Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Objective

Several circular RNAs are associated with important pathophysiological characteristics of gestational diabetes mellitus (GDM). This study intended to measure the expression of circ-PNPT1 in sera of GDM patients and to expound on its values on pregnancy outcomes.

Methods

Totally 104 GDM patients and 71 healthy controls were recruited. The expression pattern of serum circ-PNPT1 was measured by reverse transcription-quantitative polymerase chain reaction. The diagnostic efficacy of circ-PNPT1 and fasting blood glucose (FBG) on GDM was evaluated by receiver operating characteristic (ROC) analysis. Parameters of glycolipid metabolism were determined using automatic biochemical analyzers. The correlation between circ-PNPT1 and glycolipid metabolism parameters was analyzed using Pearson analysis. GDM patients were divided into a high expression group and a low expression group based on the median value of circ-PNPT1 expression. Curves of adverse neonatal outcomes were drawn by Log Rank analysis.

Results

GDM patients exhibited higher circ-PNPT1 expression than healthy controls. The area under the ROC curve of circ-PNPT1 diagnosing GDM was 0.9184 and the cut-off value was 1.435 (90.38% sensitivity, 85.92% specificity). Serum circ-PNPT1 expression was positively correlated with FBG, total cholesterol, and triglyceride in GDM patients. Neonates born to GDM patients with high circ-PNPT1 expression were prone to adverse outcomes.

Conclusion

Circ-PNPT1 was highly-expressed in the sera of GDM patients. Circ-PNPT1 affected glycolipid metabolism and its expression had certain reference values on adverse pregnancy outcomes.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/1871530323666221229120303
2024-06-10
2024-11-16
Loading full text...

Full text loading...

References

  1. ChoudhuryA.A. Devi RajeswariV. Gestational diabetes mellitus - A metabolic and reproductive disorder.Biomed. Pharmacother.202114311218310.1016/j.biopha.2021.11218334560536
    [Google Scholar]
  2. JuanJ. YangH. Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China.Int. J. Environ. Res. Public Health20201724951710.3390/ijerph1724951733353136
    [Google Scholar]
  3. JohnsE.C. DenisonF.C. NormanJ.E. ReynoldsR.M. Gestational diabetes mellitus: Mechanisms, treatment, and complications.Trends Endocrinol. Metab.2018291174375410.1016/j.tem.2018.09.00430297319
    [Google Scholar]
  4. SzmuilowiczE.D. JosefsonJ.L. MetzgerB.E. Gestational diabetes mellitus.Endocrinol. Metab. Clin. North Am.201948347949310.1016/j.ecl.2019.05.00131345518
    [Google Scholar]
  5. DiasS. PheifferC. AbrahamsY. RheederP. AdamS. Molecular biomarkers for gestational diabetes mellitus.Int. J. Mol. Sci.20181910292610.3390/ijms1910292630261627
    [Google Scholar]
  6. ChiefariE. ArcidiaconoB. FotiD. BrunettiA. Gestational diabetes mellitus: An updated overview.J. Endocrinol. Invest.201740989990910.1007/s40618‑016‑0607‑528283913
    [Google Scholar]
  7. SertU.Y. Ozgu-ErdincA.S. Gestational diabetes mellitus screening and diagnosis.Adv. Exp. Med. Biol.2020130723125510.1007/5584_2020_51232314318
    [Google Scholar]
  8. GarrisonA. Screening, diagnosis, and management of gestational diabetes mellitus.Am. Fam. Physician201591746046725884746
    [Google Scholar]
  9. MengX. ZhuB. LiuY. FangL. YinB. SunY. MaM. HuangY. ZhuY. ZhangY. Unique biomarker characteristics in gestational diabetes mellitus identified by lc-ms-based metabolic profiling.J. Diabetes Res.2021202111510.1155/2021/668941434212051
    [Google Scholar]
  10. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑731395983
    [Google Scholar]
  11. ChenL.L. The expanding regulatory mechanisms and cellular functions of circular RNAs.Nat. Rev. Mol. Cell Biol.202021847549010.1038/s41580‑020‑0243‑y32366901
    [Google Scholar]
  12. WangH. SheG. ZhouW. LiuK. MiaoJ. YuB. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus.Endocr. J.201966543144110.1507/endocrj.EJ18‑029130814439
    [Google Scholar]
  13. ZhangY. YeS. LiY. ChenJ. ZhangY. Research advances in the roles of circular rnas in pathophysiology and early diagnosis of gestational diabetes mellitus.Front. Cell Dev. Biol.2022973951110.3389/fcell.2021.73951135059395
    [Google Scholar]
  14. YuanY. LiY. HuL. WenJ. Exosomal RNA expression profiles and their prediction performance in patients with gestational diabetes mellitus and macrosomia.Front. Endocrinol.20221386497110.3389/fendo.2022.86497135547007
    [Google Scholar]
  15. WuH. ZhengX. LiuY. ShenJ. YeM. ZhangY. Hsa_circRNA_102682 is closely related to lipid metabolism in gestational diabetes mellitus.Gynecol. Endocrinol.2022381505410.1080/09513590.2021.199191134665686
    [Google Scholar]
  16. ZhangL. ZengM. TangF. ChenJ. CaoD. TangZ. Circ-PNPT1 contributes to gestational diabetes mellitus (GDM) by regulating the function of trophoblast cells through miR-889-3p/PAK1 axis.Diabetol. Metab. Syndr.20211315810.1186/s13098‑021‑00678‑934074335
    [Google Scholar]
  17. MetzgerB.E. GabbeS.G. PerssonB. BuchananT.A. CatalanoP.A. DammP. DyerA.R. LeivaA. HodM. KitzmilerJ.L. LoweL.P. McIntyreH.D. OatsJ.J. OmoriY. SchmidtM.I. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy.Diabetes Care201033367668210.2337/dc09‑184820190296
    [Google Scholar]
  18. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  19. MosterD. LieR.T. IrgensL.M. BjerkedalT. MarkestadT. The association of Apgar score with subsequent death and cerebral palsy: A population-based study in term infants.J. Pediatr.2001138679880310.1067/mpd.2001.11469411391319
    [Google Scholar]
  20. Kautzky-WillerA. HarreiterJ. Winhofer-StöcklY. Bancher-TodescaD. BergerA. RepaA. LechleitnerM. WeitgasserR. Gestationsdiabetes (GDM) (Update 2019).Wien. Klin. Wochenschr.2019131S19110210.1007/s00508‑018‑1419‑830980150
    [Google Scholar]
  21. XuF. YangS. LiuY. ZhengX. YangH. ZhangJ. RenZ. YangJ. Placental pathology and neonatal outcomes in pre-eclampsia with gestational diabetes mellitus.J. Matern. Fetal Neonatal Med.20213471149115410.1080/14767058.2020.178651332627623
    [Google Scholar]
  22. DucarmeG. Desroys Du RoureF. Le ThuautA. GrangeJ. DimetJ. Crepin-DelcourtI. Efficacy of maternal and biological parameters at the time of diagnosis of gestational diabetes mellitus in predicting neonatal morbidity.Eur. J. Obstet. Gynecol. Reprod. Biol.201822111311810.1016/j.ejogrb.2017.12.03629278829
    [Google Scholar]
  23. AlfadhliE.M. Gestational diabetes mellitus.Saudi Med. J.201536439940610.15537/smj.2015.4.1030725828275
    [Google Scholar]
  24. FilardiT. CatanzaroG. MardenteS. ZicariA. SantangeloC. LenziA. MoranoS. FerrettiE. Non-Coding RNA: Role in gestational diabetes pathophysiology and complications.Int. J. Mol. Sci.20202111402010.3390/ijms2111402032512799
    [Google Scholar]
  25. WuH. WuS. ZhuY. YeM. ShenJ. LiuY. ZhangY. BuS. Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index.Clin. Epigenetics20191112210.1186/s13148‑019‑0610‑830736847
    [Google Scholar]
  26. JiangB. ZhangJ. SunX. YangC. ChengG. XuM. LiS. WangL. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM.J. Transl. Med.2022201510.1186/s12967‑021‑03195‑534980149
    [Google Scholar]
  27. YangH. YeW. ChenR. ZengF. LongY. ZhangX. MaJ. GanQ. RehemutulaR. ZhuC. Circulating expression of Hsa_circRNA_102893 contributes to early gestational diabetes mellitus detection.Sci. Rep.20201011904610.1038/s41598‑020‑76013‑533149201
    [Google Scholar]
  28. JiangX.C. LiangZ.D. ChenD.L. JiaJ.P. HuJ.R. HuL. Correlation of homocysteine, AHSG, CRP with insulin resistance, 25-(OH)2-VitD, Blood lipids in gestational diabetes patients.Clin. Lab.20216702/202110.7754/Clin.Lab.2020.20060933616345
    [Google Scholar]
  29. LundA. EbbingC. RasmussenS. QvigstadE. KiserudT. KesslerJ. Pre-gestational diabetes: Maternal body mass index and gestational weight gain are associated with augmented umbilical venous flow, fetal liver perfusion, and thus birthweight.PLoS One2021168e025617110.1371/journal.pone.025617134398922
    [Google Scholar]
  30. ChenH.Y. ZhangH.P. YangJ. HuangZ.Q. XuH.X. JinJ. XuK. TongY. DongQ.Q. ZhengJ.Q. The relationship between maternal vitamin D deficiency and glycolipid metabolism and adverse pregnancy outcome.Clin. Endocrinol.202093671372010.1111/cen.1429832713029
    [Google Scholar]
  31. FalconeV. KotzaeridiG. BreilM.H. RosickyI. StoppT. Yerlikaya-SchattenG. FeichtingerM. EppelW. HussleinP. TuraA. GöblC.S. Early assessment of the risk for gestational diabetes mellitus: Can fasting parameters of glucose metabolism contribute to risk prediction?Diabetes Metab. J.201943678579310.4093/dmj.2018.021830877716
    [Google Scholar]
  32. BaoW. DarS. ZhuY. WuJ. RawalS. LiS. WeirN.L. TsaiM.Y. ZhangC. Plasma concentrations of lipids during pregnancy and the risk of gestational diabetes mellitus: A longitudinal study.J. Diabetes201810648749510.1111/1753‑0407.1256328436169
    [Google Scholar]
  33. OlmosP.R. BorzoneG.R. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity.J. Obstet. Gynaecol. Res.20174391397140410.1111/jog.1340328691362
    [Google Scholar]
  34. SheW. LiT. LiuY. LiuX. CircRNA circVEGFC is highly expressed in Gestational Diabetes Mellitus (GDM) and it is correlated with multiple adverse events.Diabetes Metab. Syndr. Obes.2021144409441410.2147/DMSO.S33472834754206
    [Google Scholar]
  35. LackovicM. MilicicB. MihajlovicS. FilimonovicD. JurisicA. FilipovicI. RovcaninM. ProdanovicM. NikolicD. Gestational diabetes and risk assessment of adverse perinatal outcomes and newborns early motoric development.Medicina (Kaunas)202157874110.3390/medicina5708074134440947
    [Google Scholar]
  36. RanY. YinN. HuangD. ZhaoY. YangJ. ZhangH. QiH. Identification and characterization of circular RNA as a novel regulator and biomarker in preterm birth.Front. Bioeng. Biotechnol.2020856698410.3389/fbioe.2020.56698433392159
    [Google Scholar]
  37. ZhouH. ChandaB. ChenY. WangX. YouM. ZhangY. ChengR. YangY. ChenX. Microarray and bioinformatics analysis of circular RNA differential expression in newborns with acute respiratory distress syndrome.Front Pediatr.2021972846210.3389/fped.2021.72846234796151
    [Google Scholar]
  38. SunW. WangP. WangS. Plasmatic circRNAs panel to predict the risk of macrosomia in women with gestational diabetes mellitus.Gynecol. Obstet. Invest.202287214114910.1159/00051367035605584
    [Google Scholar]
/content/journals/emiddt/10.2174/1871530323666221229120303
Loading
/content/journals/emiddt/10.2174/1871530323666221229120303
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): circ-PNPT1; Gestational diabetes mellitus; glycometabolism; lipometabolism; neonates; serum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test