Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Development of ionic membranes by using generic polymers polyvinyl alcohol (PVA) and Polystyrene sulfonic acid (PSSA), which have been implemented as sensing devices. Our health is directly influenced by wearable sensors therefore, we need to enhance its quality. Wearable sensors depend on the sensitivity of the material as well as the phase transition of ions.

Methods

The phase transition of ion/charge is analyzed through percolation theory, which is based on the probability model. Percolation displays what are referred to as crucial phenomena.

Results

This typically indicates that the model contains a natural parameter at which the system's behaviour substantially alters. The PVA/PSSA (S2) membrane of 25% composition reveals the minimum percolation threshold of 0.20. Sample S1 (10%), S2 (25%), and S3 (45%) possess phase transitions of 0.525,0.225, and 0.0343, respectively. The robustness of the phase transitions and the sensitivity were examined using the percolation theory. Out of five samples, the three samples have more feasible coordinates for building wearable sensors, which are sample S1 (10%), S2 (25%), and S3 (45%).

Conclusion

The analysis of the pure PSSA polymer research is expected to be done in the upcoming months in order for a patent.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121259450231206105230
2023-12-19
2025-01-18
Loading full text...

Full text loading...

References

  1. Percolation effects in ion-exchange materials _ SpringerLink.200010.1023/A:1026670423208
    [Google Scholar]
  2. AlexanderH. Some applications of the percolation theory: Review of the century beginning.J. Mater. Sci. Eng. A201551240941410.17265/2161‑6213/2015.11‑12.004
    [Google Scholar]
  3. SahimiM. "Applications Of Percolation Theory"Springer201410.1201/9781482272444
    [Google Scholar]
  4. StauffeD. Introduction to percolation theory.Taylor & Francis201719210.1201/9781315274386
    [Google Scholar]
  5. SaberiA.A. Recent advances in percolation theory and its applications.Phys. Rep.201557813210.1016/j.physrep.2015.03.003
    [Google Scholar]
  6. PietrzakT. BotvinaA.S. BrzychczykJ. BuyukcizmeciN. Le FèvreA. ŁukasikJ. PawłowskiP. SfientiC. TrautmannW. WielochA. The percolation phase transition and statistical multifragmentation in finite systems.Phys. Lett. B202080913576310.1016/j.physletb.2020.135763
    [Google Scholar]
  7. TongwenX. WeihuaY. BinglinH. Ionic conductivity threshold in sulfonated poly (phenylene oxide) matrices : A combination of three-phase model and percolation theory20015653435350
    [Google Scholar]
  8. Ion transport and clustering in nafion perfluorinated membranes.J. Membr. Sci1983133307326
    [Google Scholar]
  9. NarfbskaA. WodzskiR. Percolation transition and conductivity in macroscopically anisotropic two-component polymer membranes19863115371547
    [Google Scholar]
  10. KalimM. K. M. ChidambaramD. K. Polyvinyl alcohol (PVA)/ polystyrene sulfonic acid (PSSA)/ carbon black nanocomposite for flexible energy storage device applicationsJ. Mater. Sci. Mater. Electron.20172860996111 10.1007/s10854‑016‑6287‑2
    [Google Scholar]
  11. ZhangH. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes.Adv Mater.201325263543354810.1002/adma.201205097
    [Google Scholar]
  12. KamravaS. TahmasebiP. SahimiM. ArbabiS. Phase transitions, percolation, fracture of materials, and deep learning.Phys. Rev. E2020102101100110.1103/PhysRevE.102.01100132794896
    [Google Scholar]
  13. TamashiroM.N. BarbettaC. GermanoR. HenriquesV.B. Phase transitions and spatially ordered counterion association in ionic-lipid membranes: A statistical model.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.201184303190910.1103/PhysRevE.84.03190922060405
    [Google Scholar]
  14. XieJ. MengF. SunJ. MaX. YanG. HuY. Detecting and modelling real percolation and phase transitions of information on social media.Nat. Hum. Behav.2021591161116810.1038/s41562‑021‑01090‑z33795858
    [Google Scholar]
  15. FischeJ. The Boltzmann Constant for the Definition and Realization of the Kelvin.Wiley Online Library201910.1002/andp.201800304
    [Google Scholar]
  16. FischerG.S.J. FellmuthB. GaiserC. ZandtT. PitreL. SparasciF. PlimmerM.D. PodestaM de UnderwoodR. The Boltzmann project.IOP Publishing201810.1088/1681‑7575/aaa790
    [Google Scholar]
  17. JaladurgamN.R. LozinkoA. GuoS. LeeT.L. Hörnqvist CollianderM. Temperature dependent load partitioning and slip mode transition in a eutectic AlCoCrFeNi 2.1 high entropy alloy.Materialia202117February10111810.1016/j.mtla.2021.101118
    [Google Scholar]
  18. BalbergI. Unified Model for Pseudononuniversal Behavior of the Electrical Conductivity in Percolation Systems.Phys Rev Lett. 2017119808060110.1103/PhysRevLett.119.080601
    [Google Scholar]
  19. AzariB.L.H. WicaksonoT. DamayantiJ.F. AzariD.F.H. The study of the electrical conductivity and activation energy on conductive polymer materials.Computational And Experimental Research In Materials And Renewable Energy202142717910.19184/cerimre.v4i2.28371
    [Google Scholar]
  20. TothG. NagyD. BataA. BelinaK. Determination of polymer melts flow-activation energy a function of wide range shear rate.J. Phys. Conf. Ser.2018104501204010.1088/1742‑6596/1045/1/012040
    [Google Scholar]
  21. and G. W. Yan Lou LeiQunan Research on polymer viscous flow activation energy and non-newtonian index model based on feature size.Adv. Polym. Technol20192019
    [Google Scholar]
  22. RettenwanderD. Structural and electrochemical consequences of Al and Ga co-substitution in Li1La3Zr2O12 solid electrolytes structural and electrochemical consequences of Al and Ga co- substitution in Li 7 La 3 Zr 2 O 12 solid electrolytes.Chem. Mater.20162810.1021/acs.chemmater.6b0057927110064
    [Google Scholar]
  23. LeC.T.M. HouriA. BalageN. SmithB.J. MechlerA. MechlerA. Interaction of small ionic species with phospholipid membranes: The role of metal coordination.Front. Mater.20195January8010.3389/fmats.2018.00080
    [Google Scholar]
  24. PfeifferH. Hydration Forces Between Lipid Bilayers : A Theoretical Overview and a Look on Methods Exploring Dehydration.201510.1007/978‑3‑319‑19060‑0_4
    [Google Scholar]
  25. DziedzicA. Percolation theory and its application in materials science and microelectronics (Part II – Experiments and numerical simulations)Inf. Midem -Ljubljana2014
    [Google Scholar]
  26. Andrzej DziedzicAndrew SnarskiiAndrew Snarskii Percolation Theory and Its Application in Materials Science and Microelectronics_ (Part I - Theoretical description).2001
    [Google Scholar]
  27. SahuA. SelvaraniG. BhatS. PitchumaniS. SridharP. ShuklaA. NarayananN. BanerjeeA. ChandrakumarN. Effect of varying poly(styrene sulfonic acid) content in poly(vinyl alcohol)–poly(styrene sulfonic acid) blend membrane and its ramification in hydrogen–oxygen polymer electrolyte fuel cells.J. Membr. Sci.20083191-229830510.1016/j.memsci.2008.04.004
    [Google Scholar]
  28. PanwarV. ChaK. ParkJ.O. ParkS. High actuation response of PVDF/PVP/PSSA based ionic polymer metal composites actuator.Sens. Actuators B Chem.2012161146047010.1016/j.snb.2011.10.062
    [Google Scholar]
  29. Sushant KumarA.S. SinghPramod K. AgarwalDaksh DhapolaPawan Singh SharmaTejas SavilovSerguei V ArkhipovaEkaterina A. SinghManoj K. Structure, Dielectric, and Electrochemical Studies on Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/IonicLiquid 1-Ethyl-3-Methylimidazolium Tricyanomethanide-Based Polymer Electrolytes.Wiley–VCH202210.1002/pssa.202100711
    [Google Scholar]
  30. SulongA.B. AkhtarM.N. Amir KadhumH.A. MohamadA.B. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites.MDPI201510.3390/molecules201219884
    [Google Scholar]
  31. S.M. TanakaT. Novel malonate-type copolymers containing vinyl alcohol blocks as biodegradable segments and their builder performance in detergent formulations _ SpringerLink.199410.1007/BF02074777
    [Google Scholar]
  32. StanC.S. PopaM. OlariuM. SeculaM.S. Synthesis and characterization of pssa-polyaniline composite with an enhanced processability in thin films.201546747610.1515/chem‑2015‑0057
    [Google Scholar]
  33. PandeyM. Fabrication of flexible ternary polymer blends comprising polypyrrole, polyvinylalcohol, and poly (4-styrenesulfonic acid): Study of structural, morphological, and dielectric properties202211410.1002/app.52450
    [Google Scholar]
  34. Poonam RaturiM.D.R. Synthesis of 3-D structured ionic membrane by using PVA_PSSA and banana peel as a dielectric medium site.202123462351
    [Google Scholar]
  35. SahuA.K. PVA-PSSA membrane with interpenetrating networks and its methanol crossover mitigating effect in dmfcs2008686695
    [Google Scholar]
  36. LiS. WangY. Percolation phase transition from ionic liquids to ionic liquid crystals.Sci. Rep.2019911316910.1038/s41598‑019‑49493‑331511577
    [Google Scholar]
  37. ConiglioA. NappiC.R. PeruggiF. RussoL. TeoricaF. NapoliU. Percolation and phase transitions in the Ising model.Commun. Math. Phys.197651331532310.1007/BF01617925
    [Google Scholar]
  38. StephenG.S.G. Phase Transition in an Ising Model near the Percolation Threshold.American Physical Society197710.1103/PhysRevLett.38.567
    [Google Scholar]
  39. C. P. and M. S. Bogdan-Catalin Serban, Cornel Cobianu, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Cristina Mihaela Nicolescu, Cosmin Cobianu, Mihai Brezeanu, “Electrical Percolation Threshold and Size Effects in PolyvinylpyrrolidSensors _ Free Full-Text _one-Oxidized Single-Wall Carbon Nanohorn Nanocomposite_ The Impact for Relative Humidity Resistive Sensors Design.”.Sensors202110.3390/s21041435
    [Google Scholar]
  40. RahamanM. AldalbahiA. GovindasamiP. KhanamN. BhandariS. FengP. AltalhiT. A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models.Polymers201791252710.3390/polym9100527
    [Google Scholar]
  41. Rui QiaoL.C.B. Simulation of interphase percolation and gradients in polymer nanocomposites.Elsevier200949149910.1016/j.compscitech.2008.11.022
    [Google Scholar]
  42. BerteiA. ThorelA.S. BesslerW.G. NicolellaC. Mathematical modeling of mass and charge transport and reaction in a solid oxide fuel cell with mixed ionic conduction.Chem. Eng. Sci.201268160661610.1016/j.ces.2011.10.025
    [Google Scholar]
  43. BerteiA. NicolellaC. A comparative study and an extended theory of percolation for random packings of rigid spheres.Powder Technol.20112131-310010810.1016/j.powtec.2011.07.011
    [Google Scholar]
  44. García-SalaberriN.U.T.P-P.T.P-P.A.G-S.A. Modeling and Characterization of the Ionic Conductivity of Proton-Exchange Membranes Based on Multiblock Copolymers of Sulfonated PSU_Ppsu Poly(Ether Sulfone)s.2021973
    [Google Scholar]
  45. Poonam RaturiS. S. PanwarVarij Characterization of banana peel ionic polymer membrane by using polynomial regression202110.1016/j.matpr.2021.01.719
    [Google Scholar]
  46. ZareY. RheeK.Y. Calculation of the electrical conductivity of polymer nanocomposites assuming the interphase layer surrounding carbon nanotubes.202010.3390/polym12020404
    [Google Scholar]
  47. KimJ. ParkC. ImS. LeeH. KimJ.H. Effect of molecular weight distribution of PSSA on electrical conductivity of PEDOT:PSS.RSC Advances2019974028403410.1039/C8RA09919G35518098
    [Google Scholar]
  48. GoldenK. M. AckleyS. F. LytleV. I. The percolation phase transition in sea ice199828210.1126/science.282.5397.2238
    [Google Scholar]
  49. TintulaK.K. PitchumaniS. SridharP. ShuklaA.K. PEDOT-PSSA as an alternative support for Pt electrodes in PEFCs.Bull. Mater. Sci.201033215716310.1007/s12034‑010‑0022‑z
    [Google Scholar]
  50. MarcosSá. Remy Sanchis. SridharP. Phase transition for percolation on a randomly stretched square lattice.Insti. of Mathematic. Stat.202310.1214/22‑AAP1887
    [Google Scholar]
/content/journals/eng/10.2174/0118722121259450231206105230
Loading
/content/journals/eng/10.2174/0118722121259450231206105230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test