Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

Gas Hydrates, or Clathrate Hydrates, have been the subject of increasing scientific and industrial attention due to their potential as an alternative energy source, their role in climate change, and their association with geohazards. The growth of new indigenous gas supply sources could impart a significant positive ripple effect on a country's economy, ecological balance, and energy landscape. This burgeoning interest has led to a surge in research and development, resulting in numerous patents related to the extraction, processing, and utilization of gas Hydrates.

Objectives

This review paper aims to provide an up-to-date, comprehensive overview of the properties, formation, detection, production, importance, challenges, and patent landscape of Gas hydrates. The integration of patented technologies into the field underscores the importance of intellectual property in shaping the future of energy, environment, and economic development.

Methods

Patented technologies in this field are contributing to making this resource more accessible and commercially viable. Moreover, the development of gas hydrates as an energy source could act as a safeguard for manufacturing jobs that are sensitive to gas prices, with proprietary technologies enhancing the efficiency and sustainability of the production process.

Results

On the environmental front, an uptick in the consumption of natural gas, known for its cleaner combustion, could herald positive change. Patented innovations in clean and efficient extraction and utilization methods for Gas Hydrates are instrumental in reducing the environmental impact. From the standpoint of energy security, a larger domestic slice of the energy pie, complemented by an extensive array of gas supply alternatives, could equip the nation to better navigate the unpredictable terrain of future energy scenarios.

Conclusion

The strategic patenting of key technologies in the exploration, production, and application of Gas Hydrates ensures competitive advantage and fosters innovation, driving forward the energy industry's evolution.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121280154231208102143
2024-05-08
2025-01-18
Loading full text...

Full text loading...

References

  1. SahithS.J.K. PedapatiS.R. LalB. Investigation on gas hydrates formation and dissociation in multiphase gas dominant transmission pipelines.Appl. Sci.20201015505210.3390/app10155052
    [Google Scholar]
  2. MedhiN. DasM. Formation of gas hydrates in high pressure gas lines- a case studyJ. Earth Sci.201359-63Special
    [Google Scholar]
  3. GiavariniC. HesterK. Gas Hydrates: Immense Energy Potential and Environmental Challenges.Green Energy and Technology. Springer2011117510.1007/978‑0‑85729‑956‑7
    [Google Scholar]
  4. ThakurN.K. RajputS. Exploration of Gas Hydrates: Geophysical Techniques.BerlinSpringer-Verlag20111281
    [Google Scholar]
  5. BohrmannG. TorresM.E. Marine Geochemistry.BerlinSpringer200648151210.1007/3‑540‑32144‑6_14
    [Google Scholar]
  6. AlmashwaliA.A. BavohC.B. LalB. KhorS.F. JinQ.C. ZainiD. Gas hydrate in oil-dominant systems: A review.ACS Omega2022731270212703710.1021/acsomega.2c02278 35967034
    [Google Scholar]
  7. KvenvoldenK.A. A review of the geochemistry of methane in natural gas hydrate.Org. Geochem.19952311-12997100810.1016/0146‑6380(96)00002‑2
    [Google Scholar]
  8. BourryC. ChazallonB. CharlouJ.L. Pierre DonvalJ. RuffineL. HenryP. GeliL. ÇagatayM.N. İnanS. MoreauM. Free gas and gas hydrates from the Sea of Marmara, Turkey.Chem. Geol.20092641-419720610.1016/j.chemgeo.2009.03.007
    [Google Scholar]
  9. KidaM. KhlystovO. ZemskayaT. TakahashiN. MinamiH. SakagamiH. KrylovA. HachikuboA. YamashitaS. ShojiH. PoortJ. NaudtsL. Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic originGeophys. Res. Lett.200633242006GL02829610.1029/2006GL028296
    [Google Scholar]
  10. MilkovA.V. ClaypoolG.E. LeeY.J. SassenR. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases.Geochim. Cosmochim. Acta20056941007102610.1016/j.gca.2004.08.021
    [Google Scholar]
  11. ColletT.S. KuuskraaV.A. Hydrates contain vast store of world gas resources.Oil Gas J.199896199095
    [Google Scholar]
  12. MakogonY.F. HolditchS.A. MakogonT.Y. Natural gas-hydrates — A potential energy source for the 21st Century.J. Petrol. Sci. Eng.2007561-3143110.1016/j.petrol.2005.10.009
    [Google Scholar]
  13. MaxM.D. Natural gas hydrate.Oceanic and Permafrost Environments, Part of the Book Series Coastal Systems and Continental Mar-gins.Kluwer Academic Pub20031411
    [Google Scholar]
  14. MaxM.D. JohnsonA.H. DillonW.P. Economic Geology of Natural Gas Hydrate. Part of the Book Series Coastal Systems and Conti-nental Margins.Kluwer Academic Pub2006134110.1007/1‑4020‑3972‑7
    [Google Scholar]
  15. MilkovA.V. SassenR. Economic geology of offshore gas hydrate accumulations and provinces.Mar. Pet. Geol.200219111110.1016/S0264‑8172(01)00047‑2
    [Google Scholar]
  16. MoridisG.J. Numerical studies of gas production from methane hydrates.SPE J.20038435937010.2118/87330‑PA
    [Google Scholar]
  17. MoridisG.J. CollettT.S. BoswellR. KuriharaM. ReaganM.T. KohC. SloanE.D. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential.SPE Reservoir Eval. Eng.200912574577110.2118/114163‑PA
    [Google Scholar]
  18. MoridisG.J. CollettT.S. DallimoreS.R. SatohT. HancockS. WeatherillB. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada.J. Petrol. Sci. Eng.2004433-421923810.1016/j.petrol.2004.02.015
    [Google Scholar]
  19. MoridisG.J. SloanE.D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments.Energy Convers. Manage.20074861834184910.1016/j.enconman.2007.01.023
    [Google Scholar]
  20. HouseK.Z. SchragD.P. HarveyC.F. LacknerK.S. Permanent carbon dioxide storage in deep-sea sediments.Proc. Natl. Acad. Sci.200610333122911229510.1073/pnas.0605318103 16894174
    [Google Scholar]
  21. KwonT.H. KimH.S. ChoG.C. Dissociation behavior of CO2 hydrate in sediments during isochoric heating.Environ. Sci. Technol.200842228571857710.1021/es801071e 19068850
    [Google Scholar]
  22. LeeK.M. LeeH. LeeJ. KangJ.M. CO2 hydrate behavior in the deep ocean sediments; phase equilibrium, formation kinetics, and solubility.Geophys. Res. Lett.20022921203410.1029/2002GL015069
    [Google Scholar]
  23. WhiteM.D. McGrainB.P. Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injec-tionOffshore Technology ConferenceHouston, Texas, USA200810.4043/19458‑MS
    [Google Scholar]
  24. GoelN. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues.J. Pet. Sci. Eng.2006513–416918410.1016/j.petrol.2006.01.005
    [Google Scholar]
  25. MaddenM.E. UlrichS. SzymcekP. McCallumS. PhelpsT. Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments.Mar. Pet. Geol.200926336937810.1016/j.marpetgeo.2008.04.002
    [Google Scholar]
  26. TorresM.E. TréhuA.M. CespedesN. KastnerM. WortmannU.G. KimJ.H. LongP. MalinvernoA. PohlmanJ.W. RiedelM. CollettT. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311.Earth Planet. Sci. Lett.20082711-417018010.1016/j.epsl.2008.03.061
    [Google Scholar]
  27. WalshM. HancockS. WilsonS. PatilS. MoridisG. BoswellR. CollettT. KohC. SloanD. Preliminary report on the economics of gas production from natural gas hydrates6th International Conference on Gas Hydrates (ICGH 2008)Vancouver, British Columbia2008
    [Google Scholar]
  28. ZhangP. TianS. ZhangW. ZhangY. Numerical simulation of gas production from hydrate deposits with radial jet drilling technology55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual June 20212021
    [Google Scholar]
  29. BrewerP.G. Gas Hydrates: Challenges for the future., vol.New YorkNew York Academy of Sciences2000912195199
    [Google Scholar]
  30. SerikovaS. PokrovskyO.S. LaudonH. KrickovI.V. LimA.G. ManasypovR.M. KarlssonJ. High carbon emissions from thermo-karst lakes of Western Siberia.Nat. Commun.2019101155210.1038/s41467‑019‑09592‑1 30948722
    [Google Scholar]
  31. ShakhovaN. SemiletovI. GustafssonO. SergienkoV. LobkovskyL. DudarevO. TumskoyV. GrigorievM. MazurovA. SalyukA. AnanievR. KoshurnikovA. KosmachD. CharkinA. DmitrevskyN. KarnaukhV. GunarA. MeluzovA. ChernykhD. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf.Nat. Commun.2017811587210.1038/ncomms15872 28639616
    [Google Scholar]
  32. WheelerS.J. A conceptual model for soils containing large gas bubbles.Geotechnique198838338939710.1680/geot.1988.38.3.389
    [Google Scholar]
  33. KvenvoldenK.A. LorensonT. The global occurrence of natural gas hydrateNatural Gas Hydrates: Occurrence, Distribution, and Detection: Occurrence, Distribution, and Detection.AGU Today201310.1029/GM124p0003
    [Google Scholar]
  34. HassanpouryouzbandA. JoonakiE. Vasheghani FarahaniM. TakeyaS. RuppelC. YangJ. EnglishN.J. SchicksJ.M. EdlmannK. MehrabianH. AmanZ.M. TohidiB. Gas hydrates in sustainable chemistry.Chem. Soc. Rev.202049155225530910.1039/C8CS00989A 32567615
    [Google Scholar]
  35. MaS. ZhengJ. TianM. TangD. YangM. NMR quantitative investigation on methane hydrate formation characteristics under differ-ent driving forces.Fuel202026111636410.1016/j.fuel.2019.116364
    [Google Scholar]
  36. ShabaniM.M. NydalO.J. LarsenR. An experimental and numerical investigation on gas hydrate plug flow in the inclined pipes and bends.Int. Sch. Sci. Res. Innov200935
    [Google Scholar]
  37. GaidukovaO. MisyuraS. StrizhakP. Key areas of gas hydrates study: Review.Energies2022155179910.3390/en15051799
    [Google Scholar]
  38. WeiN. PeiJ. ZhaoJ. ZhangL. ZhouS. LuoP. LiH. WuJ. A state-of-the-art review and prospect of gas hydrate reservoir drilling techniques.Front. Earth Sci.20221099733710.3389/feart.2022.997337
    [Google Scholar]
  39. YamamotoK. WangX.X. TamakiM. SuzukiK. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir.RSC Advances2019945259872601310.1039/C9RA00755E 35531029
    [Google Scholar]
  40. Chandrasekharan NairV. GuptaP. SangwaiJ.S. Natural gas production from a marine clayey hydrate reservoir formed in seawater using depressurization at constant pressure, depressurization by constant rate gas release, thermal stimulation, and their implications for real field applications.Energy Fuels20193343108312210.1021/acs.energyfuels.9b00187
    [Google Scholar]
  41. ChenX. LuH. GuL. ShangS. ZhangY. HuangX. ZhangL. Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation.Energy202224312300710.1016/j.energy.2021.123007
    [Google Scholar]
  42. FengY. ChenL. SuzukiA. KogawaT. OkajimaJ. KomiyaA. MaruyamaS. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method.Energy Convers. Manage.201918419420410.1016/j.enconman.2019.01.050
    [Google Scholar]
  43. GaoY. ChenY. Fish bone type well structure and method for exploiting natural gas hydrateCN Patent 108999604A2021
    [Google Scholar]
  44. WangH. ZhangL. HeJ. ZhouT. The development of natural gas hydrate exploitation technology from perspective of patents.Front. Energy Res.20221086059110.3389/fenrg.2022.860591
    [Google Scholar]
  45. WallmannK. HaeckelM. Method for producing natural gas from hydrocarbon hydrates while simultaneously storing carbon dioxide in geological formationsUS Patent 20120012321A12012
    [Google Scholar]
  46. BalzcewskiJ.T. Method and system for producinghydrocarbons from a hydrate reservoir using a sweep gasUS Patent 20100163246A12010
    [Google Scholar]
  47. HongL.Y. Near-sea floor hydrate exploration systemJP Patent 2019519750A2019
    [Google Scholar]
  48. GudmundssonJ.S. Method for production of gas hydrates for transportation and storageUS Patent 5536893A1996
    [Google Scholar]
  49. FahuiW. WeilongZ. RuiriuW. XiaopingW. ZhichaoL. HaoxmD. GuoyanC. HaibinL. It is a kind of to be used to improve natural biomass solution of gas hydration rate and preparation method thereofCN Patent 108410528A2020
    [Google Scholar]
  50. MaxM.D. PellenbaugR.E. Desalination through gas hydrateUS Patent 6158239A2000
    [Google Scholar]
  51. ZhangF. YangZ. ZhouY. ZhangS. YuL. Accumulation mechanism of natural gas hydrate in the Qilian Mountain permafrost, Qinghai, China.Front. Energy Res.2022101006421a10.3389/fenrg.2022.1006421
    [Google Scholar]
  52. CollettT.S. Natural-gas hydrates: Resource of the twenty-first century?Am Assoc Pet Geol20017485108
    [Google Scholar]
  53. RutqvistJ. MoridisG.J. Numerical studies of the geomechanical stability of hydrate-bearing sediments.The Offshore Technology Conference.Houston, Texas, USAAmerican Association of Petroleum Geologists200710.4043/18860‑MS
    [Google Scholar]
  54. NixonM.F. GrozicJ.L. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification.Can. Geotech. J.200744331432510.1139/t06‑121
    [Google Scholar]
  55. SultanN. CochonatP. FoucherJ.P. MienertJ. Effect of gas hydrates melting on seafloor slope instability.Mar. Geol.20042131-437940110.1016/j.margeo.2004.10.015
    [Google Scholar]
  56. ZhangG. WangX. LiL. SunL. GuoY. LuY. LiW. WangZ. QianJ. YangT. WangW. Gas hydrate accumulation related to pockmarks and faults in the Zhongjiannan basin, South China Sea.Front. Earth Sci.202210902469b10.3389/feart.2022.902469
    [Google Scholar]
  57. ZhangT. TianS. YiqunZ. LiG. WenhongZ. WaleedA.K. LuyaoM. Numerical simulation of gasrecovery from natural gas hydrate using multi-branch wells: A three-dimensional model.Energy202122011954910.1016/j.energy.2020.119549
    [Google Scholar]
  58. HammerschmidtE.G. Formation of gas hydrates in natural gas transmission lines.Ind. Eng. Chem.193426885185510.1021/ie50296a010
    [Google Scholar]
  59. NguyenN.N. NguyenA.V. The dual effect of sodium halides on the formation of methane gas hydrate.Fuel2015156879510.1016/j.fuel.2015.04.022
    [Google Scholar]
  60. NguyenN.N. NguyenA.V. DangL.X. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants.Fuel201719748849610.1016/j.fuel.2017.02.061
    [Google Scholar]
  61. WalshM.R. KohC.A. SloanE.D. SumA.K. WuD.T. Microsecond simulations of spontaneous methane hydrate nucleation and growth.Science200932659561095109810.1126/science.1174010 19815725
    [Google Scholar]
  62. JacobsonL.C. HujoW. MolineroV. Amorphous precursors in the nucleation of clathrate hydrates.J. Am. Chem. Soc.201013233118061181110.1021/ja1051445 20669949
    [Google Scholar]
  63. SloanE.D. KohC.A. Clathrate Hydrates of Natural Gases.3rd edBoca RatonCRC Press-Taylor & Francis Group2007175210.1201/9781420008494
    [Google Scholar]
  64. AregbeA.G. Gas hydrate—properties, formation and benefits.Open J. Yangtze Oil Gas201721274410.4236/ojogas.2017.21003
    [Google Scholar]
  65. BianH. QinX. SunJ. LuoW. LuC. ZhuJ. MaC. ZhouY. The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts.Energy202327412730310.1016/j.energy.2023.127303
    [Google Scholar]
  66. LiY. HeC. WuN. ChenQ. LiuC. SunZ. JinY. MengQ. Laboratory study on hydrate production using a slow, multistage depres-surization strategy.Geofluids2021202111310.1155/2021/3066553
    [Google Scholar]
  67. TanZ. PanG. LiuP. Focus on the development of natural gas hydrate in China.Sustainability20168652010.3390/su8060520
    [Google Scholar]
  68. YeJ. QinX. XieW. LuH. MaB. QiuH. LiangJ. LuJ. KuangZ. LuC. LiangQ. WeiS. YuY. LiuC. LiB. ShenK. ShiH. LuQ. LiJ. KouB. SongG. LiB. ZhangH. LuH. MaC. DongY. BianH. The second natural gas hydrate production test in the South Chi-na Sea.China Geology20203219720910.31035/cg2020043
    [Google Scholar]
  69. LiY. PangL. WangZ. MengQ. GuanP. XuX. FangY. LuH. YeJ. XieW. Geochemical characteristics and significance of organic matter in hydrate-bearing sediments from shenhu area, South China Sea.Molecules20222782533c10.3390/molecules27082533 35458729
    [Google Scholar]
  70. SloanE.D. Clathrate hydrates of natural gases.2nd edNew YorkMarcel Dekker, Inc.19981705
    [Google Scholar]
  71. Pooladi-DarvishM. Gas production from hydrate reservoirs and its modeling.J. Pet. Technol.2004566657110.2118/86827‑JPT
    [Google Scholar]
  72. DemirbasA. Processes for Methane Production from Gas Hydrates, Methane Gas Hydrate, Green Energy and Technology.Springer2010161181
    [Google Scholar]
  73. LeeJ.Y. RyuB.J. YunT.S. LeeJ. ChoG.C. Review on the gas hydrate development and production as a new energy resource.KSCE J. Civ. Eng.201115468969610.1007/s12205‑011‑0009‑3
    [Google Scholar]
  74. FanS. ZhangY. TianG. LiangD. LiD. Natural gas hydrate dissociation by presence of ethylene glycol.Energy Fuels200620132432610.1021/ef0502204
    [Google Scholar]
  75. SiraJ.H. PatilS.L. KamathV.A. Study of hydrate dissociation by methanol and glycol injectionSPE Annual Technical Conference and Exhibition1990 23-26 September, 1999, New Orleans, Louisiana10.2118/20770‑MS
    [Google Scholar]
  76. CuiY. LuC. WuM. PengY. YaoY. LuoW. Review of exploration and production technology of natural gas hydrate.Adv. Geo-Energy Res.201821536210.26804/ager.2018.01.05
    [Google Scholar]
  77. GaidukovaO. MisyuraS. MorozovV. StrizhakP. Gas hydrates: Applications and advantages.Energies2023166286610.3390/en16062866
    [Google Scholar]
  78. AghajariH. MoghaddamM.H. ZallaghiM. Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs.Green Energy & Environment20194445346910.1016/j.gee.2018.04.002
    [Google Scholar]
  79. WanY. WuN. HuG. XinX. JinG. LiuC. ChenQ. Reservoir stability in the process of natural gas hydrate production by depres-surization in the Shenhu area of the south China sea.Nat. Gas Ind. B20185663164310.1016/j.ngib.2018.11.012
    [Google Scholar]
  80. JauhariP. Methane hydrates in marinesediments- untapped source of energy.J. Indian Ocean Stud.200191111119
    [Google Scholar]
  81. SloanE.D. KohC.A. SumA. Natural Gas Hydrates in Flow Assurance.1st edGulf Publishing Professional Publishing2010122410.1016/C2009‑0‑62311‑4
    [Google Scholar]
  82. YeJ. QinX. QiuH. LiangQ. DongY. WeiJ. LuH. LuJ. ShiY. ZhongC. XiaZ. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea.China Geology20181220220910.31035/cg2018029
    [Google Scholar]
  83. LiangJ. MengM. LiangJ. RenJ. HeY. LiT. XuM. WangX. Drilling cores and geophysical characteristics of gas hydrate-bearing sediments in the production test region in the Shenhu sea, South China sea.Front. Earth Sci.20221091112310.3389/feart.2022.911123
    [Google Scholar]
  84. LiY. XinX. XuT. ZhuH. WangH. ChenQ. YangB. Comparative analysis on the evolution of seepage parameters in methane hydrate production under depressurization of clayey silt reservoir and sandy reservoir.J. Mar. Sci. Eng.2022105653a10.3390/jmse10050653
    [Google Scholar]
  85. LiQ. LiS. DingS. YinZ. LiuL. LiS. Numerical simulation of gas production and reservoir stability during CO2 exchange in natural gas hydrate reservoir.Energies202215238968b10.3390/en15238968
    [Google Scholar]
/content/journals/eng/10.2174/0118722121280154231208102143
Loading
/content/journals/eng/10.2174/0118722121280154231208102143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test