Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

The patent of cutting operations is carried out with a cutting tool that is fed parallel to or at right angles to the work axis. The main objective of this study is to minimize surface roughness and MRR.

Objective

The effect of cutting parameters on surface roughness and material removal rate is investigated using AISI 1045 steel as a workpiece material, and single and double carbide cutting tools are used under dry machining conditions.

Methods

The cutting speed, feed rate, and depth of cut are considered input parameters for experimental purposes. Taguchi L9 orthogonal array design of experiments is used for designing the experiments. Parameters are optimized using Taguchi L9 orthogonal design of experiments and Analysis of Variance (ANOVA). MINITAB 17 software is used to solve the coefficients of the regression model.

Results

The result indicates that the cutting speed was the most significant influencing factor that affects the surface roughness, followed by feed rate and depth of cut for both single and double-cutting tools.

Conclusion

The minimum surface finish for the best cutting parameter was 0.95 μm for a single and 0.92 μm for a double-turning tool. The highest material removal rates for single and double turning were 6456 mm3/min and 6603 mm3/min. The result shows that while using double tools, the rate of material removal rate increased and the machining time decreased.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121310810240621095952
2024-07-02
2025-01-18
Loading full text...

Full text loading...

References

  1. IqbalS.A. MativengaP.T. SheikhM.A. A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds.Int. J. Adv. Manuf. Technol.2009421-2304010.1007/s00170‑008‑1582‑6
    [Google Scholar]
  2. BhattacharyaA. DasS. MajumderP. BatishA. Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA.Prod. Eng.200931314010.1007/s11740‑008‑0132‑2
    [Google Scholar]
  3. PereiraR.B.D. BragaD.U. NevezF.O. da SilvaA.S.C. Analysis of surface roughness and cutting force when turning AISI 1045 steel with grooved tools through Scott–Knott method.Int. J. Adv. Manuf. Technol.2013695-81431144110.1007/s00170‑013‑5126‑3
    [Google Scholar]
  4. SunY. LiG. HeZ. KongX. Numerical analysis of Johnson-Cook damage model parameters effects on the cutting simulation of AISI 1045.Recent Pat. Eng.2022166e24122119937610.2174/1872212116666211224095530
    [Google Scholar]
  5. SenthilkumarN. TamizharasanT. Experimental investigation of cutting zone temperature and flank wear correlation in turning AISI 1045 steel with different tool geometries.Indian J. Eng. Mater. Sci.2014212139148
    [Google Scholar]
  6. AhmadN. JanahiramanT.V. A comparison on optimization of surface roughness in machining AISI 1045 steel using Taguchi method, genetic algorithm and particle swarm optimization2015 IEEE Conference on Systems, Process and Control (ICSPC) Bandar Sunway, Malaysia201610.1109/SPC.2015.7473572
    [Google Scholar]
  7. SenthilkumarN. SudhaJ. MuthukumarV. A grey-fuzzy approach for optimizing machining parameters and the approach angle in turning AISI 1045 steel.Adv. Prod. Eng. Manag.201510419520810.14743/apem2015.4.202
    [Google Scholar]
  8. GuptaM.K. SinghG. SoodP.K. Experimental investigation of machining AISI 1040 Medium carbon steel under cryogenic machining: A comparison with dry machiningJ Institut. Eng(India): Series C201596437337910.1007/s40032‑015‑0178‑9
    [Google Scholar]
  9. QasimA. NisarS. ShahA. KhalidM.S. SheikhM.A. Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA.Simul. Model. Pract. Theory201559365110.1016/j.simpat.2015.08.004
    [Google Scholar]
  10. XiaoZ. LiaoX. LongZ. LiM. Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool.Int. J. Adv. Manuf. Technol.2017931-427328210.1007/s00170‑016‑8933‑5
    [Google Scholar]
  11. AbbasA.T. RagabA.E. BenyahiaF. SolimanM.S. Taguchi robust design for optimizing surface roughness of turned AISI 1045 steel considering the tool nose radius and coolant as noise factors.Adv. Mater. Sci. Eng.201820181910.1155/2018/2560253
    [Google Scholar]
  12. AbbasA.T. GuptaM.K. SolimanM.S. MiaM. HegabH. LuqmanM. PimenovD.Y. Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel.Int. J. Adv. Manuf. Technol.20191051-41311132710.1007/s00170‑019‑04325‑6
    [Google Scholar]
  13. AbbasA.T. BenyahiaF. El RayesM.M. PruncuC. TahaM.A. HegabH. Towards optimization of machining performance and sustainability aspects when turning AISI 1045 steel under different cooling and lubrication strategies.Materials (Basel)20191218302310.3390/ma12183023 31540377
    [Google Scholar]
  14. AbbasA.T. El RayesM.M. Al-AbduljabbarA.A. RagabA.E. BenyahiaF. ElkaseerA. Effects of tool edge geometry and cutting conditions on the performance indicators in dry turning AISI 1045 steel.Machines202311339710.3390/machines11030397
    [Google Scholar]
  15. AbbasA.T. Al-AbduljabbarA.A. El RayesM.M. BenyahiaF. AbdelgalielI.H. ElkaseerA. Multi-objective optimization of performance indicators in turning of AISI 1045 under dry cutting conditions.Metals (Basel)20231319610.3390/met13010096
    [Google Scholar]
  16. TangL. LandersR.G. BalakrishnanS.N. Parallel turning process parameter optimization based on a novel heuristic approach.J. Manuf. Sci. Eng.2008130303100210.1115/1.2823077
    [Google Scholar]
  17. KalidasanR. RamanujV. SarmaD.K. SenthilvelanS. Influence of cutting speed and offset distance over cutting tool vibration in multi-tool turning process.Adv. Mat. Res.2014984-98510010510.4028/www.scientific.net/AMR.984‑985.100
    [Google Scholar]
  18. BrecherC. EppleA. NeusS. FeyM. Optimal process parameters for parallel turning operations on shared cutting surfaces.Int. J. Mach. Tools Manuf.201595131910.1016/j.ijmachtools.2015.05.003
    [Google Scholar]
  19. ReithM.J. BachrathyD. StepanG. Optimal detuning of a parallel turning system - Theory and experiments.J. Dyn. Syst. Meas. Control2017139101450310.1115/1.4034497
    [Google Scholar]
  20. OzturkE. ComakA. BudakE. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes.J. Sound Vibrat.2016360173010.1016/j.jsv.2015.09.009
    [Google Scholar]
  21. AbebeA.D. JiruM.G. KabetaG. Comparative study on dry and wet machining during double tool turning of AISI 1045 steel.Science20178971101
    [Google Scholar]
  22. BedaneD.G. GutemaE.M. GopalM. Experimental investigation and effect of machining parameters on surface roughness of AISI 1050 steel using parallel turning. Advances in Manufacturing, Automation, Design and Energy Technologies.ChamSpringer202310.1007/978‑981‑99‑1288‑9_12
    [Google Scholar]
  23. LiuZ. ZhengD. GuoY. XiaoZ. WangQ. Parameters optimization of turning process under extended carbon emissions accounting method.Recent Pat. Mech. Eng.202316211812810.2174/2212797616666230221145732
    [Google Scholar]
  24. FreddiA. SalmonM. Introduction to the Taguchi method.Design Principles and Methodologies.ChamSpringer201910.1007/978‑3‑319‑95342‑7_7
    [Google Scholar]
  25. KumarK. SenthilkumaarJ.S. Analysis and optimization of output parameters using Taguchi design analysis, Recent Patents on Mech.Recent Pat. Mech. Eng.20147216918210.2174/2212797607666140620003400
    [Google Scholar]
  26. NatarajanN. ThanigaivelanR. Influences of process parameters on machining micro holes in EDM.Recent Pat. Mech. Eng.20147326427210.2174/2212797607666140901235031
    [Google Scholar]
  27. TabachnickL.S. Experimental Designs Using ANOVA.California, United StatesThomson/Brooks/Cole2007
    [Google Scholar]
  28. Hindustan Machine Tools (HMT),Production Technology.McGraw Hill EducationNew York, United States2017
    [Google Scholar]
/content/journals/eng/10.2174/0118722121310810240621095952
Loading
/content/journals/eng/10.2174/0118722121310810240621095952
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test