Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Since the combination of its rapid processing speed and high energy input, laser beam welding is considered advanced and suitable for welding thin and lightweight metals. The residual stresses deposited in the parts as a result of rapid heating and cooling render laser-welded components susceptible to fractures and deformities.

Objective

In this patent, the modelling of the laser beam welding process during the joining of Ti-6Al-4V and AA6061 dissimilar metals to analyze the effects of the welding process on residual stress and elastic strain by considering beam radius, beam offset, welding speed, and beam power as input parameters.

Methods

The 3D model of the Ti-6Al-4V and AA6061 was developed using CATIA V5R16 software. The beam radius, beam offset, welding speed and beam power are the input parameters considered, and the output parameters are stress and elastic strain. Design Expert is used to design the experiment. ANOVA was used, and a mathematical model was developed to analyze the performance characteristics of the welding process.

Results

The results revealed that increasing the laser power increases residual stress, whereas it decreases with increasing the other parameters. The maximum average equivalent von Mises stress was 288.79 MPa, which is near the yield strength of AA6061. The optimum welding conditions selected for minimum possible residual stress is 1600.003 W, welding speed 0.05 m/s, beam radius 0.014 m.

Conclusion

Based on the current observation during the simulation of joining dissimilar metals, the flow temperature along the weld line and weldment shows uneven distribution due to the dissimilarity of temperature-dependent properties of materials. The increased laser power leads to an increase in residual stress.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121310962240605094216
2024-06-26
2025-01-18
Loading full text...

Full text loading...

References

  1. LiuW. MaJ. KongF. LiuS. KovacevicR. Numerical modeling and experimental verification of residual stress in autogenous laser welding of high-strength steel.Lasers. Manuf. Mater. Proc.201521244210.1007/s40516‑015‑0005‑4
    [Google Scholar]
  2. CasalinoG. MortelloM. PeyreP. FEM analysis of fiber laser welding of titanium and aluminum.Procedia CIRP20164199299710.1016/j.procir.2016.01.030
    [Google Scholar]
  3. HuangW.H. LongJ.Q. XiangJ.W. Parameter optimization of the laser T-joint Welding of aluminium alloy with low carbon steel using numerical and statistical methods.Lasers Eng.2017383–6167183
    [Google Scholar]
  4. HavlíkP. KouřilJ. ForetR. DlouhýI. EnzingerN. WiednigC. Evaluation of weldability of titanium alloy Ti-6Al-4V and aluminum alloy 6061 produced by electron beam welding.Mater. Sci. Forum201687971471910.4028/www.scientific.net/MSF.879.714
    [Google Scholar]
  5. KumarC. DasM. PaulC.P. SinghB. Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method.Opt. Lasers Eng.201795March526810.1016/j.optlaseng.2017.03.013
    [Google Scholar]
  6. BajpeiT. ChelladuraiH. AnsariM.Z. Experimental investigation and numerical analyses of residual stresses and distortions in GMA welding of thin dissimilar AA5052-AA6061 plates.J. Manuf. Process.20172534035010.1016/j.jmapro.2016.12.017
    [Google Scholar]
  7. D’OstuniS. LeoP. CasalinoG. FEM simulation of dissimilar aluminum titanium fiber laser welding using 2D and 3D Gaussian heat sources.Metals (Basel)20177830710.3390/met7080307
    [Google Scholar]
  8. PrabakaranM.P. KannanG.R. Optimization of CO2 laser beam welding process parameters to attain maximum weld strength in dissimilar metals.Mater. Today Proc.2018526607661610.1016/j.matpr.2017.11.316
    [Google Scholar]
  9. KumarP. SinhaA.N. Studies of temperature distribution for laser welding of dissimilar thin sheets through finite element method.J. Braz. Soc. Mech. Sci. Eng.201840945510.1007/s40430‑018‑1380‑5
    [Google Scholar]
  10. AhmadA.S. WuY. GongH. LiuL. Numerical simulation of thermal and residual stress field induced by three-pass TIG welding of Al 2219 considering the effect of interpass cooling.Int. J. Precis. Eng. Manuf.20202181501151810.1007/s12541‑020‑00357‑1
    [Google Scholar]
  11. BeheraA. Optimization of process parameters in laser welding of dissimilar materials.202010.1016/j.matpr.2020.07.148
    [Google Scholar]
  12. RibeiroA.C.N. de SiqueiraR.H.M. de LimaM.S.F. GiorjãoR.A.R. AbdallaA.J. Improvement weldability of dissimilar joints (Ti-6Al-4V/Al6013) for aerospace industry by laser beam welding.Int. J. Adv. Manuf. Technol.20211163-41053107010.1007/s00170‑021‑07506‑4
    [Google Scholar]
  13. ChenX. JiangM. ChenY. LeiZ. ZhaoS. LinS. Laser welding-brazing under temporal and spatial power modulation for dissimilar materials AA6061 to Ti-6Al-4V joints.Manuf. Lett.202129707310.1016/j.mfglet.2021.07.004
    [Google Scholar]
  14. ChandranS. RajeshR. Dev AnandM. Multi-response optimization of process parameters for laser beam welding of AA6061-Ti-6Al-4V by grey relational analysis.202110.1016/j.matpr.2021.01.172
    [Google Scholar]
  15. GhoshP.S. SenA. ChattopadhyayaS. SharmaS. SinghJ. DwivediS.P. SaxenaA. KhanA.M. PimenovD.Y. GiasinK. Prediction of transient temperature distributions for laser welding of dissimilar metals.Appl. Sci. (Basel)20211113582910.3390/app11135829
    [Google Scholar]
  16. LemiM.T. GutemaE.M. GopalM. Modeling and simulation of friction stir welding process for AA6061-T6 aluminum alloy using finite element method.Engineering Solid Mechanics202210213915210.5267/j.esm.2022.2.001
    [Google Scholar]
  17. ZhouX. CaoX. ZhangF. DuanJ. Numerical and experimental investigation of thermal stress distribution in laser lap welding of Ti-6Al-4V and 2024 alloy plates.Int. J. Adv. Manuf. Technol.20221185-61427144010.1007/s00170‑021‑08019‑w
    [Google Scholar]
  18. TahatM.S. EmiraN.A. MohamadH.T. Study of the mechanical properties of heat treated 6063 aluminum alloy.Recent Patents Mech. Eng.20103214514810.2174/2212797611003020145
    [Google Scholar]
  19. DuggiralaA. DeyU. PaulS. AcherjeeB. MitraS. Optimization of laser welding parameters of aluminium alloy 2024 using particle swarm optimization technique.Manuf. and Process. of Adv. Mat.2023158586810.2174/9789815136715123010009
    [Google Scholar]
  20. SunY. FujiiH. Recent patented hybrid techniques for friction stir welding of metallic materials.Recent Pat. Mech. Eng.20103320621010.2174/2212797611003030206
    [Google Scholar]
  21. JiA.C. LiuW.M. SongJ.L. ZhouF. Dynamical creation of fractionalized vortices and vortex lattices.Phys. Rev. Lett.2008101101040210.1103/PhysRevLett.101.010402 18764092
    [Google Scholar]
  22. BagS. A perspective review on laser assisted microjoining.Recent Pat. Mech. Eng.20114215316710.2174/2212797611104020153
    [Google Scholar]
  23. ThejasreeP. ManikandanN. BinojJ.S. VaraprasadK.C. PalanisamyD. RajuR. Numerical simulation and experimental investigation on laser beam welding of Inconel 625.10.1016/j.matpr.2020.07.0422020
    [Google Scholar]
  24. GutemaE.M. GopalM. LemuH.G. Minimization of surface roughness and temperature during turning of aluminum 6061 using response surface methodology and desirability function analysis.Materials (Basel)20221521763810.3390/ma15217638 36363229
    [Google Scholar]
  25. GopalM. GutemaE.M. SolomonY. Experimental investigation of machining time and optimization of machining parameters using RSM and Genetic Algorithm (GA) on 2205-duplex stainless steel.Int. J. Eng. Res. Africa20226011310.4028/p‑9933yq
    [Google Scholar]
  26. RamiarisonH. BarkaN. AmiraS. Optimization of parameters in laser welding of aluminum alloy 5052-H32 using beam oscillation technique for mechanical performance improvement.Int. J. Lightweight Mater. Manuf.20225447048310.1016/j.ijlmm.2022.05.006
    [Google Scholar]
  27. ChenY.H. TaoH.S. YaoD.X. LiuW.M. Kondo metal and ferrimagnetic insulator on the triangular kagome lattice.Phys. Rev. Lett.20121082424640210.1103/PhysRevLett.108.246402 23004298
    [Google Scholar]
  28. FaisalH. “A review of patented methodologies in instrumented indentation residual stress measurements.” Recent Patents on Mech.Engg.20114213815210.2174/2212797611104020138
    [Google Scholar]
/content/journals/eng/10.2174/0118722121310962240605094216
Loading
/content/journals/eng/10.2174/0118722121310962240605094216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test