Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Backgrounds

Sleep Apnea (SA) is a sleep-related breathing disorder diagnosed in clinical laboratories. The gold standard is Polysomnography (PSG), a multi-parameter evaluation of a sleep monitoring system that records the biological signals during overnight sleep. Apart from PSG recording, apnea events are recorded by various other bio-signals called Electrocardiogram (ECG), Electroencephalogram (EEG), Oxygen Saturation level (SpO), . Further evaluation of the recorded bio-signals is tedious and time-consuming as experts perform it manually. Aiming to overcome the disadvantage without compromising accuracy, scientists focus on developing robust measurements of SA by using Machine Learning (ML) and Deep Learning (DL) models.

Methods

This study aimed to analyze the recent research findings in the field of sleep apnea classification and various machine learning and deep learning methods implemented in detecting SA. This study revealed the best-performing technique considering different types of bio-signals used for analysis and the respective ML or DL models used for automatic detection.

Results

The studies and patents included in this review underwent a precise screening process using PRISMA guidelines. The literature study is comprised of three different analysis tools to showcase the review process and provide evidence for the research findings obtained in the respective publications. The publications considered were limited to the last decade.

Conclusion

This review delivers the key finding that ECG signals-based detection of sleep apnea using deep learning model-based deep neural network classifiers will provide more accurate and robust classification, which will pave the way for possible future research directions.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121293262240527102646
2024-07-23
2025-01-18
Loading full text...

Full text loading...

References

  1. TaranS. BajajV. SinhaG.R. PolatK. Detection of sleep apnea events using electroencephalogram signals.Appl. Acoust.202118110813710.1016/j.apacoust.2021.108137
    [Google Scholar]
  2. StöwhasA.C. LichtblauM. BlochK.E. Obstruktives schlafapnoe-syndrom.Praxis (Bern)2019108211111710.1024/1661‑8157/a00319830722731
    [Google Scholar]
  3. FindleyL.J. SurattP.M. Serious motor vehicle crashes: the cost of untreated sleep apnoea.Thorax200156750510.1136/thx.56.7.50511413345
    [Google Scholar]
  4. WardK.L. HillmanD.R. JamesA. BremnerA.P. SimpsonL. CooperM.N. PalmerL.J. FedsonA.C. MukherjeeS. Excessive daytime sleepiness increases the risk of motor vehicle crash in obstructive sleep apnea.J. Clin. Sleep Med.20139101013102110.5664/jcsm.307224127145
    [Google Scholar]
  5. SandhyaM.K. SathyaP.S. PrasidhS. Detection of Obstructive sleep Apnea using Internet of Things: A review.Int. J. Sensors Wirel. Commun. Control20211126327010.2174/2210327910999200525165339
    [Google Scholar]
  6. TiwariS. AroraD. NagarV. Supervised approach based sleep disorder detection using non - Linear dynamic features (NLDF) of EEG.Meas. Sensors20222410046910.1016/j.measen.2022.100469
    [Google Scholar]
  7. KapurV.K. AuckleyD.H. ChowdhuriS. KuhlmannD.C. MehraR. RamarK. HarrodC.G. Clinical Practice guideline for diagnostic testing for adult Obstructive sleep apnea: An American Academy of Sleep Medicine Clinical Practice Guideline.J. Clin. Sleep Med.201713347950410.5664/jcsm.650628162150
    [Google Scholar]
  8. AlshaerH. New technologies for the diagnosis of sleep apnea.Curr. Hypertens. Rev.2016121485610.2174/157340211266616011409433726778198
    [Google Scholar]
  9. FatimahB. SinghP. SinghalA. PachoriR.B. Detection of apnea events from ECG segments using Fourier decomposition method.Biomed. Signal Process. Control20206110200510.1016/j.bspc.2020.102005
    [Google Scholar]
  10. SabeenianR.S. VinodhiniC. A comprehensive review on - machine learning in bio-signal analysis for chronic pain research.2023 International Conference on Emerging Research in Computational Science (ICERCS)202310.1109/ICERCS57948.2023.10434197
    [Google Scholar]
  11. MostafaS.S. BaptistaD. Ravelo-GarcíaA.G. Juliá-SerdáG. Morgado-DiasF. Greedy based convolutional neural network optimization for detecting apnea.Comput. Methods Programs Biomed.202019710564010.1016/j.cmpb.2020.10564032673899
    [Google Scholar]
  12. ViswabhargavC.S.S. TripathyR.K. AcharyaU.R. Automated detection of sleep apnea using sparse residual entropy features with various dictionaries extracted from heart rate and EDR signals.Comput. Biol. Med.2019108203010.1016/j.compbiomed.2019.03.01631003176
    [Google Scholar]
  13. Troncoso-GarcíaA.R. Martínez-BallesterosM. Martínez-ÁlvarezF. TroncosoA. Explainable machine learning for sleep apnea prediction.Procedia Comput. Sci.20222072930293910.1016/j.procs.2022.09.351
    [Google Scholar]
  14. ZareiA. AslB.M. Automatic classification of apnea and normal subjects using new features extracted from HRV and ECG-derived respiration signals.Biomed. Signal Process. Control20205910192710.1016/j.bspc.2020.101927
    [Google Scholar]
  15. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑320585380
    [Google Scholar]
  16. ChenX. ChenY. MaW. FanX. LiY. Toward sleep apnea detection with lightweight multi-scaled fusion network.Knowl. Base. Syst.202224710878310.1016/j.knosys.2022.108783
    [Google Scholar]
  17. ErdenebayarU. KimY.J. ParkJ.U. JooE.Y. LeeK.J. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram.Comput. Methods Programs Biomed.201918010500110.1016/j.cmpb.2019.10500131421606
    [Google Scholar]
  18. LiuH. CuiS. ZhaoX. CongF. Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture.Biomed. Signal Process. Control20238210458110.1016/j.bspc.2023.104581
    [Google Scholar]
  19. ZareiA. BeheshtiH. AslB.M. Detection of sleep apnea using deep neural networks and single-lead ECG signals.Biomed. Signal Process. Control20227110312510.1016/j.bspc.2021.103125
    [Google Scholar]
  20. HassanA.R. HaqueM.A. An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting.Neurocomputing201723512213010.1016/j.neucom.2016.12.062
    [Google Scholar]
  21. ChoiS.H. YoonH. KimH.S. KimH.B. KwonH.B. OhS.M. LeeY.J. ParkK.S. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks.Comput. Biol. Med.201810012313110.1016/j.compbiomed.2018.06.02829990645
    [Google Scholar]
  22. BernardiniA. BrunelloA. GigliG.L. MontanariA. SaccomannoN. AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning.Artif. Intell. Med.202111810213310.1016/j.artmed.2021.10213334412849
    [Google Scholar]
  23. YuH. LiuD. ZhaoJ. ChenZ. GouC. HuangX. SunJ. ZhaoX. A sleep apnea-hypopnea syndrome automatic detection and subtype classification method based on LSTM-CNN.Biomed. Signal Process. Control20227110324010.1016/j.bspc.2021.103240
    [Google Scholar]
  24. SavarimuthuS.R. KaruppannanS.J.K. An investigation on mental stress detection from various physiological signals.Nucleation and Atmospheric Aerosols202310.1063/5.0164302
    [Google Scholar]
  25. HalderB. AnjumT. BhuiyanM.I.H. An attention-based multi-resolution deep learning model for automatic A-phase detection of cyclic alternating pattern in sleep using single-channel EEG.Biomed. Signal Process. Control20238310473010.1016/j.bspc.2023.104730
    [Google Scholar]
  26. QinH. LiuG. A dual-model deep learning method for sleep apnea detection based on representation learning and temporal dependence.Neurocomputing2022473243610.1016/j.neucom.2021.12.001
    [Google Scholar]
  27. SrivastavaG. ChauhanA. KargetiN. PradhanN. DhakaV.S. ApneaNet: A hybrid 1DCNN-LSTM architecture for detection of Obstructive Sleep Apnea using digitized ECG signals.Biomed. Signal Process. Control20238410475410.1016/j.bspc.2023.104754
    [Google Scholar]
  28. LiR. LiW. YueK. LiY. Convolutional neural network for screening of obstructive sleep apnea using snoring sounds.Biomed. Signal Process. Control20238610496610.1016/j.bspc.2023.104966
    [Google Scholar]
  29. FangY. XiaY. ChenP. ZhangJ. ZhangY. A dual-stream deep neural network integrated with adaptive boosting for sleep staging.Biomed. Signal Process. Control20237910415010.1016/j.bspc.2022.104150
    [Google Scholar]
  30. MashrurF.R. IslamM.S. SahaD.K. IslamS.M.R. MoniM.A. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.Comput. Biol. Med.202113410453210.1016/j.compbiomed.2021.10453234102402
    [Google Scholar]
  31. CaoK. LvX. Multi-task feature fusion network for Obstructive Sleep Apnea detection using single-lead ECG signal.Measurement202220211178710.1016/j.measurement.2022.111787
    [Google Scholar]
  32. ChenY. YueH. ZouR. LeiW. MaW. FanX. RAFNet: Restricted attention fusion network for sleep apnea detection.Neural Netw.202316257158010.1016/j.neunet.2023.03.01937003136
    [Google Scholar]
  33. UllahN. MahmoodT. KimS.G. NamS.H. SultanH. ParkK.R. DCDA-Net: Dual-convolutional dual-attention network for obstructive sleep apnea diagnosis from single-lead electrocardiograms.Eng. Appl. Artif. Intell.202312310645110.1016/j.engappai.2023.106451
    [Google Scholar]
  34. ChenJ.W. LiuC.M. WangC.Y. LinC.C. QiuK.Y. YehC.Y. HwangS.H. A deep neural network-based model for OSA severity classification using unsegmented peripheral oxygen saturation signals.Eng. Appl. Artif. Intell.202312210616110.1016/j.engappai.2023.106161
    [Google Scholar]
  35. SharmaM. BapodaraS. TiwariJ. AcharyaU.R. Automated sleep apnea detection in pregnant women using wavelet-based features.Inform. Med. Unlocked20223210102610.1016/j.imu.2022.101026
    [Google Scholar]
  36. Sree JananiK.K. SabeenianR.S. Transfer learning-based electrocardiogram classification using wavelet scattered features.Biomed. Biotechnol. Res. J.2023715210.4103/bbrj.bbrj_341_22
    [Google Scholar]
  37. AnandR. ShanthiT. NithishM.S. LakshmanS. Face recognition and classification using GoogleNET architecture.Advances in intelligent systems and computing201926126910.1007/978‑981‑15‑0035‑0_20
    [Google Scholar]
  38. KurianM. ParamasivamM. NagarjunS. MokeshA. AbishekA. MeialaganK. Deep learning Algorithm for identification of ear Disease.Lecture notes in networks and systems202149150210.1007/978‑981‑16‑5120‑5_37
    [Google Scholar]
  39. KumarK.K. DineshP.M. RayavelP. VijayarajaL. RavikumarD. KesavanR. KannadasanR. KhanA.A. WechtaisongC. HaqM.A. AlzamilZ.S. AlhussenA. Brain tumor identification using data augmentation and transfer learning approach.Comput. Syst. Sci. Eng.2023461845186110.32604/csse.2023.033927
    [Google Scholar]
  40. LiK. PanW. LiY. JiangQ. LiuG. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal.Neurocomputing20182949410110.1016/j.neucom.2018.03.011
    [Google Scholar]
  41. Kumar TyagiP. AgrawalD. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model.Biomed. Signal Process. Control20238010440110.1016/j.bspc.2022.104401
    [Google Scholar]
  42. PuriM. SolankiA. PadawerT. TipparajuS.M. MorenoW. PathakY. Introduction to Artificial Neural Network (ANN) as a predictive tool for drug design, discovery, delivery, and disposition.Elsevier eBooks201631310.1016/B978‑0‑12‑801559‑9.00001‑6
    [Google Scholar]
  43. RolónR.E. GareisI.E. LarrateguyL.D. Di PersiaL.E. SpiesR.D. RufinerH.L. Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals.Biomed. Signal Process. Control20206210206210.1016/j.bspc.2020.102062
    [Google Scholar]
  44. YangQ. ZouL. WeiK. LiuG. Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network.Comput. Biol. Med.202214010512410.1016/j.compbiomed.2021.10512434896885
    [Google Scholar]
  45. SharmaM. RavalM. AcharyaU.R. A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals.Inform. Med. Unlocked20191610017010.1016/j.imu.2019.100170
    [Google Scholar]
  46. MathunjwaB.M. LinY.T. LinC.H. AbbodM.F. SadrawiM. ShiehJ.S. Automatic IHR-based sleep stage detection using features of residual neural network.Biomed. Signal Process. Control20238510507010.1016/j.bspc.2023.105070
    [Google Scholar]
  47. RajeshK.N.V.P.S. DhuliR. KumarT.S. Obstructive sleep apnea detection using discrete wavelet transform-based statistical features.Comput. Biol. Med.202113010419910.1016/j.compbiomed.2020.10419933422885
    [Google Scholar]
  48. ChengL. LuoS. LiB. LiuR. ZhangY. ZhangH. Multiple-instance learning for EEG based OSA event detection.Biomed. Signal Process. Control20238010435810.1016/j.bspc.2022.104358
    [Google Scholar]
  49. WangZ. PengC. LiB. PenzelT. LiuR. ZhangY. YuX. Single-lead ECG based multiscale neural network for obstructive sleep apnea detection.Internet of Things20222010061310.1016/j.iot.2022.100613
    [Google Scholar]
  50. FaustO. BarikaR. ShenfieldA. CiaccioE.J. AcharyaU.R. Accurate detection of sleep apnea with long short-term memory network based on RR interval signals.Knowl. Base. Syst.202121210659110.1016/j.knosys.2020.106591
    [Google Scholar]
  51. AlmutairiH. HassanG.M. DattaA. Classification of obstructive sleep apnoea from single-lead ECG signals using convolutional neural and long short term memory networks.Biomed. Signal Process. Control20216910290610.1016/j.bspc.2021.102906
    [Google Scholar]
  52. ChengS. WangC. YueK. LiR. ShenF. ShuaiW. LiW. DaiL. Automated sleep apnea detection in snoring signal using long short-term memory neural networks.Biomed. Signal Process. Control20227110323810.1016/j.bspc.2021.103238
    [Google Scholar]
  53. AbasiA.K. AloqailyM. GuizaniM. Optimization of CNN using modified Honey Badger Algorithm for Sleep Apnea detection.Expert Syst. Appl.202322912048410.1016/j.eswa.2023.120484
    [Google Scholar]
  54. LiF. XuY. ChenJ. LuP. ZhangB. CongF. A deep learning model developed for sleep apnea detection: A multi-center study.Biomed. Signal Process. Control20238510468910.1016/j.bspc.2023.104689
    [Google Scholar]
  55. WangL. LinY. WangJ. A RR interval based automated apnea detection approach using residual network.Comput. Methods Programs Biomed.20191769310410.1016/j.cmpb.2019.05.00231200916
    [Google Scholar]
  56. TaghizadeganY. Jafarnia DabanlooN. MaghooliK. SheikhaniA. Obstructive sleep apnea event prediction using recurrence plots and convolutional neural networks (RP-CNNs) from polysomnographic signals.Biomed. Signal Process. Control20216910292810.1016/j.bspc.2021.102928
    [Google Scholar]
  57. SharanR.V. BerkovskyS. XiongH. CoieraE. ECG-derived heart rate variability interpolation and 1-D convolutional neural networks for detecting sleep apnea. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)202010.1109/EMBC44109.2020.9175998
    [Google Scholar]
  58. SharanR.V. BerkovskyS. XiongH. CoieraE. End-to-End sleep apnea detection using Single-Lead ECG signal and 1-D residual neural networks.J. Med. Biol. Eng.202141575876610.1007/s40846‑021‑00646‑8
    [Google Scholar]
  59. AlmutairiH.M. HassanG.M. DattaA. Detection of obstructive sleep apnoea by ecg signals using deep learning architectures.2020 28th European Signal Processing Conference (EUSIPCO)202110.23919/Eusipco47968.2020.9287360
    [Google Scholar]
  60. ChangH.Y. YehC.Y. LeeC.T. LinC.C. A sleep apnea detection system based on a One-Dimensional deep convolution neural network model using Single-Lead electrocardiogram.Sensors (Basel)20202015415710.3390/s2015415732722630
    [Google Scholar]
  61. NiroshanaS.M.I. ZhuX. NakamuraK. ChenW. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network.PLoS One2021164e025061810.1371/journal.pone.025061833901251
    [Google Scholar]
  62. WangX. ChengM. WangY. LiuS. TianZ. JiangF. ZhangH. Obstructive sleep apnea detection using ecg-sensor with convolutional neural networks.Multimedia Tools Appl.20207923-24158131582710.1007/s11042‑018‑6161‑8
    [Google Scholar]
  63. BahramiM. ForouzanfarM. Detection of sleep apnea from single-lead ECG: Comparison of deep learning algorithms.2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)202110.1109/MeMeA52024.2021.9478745
    [Google Scholar]
  64. ShenQ. QinH. WeiK. LiuG. Multiscale deep neural network for obstructive sleep apnea detection using RR interval from Single-Lead ECG Signal.IEEE Trans. Instrum. Meas.20217011310.1109/TIM.2021.3062414
    [Google Scholar]
  65. YehC.Y. ChangH.Y. HuJ.Y. LinC.C. Contribution of different subbands of ECG in sleep apnea detection evaluated using filter bank decomposition and a convolutional neural network.Sensors (Basel)202222251010.3390/s2202051035062470
    [Google Scholar]
  66. WangT. LuC. ShenG. HongF. Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network.PeerJ20197e773110.7717/peerj.773131579607
    [Google Scholar]
  67. ChengM-W. JifaraW. JiangF. KhanA. LiuS. Recurrent neural network based classification of ECG signal features for obstruction of sleep apnea detection. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC)201710.1109/CSE‑EUC.2017.220
    [Google Scholar]
  68. FengK. QinH. WuS. PanW. LiuG. A sleep apnea detection method based on unsupervised feature learning and Single-Lead electrocardiogram.IEEE Trans. Instrum. Meas.20217011210.1109/TIM.2020.3017246
    [Google Scholar]
  69. SinghS.A. MajumderS. A novel approach OSA detection using single-lead ECG scalogram based on deep neural network.J. Mech. Med. Biol.2019194195002610.1142/S021951941950026X
    [Google Scholar]
  70. JanbakhshiP. ShamsollahiM.B. Sleep Apnea Detection from Single-Lead ECG Using Features Based on ECG-Derived Respiration (EDR) Signals.IRBM201839320621810.1016/j.irbm.2018.03.002
    [Google Scholar]
  71. JohnA. CardiffB. JohnD. A 1D-CNN based deep learning technique for sleep apnea detection in IoT sensors.2021 IEEE International Symposium on Circuits and Systems (ISCAS)202110.1109/ISCAS51556.2021.9401300
    [Google Scholar]
  72. BanluesombatkulN RakthanmanonT WilaiprasitpornT Single channel ECG for obstructive sleep apnea severity detection using a deep learning approach.TENCON 2018 - 2018 IEEE Region 10 Conference201810.1109/TENCON.2018.8650429
    [Google Scholar]
  73. ZhangJ. TangZ. GaoJ. LinL. LiuZ. WuH. LiuF. YaoR. Automatic detection of obstructive sleep apnea events using a deep CNN-LSTM model.Comput. Intell. Neurosci.2021202111010.1155/2021/559473333859679
    [Google Scholar]
  74. ShetaA. TurabiehH. ThaherT. TooJ. MafarjaM. HossainM.S. SuraniS.R. Diagnosis of obstructive sleep apnea from ECG signals using machine learning and deep learning classifiers.Appl. Sci. (Basel)20211114662210.3390/app11146622
    [Google Scholar]
  75. ZhouY. HeY. KangK. OSA-CCNN: Obstructive sleep apnea detection based on a composite deep convolution neural network model using single-lead ECG signal.2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)202210.1109/BIBM55620.2022.9995675
    [Google Scholar]
  76. RaziA.P. EinalouZ. ManthouriM. Sleep apnea classification using random forest via ECG.Sleep Vigil.20215114114610.1007/s41782‑021‑00138‑4
    [Google Scholar]
  77. WangT. LuC. ShenG. Detection of sleep apnea from single-lead ECG signal using a time window artificial neural network.BioMed Res. Int.201920191910.1155/2019/976807231950061
    [Google Scholar]
  78. SharmaH. SharmaK.K. An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions.Comput. Biol. Med.20167711612410.1016/j.compbiomed.2016.08.01227543782
    [Google Scholar]
  79. GaoQ. ShangL. ZhangY. Automated detection of sleep apnea using convolutional neural network from a single-channel ECG signal.RICAI ’20: Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence202010.1145/3438872.3439089
    [Google Scholar]
  80. LinC.Y. WangY.W. SetiawanF. TrangN.T.H. LinC.W. Sleep apnea classification algorithm development using a machine-learning framework and bag-of-features derived from electrocardiogram spectrograms.J. Clin. Med.202111119210.3390/jcm1101019235011934
    [Google Scholar]
  81. SongC. LiuK. ZhangX. ChenL. XianX. An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG Signals.IEEE Trans. Biomed. Eng.20166371532154210.1109/TBME.2015.249819926560867
    [Google Scholar]
  82. SalariN. Hosseinian-FarA. MohammadiM. GhasemiH. KhazaieH. DaneshkhahA. AhmadiA. Detection of sleep apnea using Machine learning algorithms based on ECG Signals: A comprehensive systematic review.Expert Syst. Appl.202218711595010.1016/j.eswa.2021.115950
    [Google Scholar]
  83. SharmaH. SharmaK.K. Sleep apnea detection from ECG using variational mode decomposition.Biomed. Phys. Eng. Express20206101502610.1088/2057‑1976/ab68e933438614
    [Google Scholar]
  84. TengF. WangD. YuanY. ZhangH. SinghA.K. LvZ. Multimedia Monitoring system of obstructive sleep apnea via a deep active learning model.IEEE Multimed.2022293485610.1109/MMUL.2022.3146141
    [Google Scholar]
  85. BarhanpurkarK. RajawatA.S. BediP. MohammedO. Detection of sleep apnea & cancer mutual symptoms using deep learning techniques.2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)202010.1109/I‑SMAC49090.2020.9243488
    [Google Scholar]
  86. GhafourianM.S. TabatabaeeP.S. NooriA. Obstructive sleep apnea syndrome diagnosis using HRV signal processing.2019 27th Iranian Conference on Electrical Engineering (ICEE)201910.1109/IranianCEE.2019.8786702
    [Google Scholar]
  87. PardedeJ. RaspatiM.F. Gated recurrent units dalam mendeteksi obstructive sleep apnea.MIND Journal20216222123510.26760/mindjournal.v6i2.221‑235
    [Google Scholar]
  88. YuY. YangZ. YouY. ShanW. FASSNet: fast apnea syndrome screening neural network based on single-lead electrocardiogram for wearable devices.Physiol. Meas.202142808500510.1088/1361‑6579/ac184e34315149
    [Google Scholar]
  89. SavarimuthuS.R. MeiyalaganV.C. Machine learning in chronic pain research – A review.AIP Conf. Proc.202302003310.1063/5.0164297
    [Google Scholar]
  90. KozielB. AckieA.B. KhatibR.E. AzarderakhshR. KermaniM.M. SIKE’d Up: Fast hardware Architectures for supersingular isogeny key encapsulation.IEEE Trans. Circuits Syst. I Regul. Pap.202067124842485410.1109/TCSI.2020.2992747
    [Google Scholar]
  91. KermaniM.M. AzarderakhshR. Reliable hash trees for post-quantum stateless cryptographic hash-based signatures.2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)201510.1109/DFT.2015.7315144
    [Google Scholar]
  92. ChooK.K.R. KermaniM.M. AzarderakhshR. GovindarasuM. Emerging embedded and cyber physical system security challenges and innovations.IEEE Trans. Depend. Secure Comput.201714323523610.1109/TDSC.2017.2664183
    [Google Scholar]
  93. JalaliA. AzarderakhshR. KermaniM.M. JaoD. Supersingular isogeny diffie-hellman key exchange on 64-Bit ARM.IEEE Trans. Depend. Secure Comput.201916590291210.1109/TDSC.2017.2723891
    [Google Scholar]
  94. PanJ. AzarderakhshR. KermaniM.M. LeeC. LeeW. ChiouC.W. LinJ. Low-latency digit-serial systolic double basis multiplier over GF(2^m) using subquadratic toeplitz matrix-vector product approach.IEEE Trans. Comput.2014631169118110.1109/TC.2012.239
    [Google Scholar]
  95. ZhangM. KermaniM.M. RaghunathanA. JhaN.K. Energy-efficient and secure sensor data transmission using encompression.2013 26th International Conference on VLSI Design and 2013 12th International Conference on Embedded201310.1109/VLSID.2013.158
    [Google Scholar]
  96. KermaniM.M. Reyhani-MasolehA. A high-performance fault diagnosis approach for the AES subbytes utilizing mixed bases.2011 Workshop on Fault Diagnosis and Tolerance in Cryptography201110.1109/FDTC.2011.11
    [Google Scholar]
  97. KermaniM.M. AzarderakhshR. LeeC-Y. Bayat-SarmadiS. Reliable concurrent error detection architectures for extended euclidean-based division over GF(2^m).IEEE Trans. Very Large Scale Integr. (VLSI) Syst.201422995100310.1109/TVLSI.2013.2260570
    [Google Scholar]
  98. KermaniM.M. Reyhani-MasolehA. Reliable hardware architectures for the third-round SHA-3 finalist grostl benchmarked on FPGA platform.2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems201110.1109/DFT.2011.60
    [Google Scholar]
  99. Mozaffari-KermaniM. AzarderakhshR. Efficient fault diagnosis schemes for reliable lightweight cryptographic ISO/IEC standard CLEFIA benchmarked on ASIC and FPGA.IEEE Trans. Ind. Electron.201360125925593210.1109/TIE.2012.2228144
    [Google Scholar]
  100. AghaieA. Mozaffari KermaniM. AzarderakhshR. Fault diagnosis schemes for low-energy block cipher midori benchmarked on FPGA.IEEE Trans. Very Large Scale Integr. (VLSI) Syst.20172541528153610.1109/TVLSI.2016.2633412
    [Google Scholar]
/content/journals/eng/10.2174/0118722121293262240527102646
Loading
/content/journals/eng/10.2174/0118722121293262240527102646
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test