Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Micro-hydraulic components and key technologies are important directions of fluid transmission and control, which are widely used in the national defense industry, production line conveying equipment, exoskeleton robot, and more.

The current development status of miniature hydraulic components and key technologies is summarized, and the existing advantages of hydraulic components and technology are pointed out, and the research object is focused on relevant papers and patents.

We study the beneficial effects of the existing microcomponents and technologies, the performance indexes of typical products, and the latest progress in their structure innovation, material replacement, testing methods, and processing technology are summarized.

Typical achievements, core components, and manufacturing aspects are studied in-depth. They become smaller with increased output power and find more diverse scenarios with advancing technology maturity.

By improving the hardware structure of the existing miniature hydraulic component, and constantly innovating the processing technology, miniature hydraulic components will improve their efficiency and power density and will focus on further miniaturization in the future.

Loading

Article metrics loading...

/content/journals/eng/10.2174/1872212118666230911154209
2023-09-11
2025-01-18
Loading full text...

Full text loading...

References

  1. YangS.D. LiZ.Y. Seawater hydraulic drive and its application in ocean exploitation.Ocean Eng.18181852000
    [Google Scholar]
  2. PengX.W. ChenJ.P. The future trends of hydraulics.Chinese Hydraulics & Pneumatics2007315
    [Google Scholar]
  3. The development direction of hydraulic technology.J.Hongdu Sci. Technol.47212002
    [Google Scholar]
  4. LIS W. ZhangG X. Development status quo of modern hydraulic technology.Mech. Eng.254572009
    [Google Scholar]
  5. YangE Z. Development trend and prospect of hydraulic technology.Hyd Pneum & Seals4172003
    [Google Scholar]
  6. VictorB. Octavio AV.M. DhineshS. MarcoF. MikeB. RobertM. Gustavo AM.C. Darwin GordonC. ClaudioS. Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control.Front. Robot. AI551201810.3389/frobt.2018.0005133659276
    [Google Scholar]
  7. TakakoSmall axial piston pump [EB/OL].Available from: takako-inc.com/english/products/pump.html (2019-01-15)..
  8. LEDUCMicro-Hydraulics and Motor [EB/OL].Available from: https://micropumps.co.uk/?gclid=EAIaIQobChMIvNGj5bjjgAMVxIRoCR1RdgxgEAAYASAAEgLpWvD_BwE (2019-01-15)..
  9. HuaZ. RongX. LiY. LiY. SunY. SuB. Design, modelling and validation of hydraulic servo actuator with passive compliance for legged robots.IEEE Access65948659495201810.1109/ACCESS.2018.2875129
    [Google Scholar]
  10. ZhuH.Y. Research on Energy Consumption Analysis and Energy Saving Control of Hydraulic System of Forging Manimanipulator.QinhuangdaoYanshan University52017
    [Google Scholar]
  11. BaoH.X. Analysis of Fluid Flow Characteristics in Hydraulic Channel.DalianDalian Technology122018
    [Google Scholar]
  12. WangG. WangY. DengB. Visual Analysis on Flow Characteristics of Water Hydraulic Spool Valve.Machine Tool & Hydraulics2003
    [Google Scholar]
  13. WangLD Study on flow field calculation and visualization in complex flow channel.China mechan. eng.51991
    [Google Scholar]
  14. LiuB. Jian-MingG.U. Dynamic Simulation of the Characteristic of the Pump with Variable Rotate Speed.Fluid Machinery2005
    [Google Scholar]
  15. a NieS.L. LiZ.Y. YangH.Y. ZhangB. XuB. Research and Simulation of Valve Plate of Hydraulic Piston Pump Motor.J. Mechan. Sci. Technol.52001
    [Google Scholar]
  16. bDevelopment and Evolution of Axial Piston Pump/Motor Technology.Chin. J. Mech. Eng.4410182008
    [Google Scholar]
  17. YangH. Development of axial piston pump motor technology.Chin. J. Mech. Eng.2008
    [Google Scholar]
  18. BingX.U. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump.Chin.J. Mechan. Eng. Engl. Ed.2810222015
    [Google Scholar]
  19. XuB. HuM. ZhangJ.H. MaoZ.B. Distribution characteristics and impact on pump’s efficiency of hydro-mechanical losses of axial piston pumps.J. Cent. South Univ.2403609624201710.1007/s11771‑017‑3462‑4
    [Google Scholar]
  20. YangYS. ZhangK. Development Survey of Micro Hydraulic Technology.J. Beijing Univ. Technol.469106810802020
    [Google Scholar]
  21. Fluid-O-Tech . MG200 serie [EB/OL].Available from: https://www.fluidotech.it/en/products/technologies/external-gear-pumps/mg200-400-series/ (2019-01-13)..
  22. Micropump . GA/GAH series data [EB/OL].Available from: https://micropump.com/products/pumps/gah-series (2019-01-14)..
  23. LEE. Solenoid control valves and piloting solenoid valves [EB/OL].Available from: https://www.valvemagazine.com/articles/solenoid-valves-direct-acting-vs-pilot-operated (2019-01-14)..
  24. Jung-fluid internal gear pumps IPZ [EB/OL].(2019-01-15).
  25. BIE R IAxial piston pumps [EB/OL].(2019-01-15)..
  26. LuoXW XuHY LiuSH Effect of blade lean on the performance of mini pump hydraulics.J. Tsinghua. Univ.1557047072005
    [Google Scholar]
  27. LiuSH ShaoJ LuoXW Influence of front cover plate on hydraulic performance of traditional impeller in superminiature pump.J. Tsinghua. Univ. Sci. Technol.468142214252006
    [Google Scholar]
  28. LiY.N. Internal Flow Analysis and Design Optimization of Radial Vane Supermini PumpBeijingTsinghua University2011
    [Google Scholar]
  29. LiJW LiuSH LuoXW Viscous flow in biased vertical rotor micropump.J. Tsinghua. Univ. Sci. Technol.2007475682685
    [Google Scholar]
  30. JIJJ LuoXW YuA A Kind of dynamic pressure suspension floating double flow pump.C.N. Patent 1032164532013.
    [Google Scholar]
  31. ChenM.M. Design and Optimization of Dynamic Pressure Suspension Micro-pumpBeijingTsinghua University2013
    [Google Scholar]
  32. JinL. JunliangS. The Research and Development of a Small Plunger Pump.Hydraulics Pnenmatics & Seals2000
    [Google Scholar]
  33. GuizhouH. ZhiLi. Hydraulic Co. Ltd. HYC-MP1F series micro pump and HYC-MM1F series micro quantitative motor [EB/OL].Available from: https://www.ith.com/en/tension-and-torque-tools/hydraulic-pumps-for-bolt-tensioning-cylinders/compact-pump-series-micromax.php (2019-02-21)..
  34. QianY. HouG. ZhangW.L. Development of Ultra Low-displacement High Pressure Axial Piston Pump.Chinese Hydraulics & Pneumatics2018
    [Google Scholar]
  35. WangX.H. WeiY.Q. Jian-FengL.I. Development Actuality and Application Foreground of Water Hydraulic Transmission Technology.Machine Tool & Hydraulics2003
    [Google Scholar]
  36. HeJ.W. Friction pair selection of hydraulic transmission components and design of hydraulic axial piston pump.Master's ThesisBeijingBeijing University of Technology2007
    [Google Scholar]
  37. LiuY.S. HuangY. LiZ.Y. Experimental investigation of flow and cavitation characteristics of a two-step throttle in water hydraulic valves.Proc. Inst. Mech. Eng., A J. Power Energy2161105111200210.1243/095765002760024881
    [Google Scholar]
  38. FoszczJ L Hydraulic fluid choices.Plant engineering : the magazine that helps plant engineers with their every day problemsChicago, Ill50468781996
    [Google Scholar]
  39. GuX.J. Research on rotating servo solenoid valve.Master ThesisQingdaoOcean University of China2012
    [Google Scholar]
  40. ShenChuanliang ChengGuangming PingZeng Experimental research on high frequency electro-hydraulic servo valve driven by piezoelectric.J. Harbin. Insti. Technol.92008
    [Google Scholar]
  41. ZhangL. Yan-XiL.I. Design and dynamic capability analysis of a mr servo valve.Machinery Design & Manufacture2007
    [Google Scholar]
  42. LiS.J. PengJ.H. ZhangS.Z. Study of self-excited noise and pressure oscillations in a hydraulic jet-pipe servo-valve with magnetic fluids.Adv. Mat. Res.378-3796326352012
    [Google Scholar]
  43. WangX. SunS. JianfengL.I. Development Status and Application Prospect of Water Hydraulic Servo Control Technology.Machine Tool & Hydraulics2008
    [Google Scholar]
  44. ChaconR IvantysynovaM . An investigation of the impact of micro surface on the cylinder block/valve plate interface performance.spectrochimica acta part b atomic spectroscopy12122014
    [Google Scholar]
  45. a KumarS. BergadaJ.M. The effect of piston grooves performance in an axial piston pumps via CFD analysis.Int. J. Mech. Sci.20136616817910.1016/j.ijmecsci.2012.11.005
    [Google Scholar]
  46. b ZhuG.Z. Analysis of the thermal characteristics of the spindle of a hydrostatic and rolling bearing machine tool.Southeast University2019
    [Google Scholar]
  47. RouiziY. MailletD. JannotY. Fluid temperature distribution inside a flat mini-channel: Semi-analytical wall transfer functions and estimation from temperatures of external faces.Int. J. Heat Mass Transf.201364sep33134210.1016/j.ijheatmasstransfer.2013.04.040
    [Google Scholar]
  48. KleiberMicha Gap flow simulation methods in high pressure variable displacement axial piston pumps.Arch. Comput. Methods. Eng.2435195422017
    [Google Scholar]
  49. ManringN.D. MehtaV.S. NelsonB.E. GrafK.J. KuehnJ.L. Increasing the power density for axial-piston swash-plate type hydrostatic machines.J. Mech. Des.2013135707100210.1115/1.4023924
    [Google Scholar]
  50. OsieckiL. PatroszP. LandvogtB. PiechnaJ. ZawistowskiT. ZylinskiB. Simulation of fluid structure interaction in a novel design of high pressure axial piston hydraulic pump.Arch. Mechan. Eng.604509529201310.2478/meceng‑2013‑0031
    [Google Scholar]
  51. LiuM. ZhangX. The Structure and Control Principle of Rexroth-A11V(L)O Series Axial Piston Variable Displacement Pump.Machine Tool & Hydraulics2010
    [Google Scholar]
  52. Kumar SeenirajG. IvantysynovaM. A multi-parameter multi-objective approach to reduce pump noise generation.Int. J. Flui. Pow.121717201110.1080/14399776.2011.10781018
    [Google Scholar]
  53. XuB. YeS. ZhangJ. Numerical and experimental studies on housing optimization for noise reduction of an axial piston pump.Appl. Acoust.1104352201610.1016/j.apacoust.2016.03.022
    [Google Scholar]
  54. XiaH. Bosch rexroth compact hydraulic technology.Constr. Mach.4401862017
    [Google Scholar]
  55. LiYL Design principle and simulation analysis on accumulator charging valve.Fluid Power and Control0000039-11152016
    [Google Scholar]
  56. ZhuS. ZhangD. HuangP.C. Design and research of double-circuit accumulator filling valve.Fluid Machinery461046502018
    [Google Scholar]
  57. WangC.X. Hydraulic control system.Mechan. Ind. Pres.42452008
    [Google Scholar]
  58. RuiF. WangJ.L. QiuS.H. Research on a 4-cylinder Synchronous System for a Vertical Hydraulic Cylinder of Hydraulic Support Test-bed.Chinese Hydraulics & Pneumatics2007
    [Google Scholar]
  59. SunG.Z. Design and Simulation of Hydraulic Cylinder Test-bed SystemMaster Dissertation of Northeastern University62008
    [Google Scholar]
  60. CaoA. Research on Test Bench and Test Method of Servo Hydraulic Cylinder.Northeastern University2010
    [Google Scholar]
  61. LinJZ Design and simulation of vibration discharging system based on electro-hydraulic servo position control.2007
    [Google Scholar]
  62. LiX. WuJ.Z. Design and Implementation of Automatic Test System for Hydraulic Cylinder Test Bench.Machinery Design and Manufacture2007
    [Google Scholar]
  63. ZhangL.J. Application of an Automatic Control Method for Oil Temperature in Hydraulic Cylinder Test Bench.Chinese Hydraulics & Pneumatics2008
    [Google Scholar]
  64. BreuerD. Reibung am Arbeitskolben von Schrägscheibenmaschinen im Langsamlauf.AachenRWTH Aachen2007
    [Google Scholar]
  65. GelsS. Einsatz konturierter und beschichteter Kolben- Bu-chse- Paare in Axialkolbenmaschinen in Schrägscheibenbau⁃ weise.AachenRWTH Aachen2011
    [Google Scholar]
  66. EnekesC. Ausgewählte Maßnahmen zur Effizienzsteigerung von Axialkolbenmaschinen.AachenRWTH Aachen2012
    [Google Scholar]
  67. KleistA. Berechnung von Dichtund Lagerfugen in hydro⁃ statischen Maschinen.AachenRWTH Aachen2002
    [Google Scholar]
  68. LiuM. Dynamisches Verhalten hydrostatischer Axialkol-bengetriebe.BochumRuhr-Universität Bochum2001
    [Google Scholar]
  69. SanchenG. Auslegung von Axialkolbenpumpen in Schrägs⁃ cheibenbauweise mit Hilfe der numerischen Simulation.AachenRWTH Aachen2003
    [Google Scholar]
  70. LeiLP ZengP FangG Analysis of microplastic forming technology and its process characteristics.2003
    [Google Scholar]
  71. Wen. Nano TribologyTsinghua University Press2000
    [Google Scholar]
  72. SiL.Y. Finite Element Simulation of Texture Evolution in Cold Working of FCC Metals.Northeastern University2009
    [Google Scholar]
  73. GeigerM KleinerM EcksteinR Microforming.CIRP Annals - Manufacturing Technology5024454622001
    [Google Scholar]
  74. LiDY ZhangSR PengYinghong Finite element simulation of crystal plasticity in sheet metal stamping.J. Mech. Eng.2008441190194
    [Google Scholar]
  75. HuangX.H. Crystal-plastic finite element simulation of plastic deformation behavior of pure titanium.Harbin Institute of Technology2010
    [Google Scholar]
  76. FanS.J. YangC. Current Status and Development Trend on Intelligent Fault-diagnosis Technology of Hydraulic System.Chinese Hydraulics & Pneumatics2010
    [Google Scholar]
  77. JinLJ Development of Mini Piston Pump.Hydro-pneumatic and sealing0324-26+532000
    [Google Scholar]
  78. WenJD Development of valve distribution water hydraulic plunger pump and reliability analysis of key componentsBeijing University of Industry learn2012
    [Google Scholar]
  79. FangW.D. De -FaW U LiuY S Influence of the Port Valves’ Materials on the Volumetric Efficiency and Noise Characteristic of a Water Piston Pump.Chinese Hydraulics & Pneumatics2014
    [Google Scholar]
  80. WangJS WangY WeiT XiaX ZhuoQY Micro Hydraulic Cylinder Structure. (2020)..C.N. Patent 1118104872018.
    [Google Scholar]
  81. JiC LiB YangHY ZouJ Cavitation corrosion resistance of microstructural surface layer.C.N. Patent 1076058742018.
    [Google Scholar]
  82. ZhangXY Hydraulic control system for performance test of microflow solenoid pilot valve.C.N. Patent 1068127512017.
    [Google Scholar]
  83. GaoHT GuRJ HanYL Co-simulation method of macroscopic and microscopic parallel mechanisms driven by electrohydraulic and piezoelectric actuators.C.N. Patent 1042683292015.
    [Google Scholar]
  84. ShiLl ZhaoHW HuangHu In-situ micro-nano telescopic hydraulic drive test device for scale span under micro-assembly.CN 1023848782012.
    [Google Scholar]
  85. DengJ GuoW LiMT Integrated miniature force position hybrid servo hydraulic cylinder.C.N. Patent 1064020802017.
    [Google Scholar]
  86. DengB KeJ WangGZ Fluid pulsation attenuation device for hydraulic pipeline based on piezoelectric shut-off damping technology.C.N. Patent 1052579432016.
    [Google Scholar]
  87. GanFW HuangHY LiW Hydraulic micro-displacement actuator and micro-displacement device.2014Available from: https://www.zhongyihydraulic.com/prosucts/1.html?gclid=EAIaIQobChMIze25hcjjgAMV_FJBAh3bPw9ZEAAYASAAEgJfLvD_BwE.
  88. LiangT QinJ WangC Heat dissipation device with pulsating flow and vein-type microchannel.C.N. Patent 1034411102013.
    [Google Scholar]
  89. GuoYZ TanYW WangLY Miniature electro-hydraulic linear actuator and electro-hydraulic robot arm.W.O. Patent 20210781832021.
    [Google Scholar]
/content/journals/eng/10.2174/1872212118666230911154209
Loading
/content/journals/eng/10.2174/1872212118666230911154209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test