Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer, and myocardial infarction (MI) is an acute cardiovascular disease resulting from the disruption of coronary blood supply. Recent studies have suggested that these two diseases may share common molecular mechanisms.

Aims

The aim of this study was to discover common diagnostic genes for LUAD and MI and analyze their molecular functions and potential drug values by applying bioinformatics analysis.

Objective

The objective was to provide a theoretical basis for further research on the pathological mechanisms of LUAD and MI, contributing to the development of novel diagnostic and therapeutic strategies for the two diseases.

Methods

In this study, the datasets of LUAD and MI were obtained from TCGA and GEO databases, and differential expression analysis was performed to screen significantly differentially expressed genes (DEGs). Subsequently, disease-related genes were identified using WGCNA analysis, and the biological functions of these genes were explored by functional enrichment analysis. After screening key genes using the protein-protein interaction (PPI) network and the cytoHubba algorithm, biomarkers were determined by LASSO and SVM-RFE machine-learning methods. Finally, immune infiltration analysis and drug prediction were performed, and biomarker expression was verified by single-cell sequencing analysis.

Results

A total of 158 differentially upregulated genes were identified between LUAD and MI. WGCNA analysis screened 86 genes that were significantly associated with both diseases and were enriched in an inflammatory response and immune regulation-related pathways, such as the IL-17 signaling pathway. Ten significant genes were identified by the PPI network and cytoHubba and then reduced to 4 using LASSO and SVM-RFE. Noticeably, MMP9 was significantly overexpressed in both diseases. Immune infiltration analysis showed that MMP9 was significantly related to multiple immune cell infiltration. Drug prediction and molecular docking analysis predicted Ilomastat and Osthole as the potential target drugs. Single-cell sequencing analysis revealed that MMP9 was high-expressed in the macrophages in LUAD tissues.

Conclusion

This study identified MMP9 as a common diagnostic gene and potential therapeutic target for both LUAD and MI and revealed its role in inflammation and immune regulation through comprehensive bioinformatics analysis. These findings provided a theoretical basis for further research on the pathological mechanisms of LUAD and MI, contributing to the development of novel diagnostic and therapeutic strategies.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303374928250130113050
2025-02-11
2026-02-14
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303374928.html?itemId=/content/journals/emiddt/10.2174/0118715303374928250130113050&mimeType=html&fmt=ahah

References

  1. HussainS. BokhariH. FanX. MalikS.I. IjazS. ShereenM.A. FatimaA. MicroRNAs modulation in lung cancer: Exploring dual mechanisms and clinical prospects.Biocell202448340341310.32604/biocell.2024.044801
    [Google Scholar]
  2. DingY. LvJ. HuaY. Comprehensive metabolomic analysis of lung cancer patients treated with fu zheng fang.Curr. Pharm. Anal.202218988189110.2174/1573412918666220822143119
    [Google Scholar]
  3. QianX.J. WangJ.W. LiuJ.B. YuX. The mediating role of miR-451/ETV4/MMP13 signaling axis on epithelialmesenchymal transition in promoting non-small cell lung cancer progression.Curr. Mol. Pharmacol.202317e21072321898810.2174/187446721766623072112355437489792
    [Google Scholar]
  4. QiuH. CaoS. XuR. Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020.Cancer Commun. (Lond.)202141101037104810.1002/cac2.1219734288593
    [Google Scholar]
  5. LantuejoulS. Mescam-ManciniL. BurroniB. McLeer-FlorinA. News on molecular pathology in non-small cell lung cancer.Oncologie201214953053710.1007/s10269‑012‑2206‑1
    [Google Scholar]
  6. WangJ. CaiY. ShengZ. DongZ. EGFR inhibitor CL-387785 suppresses the progression of lung adenocarcinoma.Curr. Mol. Pharmacol.202316221121610.2174/187446721566622032921230035352671
    [Google Scholar]
  7. DenisenkoT.V. BudkevichI.N. ZhivotovskyB. Cell death-based treatment of lung adenocarcinoma.Cell Death Dis.20189211710.1038/s41419‑017‑0063‑y29371589
    [Google Scholar]
  8. ZhangL. MengQ. ZhuangL. GongQ. HuangX. LiX. LiS. WangG. WangX. miR-30a-5p/PHTF2 axis regulates the tumorigenesis and metastasis of lung adenocarcinoma.Biocell202448458159010.32604/biocell.2024.047260
    [Google Scholar]
  9. GhoshS. Cisplatin: The first metal based anticancer drug.Bioorg. Chem.20198810292510.1016/j.bioorg.2019.10292531003078
    [Google Scholar]
  10. ZarrabiA. BishayeeA. MirzaeiS. GholamiM.H. ZabolianA. SalekiH. BagherianM. TorabiS.M. SharifzadehS.O. HushmandiK. FivesK.R. KhanH. AshrafizadehM. Resveratrol augments doxorubicin and cisplatin chemotherapy: A novel therapeutic strategy.Curr. Mol. Pharmacol.202316328030610.2174/187446721566622041513134435430977
    [Google Scholar]
  11. SaseK. FujisakaY. ShojiM. MukaiM. Cardiovascular complications associated with contemporary lung cancer treatments.Curr. Treat. Options Oncol.20212287110.1007/s11864‑021‑00869‑634110522
    [Google Scholar]
  12. DarbyS.C. EwertzM. McGaleP. BennetA.M. Blom-GoldmanU. BrønnumD. CorreaC. CutterD. GagliardiG. GiganteB. JensenM.B. NisbetA. PetoR. RahimiK. TaylorC. HallP. Risk of ischemic heart disease in women after radiotherapy for breast cancer.N. Engl. J. Med.20133681198799810.1056/NEJMoa120982523484825
    [Google Scholar]
  13. Lee ChuyK. NahhasO. DominicP. LopezC. TonorezosE. SidlowR. StrausD. GuptaD. Cardiovascular complications associated with mediastinal radiation.Curr. Treat. Options Cardiovasc. Med.20192173110.1007/s11936‑019‑0737‑031161453
    [Google Scholar]
  14. ZhangS. LiuX. Bawa-KhalfeT. LuL.S. LyuY.L. LiuL.F. YehE.T.H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity.Nat. Med.201218111639164210.1038/nm.291923104132
    [Google Scholar]
  15. CardinaleD. ColomboA. LamantiaG. ColomboN. CivelliM. De GiacomiG. RubinoM. VegliaF. FiorentiniC. CipollaC.M. Anthracycline-induced cardiomyopathy.J. Am. Coll. Cardiol.201055321322010.1016/j.jacc.2009.03.09520117401
    [Google Scholar]
  16. PsatyB.M. VasanR.S. The association of myocardial infarction with cancer incidence.Eur. J. Epidemiol.202338885185210.1007/s10654‑023‑01019‑y37268804
    [Google Scholar]
  17. van Herk-SukelM.P.P. ShantakumarS. Penning-van BeestF.J.A. KamphuisenP.W. MajoorC.J. OverbeekL.I.H. HeringsR.M.C. Pulmonary embolism, myocardial infarction, and ischemic stroke in lung cancer patients: Results from a longitudinal study.Lung2013191550150910.1007/s00408‑013‑9485‑123807721
    [Google Scholar]
  18. LoveM. AndersS. HuberW. Differential analysis of count data–the DESeq2 package.Genome Biol.201415550101186
    [Google Scholar]
  19. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  20. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  21. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  22. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  23. XuX. HuangY. HanX. Single-nucleus RNA sequencing reveals cardiac macrophage landscape in hypoplastic left heart syndrome.Congenit. Heart Dis.202419223324610.32604/chd.2024.050231
    [Google Scholar]
  24. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  25. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  26. SimonN. FriedmanJ. HastieT. TibshiraniR. Regularization paths for cox’s proportional hazards model via coordinate descent.J. Stat. Softw.201139511310.18637/jss.v039.i0527065756
    [Google Scholar]
  27. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with cibersort.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  28. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  29. StuartT. ButlerA. HoffmanP. HafemeisterC. PapalexiE. MauckW.M.3rd HaoY. StoeckiusM. SmibertP. SatijaR. Comprehensive integration of single-cell data.Cell.201917771888190210.1016/j.cell.2019.05.03131178118
    [Google Scholar]
  30. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-cell RNA sequencing reveals potential for endothelial- to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  31. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  32. HanX. LiuX. WangX. GuoW. WenY. MengW. PengD. LvP. ZhangX. ShenH. TNF-α-dependent lung inflammation upregulates superoxide dismutase-2 to promote tumor cell proliferation in lung adenocarcinoma.Mol. Carcinog.20205991088109910.1002/mc.2323932673443
    [Google Scholar]
  33. CaoL. WangX. LiuX. MengW. GuoW. DuanC. LiangX. KangL. LvP. LinQ. ZhangR. ZhangX. ShenH. Tumor necrosis factor α–dependent lung inflammation promotes the progression of lung adenocarcinoma originating from alveolar type II cells by upregulating MIF-CD74.Lab. Invest.2023103310003410.1016/j.labinv.2022.10003436925198
    [Google Scholar]
  34. PrabhuS.D. FrangogiannisN.G. The biological basis for cardiac repair after myocardial infarction.Circ. Res.201611919111210.1161/CIRCRESAHA.116.30357727340270
    [Google Scholar]
  35. ZhengW. ZhouT. ZhangY. DingJ. XieJ. WangS. WangZ. WangK. ShenL. ZhuY. GaoC. Simplified α2-macroglobulin as a TNF-α inhibitor for inflammation alleviation in osteoarthritis and myocardial infarction therapy.Biomaterials202330112224710.1016/j.biomaterials.2023.12224737487780
    [Google Scholar]
  36. LiQ. LiuY. XiaX. SunH. GaoJ. RenQ. ZhouT. MaC. XiaJ. YinC. Activation of macrophage TBK1-HIF-1α-mediated IL-17/IL-10 signaling by hyperglycemia aggravates the complexity of coronary atherosclerosis: An in vivo and in vitro study.FASEB J.2021355e2160910.1096/fj.202100086RR33908659
    [Google Scholar]
  37. GolforoushP. YellonD.M. DavidsonS.M. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction.Basic Res. Cardiol.202011567310.1007/s00395‑020‑00829‑533258000
    [Google Scholar]
  38. TianW. LiY. ZhangJ. LiJ. GaoJ. Comprehensive analysis of DNA methylation and gene expression datasets identified MMP9 and TWIST1 as important pathogenic genes of lung adenocarcinoma.DNA Cell Biol.201837433634610.1089/dna.2017.408529443542
    [Google Scholar]
  39. GuJ.J. HojJ. RouseC. PendergastA.M. Mesenchymal stem cells promote metastasis through activation of an ABL-MMP9 signaling axis in lung cancer cells.PLoS One20201510e024142310.1371/journal.pone.024142333119681
    [Google Scholar]
  40. AydinS. UgurK. AydinS. Sahinİ. YardimM. Biomarkers in acute myocardial infarction: Current perspectives.Vasc. Heal. Risk Manag.20191511010.2147/VHRM.S16615730697054
    [Google Scholar]
  41. GuoC. JiW. YangW. DengQ. ZhengT. WangZ. SuiW. ZhaiC. YuF. XiB. YuX. XuF. ZhangQ. ZhangW. KongJ. ZhangM. ZhangC. NKRF in cardiac fibroblasts protects against cardiac remodeling post-myocardial infarction via human antigen R.Adv. Sci. (Weinh.)20231030230328310.1002/advs.20230328337667861
    [Google Scholar]
  42. AugoffK. Hryniewicz-JankowskaA. TabolaR. StachK. MMP9: A tough target for targeted therapy for cancer.Cancers 2022147184710.3390/cancers1407184735406619
    [Google Scholar]
  43. LeeH.S. KimW.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases.Int. J. Mol. Sci.202223181054610.3390/ijms23181054636142454
    [Google Scholar]
  44. HuT. ChengB. MatsunagaA. ZhangT. LuX. FangH. MoriS.F. FangX. WangG. XuH. ShiH. CowellJ.K. Single-cell analysis defines highly specific leukemia-induced neutrophils and links MMP8 expression to recruitment of tumor associated neutrophils during FGFR1 driven leukemogenesis.Exp. Hematol. Oncol.20241314910.1186/s40164‑024‑00514‑638730491
    [Google Scholar]
  45. YinS. LiuH. WangJ. FengS. ChenY. ShangY. SuX. SiF. Osthole induces apoptosis and inhibits proliferation, invasion, and migration of human cervical carcinoma hela cells.Evid. Based Complement. Alternat. Med.202120211710.1155/2021/888509334539807
    [Google Scholar]
  46. MarshallD.C. LymanS.K. McCauleyS. KovalenkoM. SpanglerR. LiuC. LeeM. O’SullivanC. Barry-HamiltonV. GhermazienH. Mikels-VigdalA. GarciaC.A. JorgensenB. VelayoA.C. WangR. AdamkewiczJ.I. SmithV. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer.PLoS One2015105e012706310.1371/journal.pone.012706325961845
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303374928250130113050
Loading
/content/journals/emiddt/10.2174/0118715303374928250130113050
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): drug; Lung adenocarcinoma; MMP9; molecular docking; myocardial infarction; PPI network
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test