force sensor. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020 44 3 1033 1057 10.1007/s40998‑019‑00283‑7
    [Google Scholar]
  40. Li T. Liu X. Yu H. Backstepping nonsingular terminal sliding mode control for PMSM with finite-time disturbance observer. IEEE Access 2021 9 135496 135507 10.1109/ACCESS.2021.3117363
    [Google Scholar]
  41. Cao P. Gan Y. Dai X. Finite-time disturbance observer for robotic manipulators. Sensors 2019 19 8 1943 10.3390/s19081943 31027228
    [Google Scholar]
  42. Ding C. Ding S. Wei X. Mei K. Composite SOSM controller for path tracking control of agricultural tractors subject to wheel slip. ISA Trans. 2022 130 389 398 10.1016/j.isatra.2022.03.019 35393072
    [Google Scholar]
  43. Vo A.T. Truong T.N. Kang H.J. A novel tracking control algorithm with finite-time disturbance observer for a class of second-order nonlinear systems and its applications. IEEE Access 2021 9 31373 31389 10.1109/ACCESS.2021.3060381
    [Google Scholar]
  44. Razmjooei H. Palli G. Abdi E. Terzo M. Strano S. Design and experimental validation of an adaptive fast-finite-time observer on uncertain electro-hydraulic systems. Control Eng. Pract. 2023 131 105391 10.1016/j.conengprac.2022.105391
    [Google Scholar]
  45. Yue Y. Geng Y. Wang W. Continuous nonsingular fast terminal sliding mode control for speed tracking of pmsm based on finite time disturbance observer. Processes 2022 10 7 1407 10.3390/pr10071407
    [Google Scholar]
  46. Yang P. Ma X. Wang J. Zhang G. Zhang Y. Chen L. Disturbance observer-based terminal sliding mode control of a 5-DOF upper limb exoskeleton robot. IEEE Access 2019 7 62833 62839 10.1109/ACCESS.2019.2911348
    [Google Scholar]
  47. Sun L. Liu Y. Extended state observer augmented finite-time trajectory tracking control of uncertain mechanical systems. Mech. Syst. Signal Process. 2020 139 106374 10.1016/j.ymssp.2019.106374
    [Google Scholar]
  48. Yu S. Yu X. Shirinzadeh B. Man Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005 41 11 1957 1964 10.1016/j.automatica.2005.07.001
    [Google Scholar]
/content/journals/eng/10.2174/0118722121312714240821115952
Loading
/content/journals/eng/10.2174/0118722121312714240821115952
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test