Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

In the target detection technology of underwater robots, many patents and papers have aimed to enhance the accuracy of underwater target detection, but limited resources in underwater robots overlook lightweight detection methods.

Methods

In this study, we proposed an underwater target detection method using lightweight devices while ensuring high accuracy that could be maintained with limited resources. Our proposed algorithm leveraged the Ghost lightweight network, EMA mechanism, and CARAFE up-sampling technology to enhance YOLOv5s. To validate our method, comparative experiments, visual analysis, and ablation experiments were conducted.

Results

The experimental results showed that our algorithm had a model size of only 9.7 M, with 4.38×106 parameters and a computational volume of 8.4 GFLOPs. Precision, recall, and [email protected] increased by 4.2%, 2.2%, and 2.5%, respectively.

Conclusion

Our improved algorithm provided an efficient and accurate solution for underwater robot target detection technology.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121294044240422063140
2024-04-26
2025-01-18
Loading full text...

Full text loading...

References

  1. ZhangR. ShaoJ. NieZ. LüZ. WangY. SunS. Underwater long-distance imaging method based on combination of short coherent illumination and polarization.Opt. Precis. Eng.20202871485149310.37188/OPE.20202807.1485
    [Google Scholar]
  2. LiuK. SunQ. SunD. PengL. YangM. WangN. Underwater target detection based on improved YOLOv7.J. Mar. Sci. Eng.202311367710.3390/jmse11030677
    [Google Scholar]
  3. DongJ.N. YangM. XieZ.R. CaiL.P. Overview of underwater image object detection data set and detection algorithms.J. Atmos. Ocean. Technol.20224156072
    [Google Scholar]
  4. XiaoY. TianZ. YuJ. ZhangY. LiuS. DuS. LanX. A review of object detection based on deep learning.Multimedia Tools Appl.20207933-34237292379110.1007/s11042‑020‑08976‑6
    [Google Scholar]
  5. YaoR.L. GuiY.W. HuangQ.G. Recognition of freshwater fish species based on machine vision.Cyber. Secur. Data. Gov201736243739
    [Google Scholar]
  6. QiaoX. BaoJ. ZhangH. WanF. LiD. fvUnderwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine.Measurement201913344445510.1016/j.measurement.2018.10.039
    [Google Scholar]
  7. ShiX. HuangH. WangB. PangS. QinH. Underwater cage boundary detection based on GLCM features by using SVM classifierIEEE ASME International Conference on Advanced Intelligent Mechatronics (AIM)20191169117410.1109/AIM.2019.8868517
    [Google Scholar]
  8. ZaidiS.S.A. AnsariM.S. AslamA. KanwalN. AsgharM. LeeB. A survey of modern deep learning based object detection models.Digit. Signal Process.202212610351410.1016/j.dsp.2022.103514
    [Google Scholar]
  9. RenS. HeK. GirshickR. SunJ. Faster r-cnn: Towards real-time object detection with region proposal networks.Adv. Neural Inf. Process. Syst.20152819
    [Google Scholar]
  10. LinT.Y. GoyalP. GirshickR. HeK.M. DollárP. Focal loss for dense object detectionProceedings of the IEEE international conference on computer vision201729802988
    [Google Scholar]
  11. LiuW. AnguelovD. ErhanD. SzegedyC. ReedS. FuC.Y. BergA.C. Ssd: Single shot multibox detectorEuropean Conference on Computer Vision201610.1007/978‑3‑319‑46448‑0_2
    [Google Scholar]
  12. ZhuX. LyuS. WangX. ZhaoQ. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenariosProceedings of the IEEE/CVF international conference on computer vision202110.1109/ICCVW54120.2021.00312
    [Google Scholar]
  13. LiC.Y. LiL.L. JiangH.L. WengK.H. GengY.F. LiangL. KeZ.D. LiQ.Y. ChengM. NieW.Q. LiY.D. ZhangB. LiangY.F. ZhouL.Y. XuX.M. ChuX.X. WeiX.M. WeiX.L. YOLOv6: A single-stage object detection framework for industrial applications arXiv2022202202976
    [Google Scholar]
  14. WangC.Y. BochkovskiyA. LiaoH.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectorsProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition202310.1109/CVPR52729.2023.00721
    [Google Scholar]
  15. GaoY.J. Design and implementation of underwater target detection network based on ssd model.Electron. World.20198110111
    [Google Scholar]
  16. ZhangY. LiX. SunY. LiuS. Underwater object detection algorithm based on channel attention and feature fusion.Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University202240243344110.1051/jnwpu/20224020433
    [Google Scholar]
  17. LiX. ShangM. QinH. ChenL. Fast accurate fish detection and recognition of underwater images with Fast R-CNN.OCEANS 2015 - MTS/IEEE WashingtonWashington, DC, 19-22 October 2015, pp. 1-5.
    [Google Scholar]
  18. LiX. ShangM. HaoJ. YangZ. Accelerating fish detection and recognition by sharing CNNs with objectness learning.OCEANS 2016 - ShanghaiShanghai, China, 10-13 April 2016, pp. 1-5.
    [Google Scholar]
  19. ShiP.F. HanS. NiJ.J. YangX. Underwater object detection algorithm combining data enhancement and improved YOLOv4.J. Electron. Meas. Instrum.2022363113121
    [Google Scholar]
  20. QiangW. HeY. GuoY. LiB. HeL. Exploring underwater target detection algorithm based on improved SSD.Xibei Gongye Daxue Xuebao/J. Northwest. Polytechn. Univ.202038474775410.1051/jnwpu/20203840747
    [Google Scholar]
  21. YeZ.B. DuanX.H. ZhaoC. Research on underwater target detection by improved YOLOV3-SPP.Comput. Eng. Appl2023596231240
    [Google Scholar]
  22. WenG. LiS. LiuF. LuoX. ErM.J. MahmudM. WuT. YOLOv5s-CA: A modified yolov5s network with coordinate attention for underwater target detection.Sensors2023237336710.3390/s2307336737050427
    [Google Scholar]
  23. FanX. LuL. ShiP. ZhangX. A novel sonar target detection and classification algorithm.Multimedia Tools Appl.2022817100911010610.1007/s11042‑022‑12054‑4
    [Google Scholar]
  24. BaoZ. GuoY. WangJ. ZhuL. HuangJ. YanS. Underwater target detection based on parallel high-resolution networks.Sensors20232317733710.3390/s2317733737687793
    [Google Scholar]
  25. LiY. BaiX. XiaC. An improved yolov5 based on triplet attention and prediction head optimization for marine organism detection on underwater mobile platforms.J. Mar. Sci. Eng.2022109123010.3390/jmse10091230
    [Google Scholar]
  26. JiangJ.L. WangY. JiaQ. XuS. LiuY. FanX. LiH. LiuR. XueX. WangR. Underwater Species Detection using Channel Sharpening Attention.Proceedings of the 29th ACM International Conference on Multimedia (MM '21). Association for Computing MachineryNew York, NY, USA, pp.4259–4267.10.1145/3474085.3475563
    [Google Scholar]
  27. YaoY. QiuZ. ZhongM. Application of improved mobilenet-ssd on underwater sea cucumber detection robot.IEEE Electronic and Automation Control Conference (IAEAC)Chengdu, China, 2019, pp. 402-407.10.1109/IAEAC47372.2019.8997970
    [Google Scholar]
  28. WeiQ. ChenW. Underwater object detection of an uvms based on wgan.IEEE China Automation Congress (CAC)Beijing, China, 2021, pp. 702-70710.1109/CAC53003.2021.9727904
    [Google Scholar]
  29. LinT.Y. DollárP. GirshickR. HeK. HariharanB. BelongieS. Feature pyramid networks for object detection.Proceedings of the IEEE conference on computer vision and pattern recognitionHonolulu, HI, USA, 2017, pp. 936-944.
    [Google Scholar]
  30. LiuS. QiL. QinH. ShiJ. JiaJ. Path aggregation network for instance segmentation.Proceedings of the IEEE conference on computer vision and pattern recognitionSalt Lake City, UT, USA, 2018, pp. 8759-8768.
    [Google Scholar]
  31. HanK. WangY. TianQ. GuoJ. XuC. XuC. GhostNet: More features from cheap operations.Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern RecognitionSeattle, WA, USA, 2020, pp. 1577-1586.
    [Google Scholar]
  32. OuyangD. HeS. ZhangG. LuoM. GuoH. ZhanJ. HuangZ. Efficient multi-scale attention module with cross-spatial learning.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)Rhodes Island, Greece, 2023, pp. 1-5.10.1109/ICASSP49357.2023.10096516
    [Google Scholar]
  33. WangJ.Q. ChenK. XuR. LiuZ.W. LoyC.C. LinD.H. Carafe: Content-aware reassembly of features.Proceedings of the IEEE/CVF international conference on computer visionSeoul, Korea (South), 2019, pp. 3007-3016.
    [Google Scholar]
  34. WooS. ParkJ. LeeJ.Y. KweonI.S. Cbam: Convolutional block attention module.Proceedings of the European conference on computer vision (ECCV)201811211
    [Google Scholar]
  35. LuoS. MengX.L. ZhuM.Y. WangW.L. SongH.L. WangX.F. ZhengH. Surface defect detection method of high temperature continuous casting billet based on improved yolov5x network model.C.N. Patent 1134875702021.
    [Google Scholar]
  36. WangQ. WuB. ZhuP. LiP. ZuoW. HuQ. ECA-Net: Efficient channel attention for deep convolutional neural networks.Proceedings of the IEEE/CVF conference on computer vision and pattern recognitionSeattle, WA, USA, 2020, pp. 11531-1153910.1109/CVPR42600.2020.01155
    [Google Scholar]
  37. HouQ.B. ZhouD.Q. FengJ.S. Coordinate attention for efficient mobile network design.Proceedings of the IEEE/CVF conference on computer vision and pattern recognitionNashville, TN, USA, 2021, pp. 13708-13717.10.1109/CVPR46437.2021.01350
    [Google Scholar]
  38. KangB. HouC. XuZ.H. DingG.L. WangZ.Y. ZhangX.W. SangJ.H. GIS Infrared feature recognition system and method based on improved YOLOv5.C.N. Patent 1163428942021.
    [Google Scholar]
  39. ChenY.P. KalantidisY. LiJ.S. YanS.C. FengJ.S. A^2-nets: Double attention networks.arXiv2018181011579
    [Google Scholar]
  40. WangX.L. GirshickR. GuptaA. HeK.M. Non-local neural networks.Proceedings of the IEEE conference on computer vision and pattern recognitionSalt Lake City, UT, USA, 2018, pp. 7794-7803.
    [Google Scholar]
  41. DaiY.M. GiesekeF. OehmckeS. WuY.Q. BarnardK. Attentional feature fusion.Proceedings of the IEEE/CVF winter conference on applications of computer visionWaikoloa, HI, USA, 2021, pp. 3559-3568.
    [Google Scholar]
  42. NohH. HongS. HanB. Learning deconvolution network for semantic segmentation.Proceedings of the IEEE international conference on computer visionSantiago, Chile, 2015, pp. 1520-1528.
    [Google Scholar]
  43. WuC.H. LuoW.H. XuX. XingK. A vehicle target detection method fusing gam, carafe and sniou.C.N. Patent 1155881262023.
    [Google Scholar]
  44. Zhan J Municipal People’s Government.Available from: https://www.heywhale.com/home/competition/5e535a612537a0002ca864ac/content/ 2020
  45. ZhouB. KhoslaA. LapedrizaA. OlivaA. TorralbaA. Learning deep features for discriminative localization.Proceedings of the IEEE conference on computer vision and pattern recognitionLas Vegas, NV, USA, 2016, pp. 2921-2929.
    [Google Scholar]
/content/journals/eng/10.2174/0118722121294044240422063140
Loading
/content/journals/eng/10.2174/0118722121294044240422063140
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CARAFE; EMA; Ghost; lightweight; Underwater target detection; YOLOv5s
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test