Skip to content
2000
image of Integrative Analysis of Metabolomic and Transcriptomic Data Reveals Metabolic Signatures and Major Metabolic Pathways in Primary Aldosteronism

Abstract

Objective

Primary aldosteronism (PA) is the most common secondary hypertension. In this study, we performed the pathway enrichment analysis based on metabolomics and transcriptomic data to find the metabolic perturbations in PA, which could provide new targets for PA and further understand the biology of PA.

Methods

24 PA patients and 24 healthy adults served as the control group in this study. Six participants were chosen from each group to have their peripheral blood and serum samples analyzed for omics investigations. Another eighteen participants' peripheral blood samples were selected for further validation of the RNA-sequencing results.

Results

Transcriptomic analyses found 518 differentially expressed genes (DEGs), and 339 remarkably differential metabolites (DMs) were identified by untargeted metabolomics. The pathway enrichment analysis was performed by combining with the omics analysis data. We also focused on analyzing metabolic pathways that repeatedly occur and constructed possible gene-metabolic networks. A total of 5 genes and 11 metabolites showed significant changes in altered 3 lipid metabolic pathways. Furthermore, the expressions of these genes were verified by qRT-PCR.

Conclusion

The combination of metabolomic and transcriptomic data can give a comprehensive picture of unique illness markers and preliminary knowledge of the molecular abnormalities underpinning PA. These findings may point to viable targets for creating treatments.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303361250250119035029
2025-02-11
2025-07-03
The full text of this item is not currently available.

References

  1. Watson A. Syme H. Brown M. Somatic GNAQ, CTNNB1, and CACNA1C mutations in cat aldosterone-secreting tumors. Hypertension 2024 81 12 2489 2500 10.1161/HYPERTENSIONAHA.124.23501 39429164
    [Google Scholar]
  2. Ananda R. A. Gwini S. Beilin L. J. Relationship between renin, aldosterone, aldosterone-to-renin ratio and left ventricular mass index in young adults. J. Hypert. 2024 42 Suppl 3 e46
    [Google Scholar]
  3. Vékony B. Nyirő G. Herold Z. Fekete J. Ceccato F. Gruber S. Kürzinger L. Caprino P.M. Bioletto F. Szücs N. Doros A. Szeredás B.K. Syed Mohammed Nazri S.K. Fell V. Bassiony M. Dank M. Azizan E.A. Bancos I. Beuschlein F. Igaz P. Circulating mirnas and machine learning for lateralizing primary aldosteronism. Hypertension 2024 81 12 2479 2488 10.1161/HYPERTENSIONAHA.124.23418 39417220
    [Google Scholar]
  4. Torresan F. Rossi F.B. Caputo I. Zanin S. Caroccia B. Mattarei A. Paccagnella M. Kohlscheen E. Seccia T.M. Iacobone M. Rossi G.P. Water and electrolyte content in hypertension in the skin (whyski) in primary aldosteronism. Hypertension 2024 81 12 2468 2478 10.1161/HYPERTENSIONAHA.124.23700 39355924
    [Google Scholar]
  5. Wang W.T. Wu T.H. Er L.K. Huang C.W. Tu K.H. Fan K.C. Tsai C.H. Wang S.Y. Wu C.Y. Huang S.H. Liu H.W. Tseng F.Y. Wu W.C. Chang C.C. Cheng H.M. Lin L.Y. Chueh J.S. Lin Y.H. Hwu C.M. Wu V.C. Recent progress in unraveling cardiovascular complications associated with primary aldosteronism: A succinct review. Hypertens. Res. 2024 47 5 1103 1119 10.1038/s41440‑023‑01538‑x 38228750
    [Google Scholar]
  6. Hirsch A. Adolf C. Stüfchen I. NT-proBNP levels in patients with primary hyperaldosteronism and autonomous cortisol cosecretion. Eur. J. Endocrinol. 2024 191 4 444 456 10.1093/ejendo/lvae119 39343731
    [Google Scholar]
  7. Castro A.M. Sánchez R.J.G. Ramírez P.P. Martín Rojas-Marcos P. Saborido A.A. Cerezo G.J.F. Lazareno L.N. Quesada T.M.E. Ramos G.J. Oriola J. Poch E. Oliveras A. Monter M.J.V. Muriel G.I. Cueto B.M.R. Cidoncha M.E. Runkle I. Hanzu F.A. Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism. Endocrine 2024 85 1 99 121 10.1007/s12020‑024‑03751‑1 38448679
    [Google Scholar]
  8. Brown J.M. Siddiqui M. Calhoun D.A. The unrecognized prevalence of primary aldosteronism: A cross-sectional study. Ann. Intern. Med. 2020 173 1 10 20 10.7326/M20‑0065 32449886
    [Google Scholar]
  9. Zhao L. Dong Y. Wei Y. Li J. Zhang S. Exploring the pathogenesis linking primary aldosteronism and obstructive sleep apnea via bioinformatic analysis. Medicine 2024 103 36 e39468 10.1097/MD.0000000000039468 39252231
    [Google Scholar]
  10. Caroccia B. Lenzini L. Ceolotto G. Gioco F. Benetti A. Giannella A. Ajjour H. Galuppini F. Pennelli G. Seccia T.M. Sanchez G.C. Rossi G.P. Double CYP11B1/CYP11B2 immunohistochemistry and detection of kcnj5 mutations in primary aldosteronism. J. Clin. Endocrinol. Metab. 2024 109 10 2433 2443 10.1210/clinem/dgae411 38888173
    [Google Scholar]
  11. Chen Y. Lu T. Kymmer P.U. Stewart I.D. Laporte B.G. Nakanishi T. Cerani A. Liang K.Y.H. Yoshiji S. Willett J.D.S. Su C.Y. Raina P. Greenwood C.M.T. Farjoun Y. Forgetta V. Langenberg C. Zhou S. Ohlsson C. Richards J.B. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  12. Di’Narzo A.F. Houten S.M. Kosoy R. Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets. Gastroenterology 1623 162 3 828 843
    [Google Scholar]
  13. Chen D.Q. Cao G. Chen H. Liu D. Su W. Yu X.Y. Vaziri N.D. Liu X.H. Bai X. Zhang L. Zhao Y.Y. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol. 2017 12 505 521 10.1016/j.redox.2017.03.017 28343144
    [Google Scholar]
  14. Preter D.V. Metabonomics and systems biology. Methods Mol. Biol. 2015 1277 245 255 10.1007/978‑1‑4939‑2377‑9_17 25677158
    [Google Scholar]
  15. Zhao L. Hartung T. Metabonomics and Toxicology. Methods Mol. Biol. 2015 1277 209 231 10.1007/978‑1‑4939‑2377‑9_15 25677156
    [Google Scholar]
  16. Khanna R.K. Catanese S. Mortemousque G. Dupuy C. Lefevre A. Emond P. Beltran S. Gissot V. Pisella P.J. Blasco H. Corcia P. Metabolomics of basal tears in amyotrophic lateral sclerosis: A cross-sectional study. Ocul. Surf. 2024 34 363 369 10.1016/j.jtos.2024.09.005 39349171
    [Google Scholar]
  17. Midelfart A. Metabonomics – a new approach in ophthalmology. Acta Ophthalmol. 2009 87 7 697 703 10.1111/j.1755‑3768.2009.01516.x 19604162
    [Google Scholar]
  18. Luo Y. Zhang C. Nong X. Gao Y. Wang L. Ji G. Wu T. Metabolomics in cirrhosis: Recent advances and opportunities. Clin. Chim. Acta 2024 557 117886 10.1016/j.cca.2024.117886 38556135
    [Google Scholar]
  19. Liu M. Ma W. He Y. Recent progress in mass spectrometry-based metabolomics in major depressive disorder research. Molecules. 2023 28 21 7430
    [Google Scholar]
  20. Huang G. Advances in metabolomics profiling of pediatric kidney diseases: A review. Biomolecules and Biomedicine 2024 24 5 1044 1054 10.17305/bb.2024.10098 38400839
    [Google Scholar]
  21. Ajoolabady A. Pratico D. Dunn W.B. Lip G.Y.H. Ren J. Metabolomics: Implication in cardiovascular research and diseases. Obes. Rev. 2024 25 12 e13825 10.1111/obr.13825 39370721
    [Google Scholar]
  22. Nakagawa Y. Komaba H. Standardization of PTH measurement by LC-MS/MS: A promising solution for interassay variability. Kidney Int. 2024 105 2 244 247 10.1016/j.kint.2023.11.020 38245214
    [Google Scholar]
  23. Zennaro M.C. Boulkroun S. Rosa F.F.L. Pathogenesis and treatment of primary aldosteronism. Nat. Rev. Endocrinol. 2020 16 10 578 589 10.1038/s41574‑020‑0382‑4 32724183
    [Google Scholar]
  24. Eisenhofer G. Dekkers T. Peitzsch M. Dietz A.S. Bidlingmaier M. Treitl M. Williams T.A. Bornstein S.R. Haase M. Rump L.C. Willenberg H.S. Beuschlein F. Deinum J. Lenders J.W.M. Reincke M. Mass spectrometry–based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin. Chem. 2016 62 3 514 524 10.1373/clinchem.2015.251199 26787761
    [Google Scholar]
  25. Williams T.A. Peitzsch M. Dietz A.S. Dekkers T. Bidlingmaier M. Riester A. Treitl M. Rhayem Y. Beuschlein F. Lenders J.W.M. Deinum J. Eisenhofer G. Reincke M. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 2016 67 1 139 145 10.1161/HYPERTENSIONAHA.115.06186 26573708
    [Google Scholar]
  26. Arlt W. Lang K. Sitch A.J. Dietz A.S. Rhayem Y. Bancos I. Feuchtinger A. Chortis V. Gilligan L.C. Ludwig P. Riester A. Asbach E. Hughes B.A. O’Neil D.M. Bidlingmaier M. Tomlinson J.W. Smith H.Z.K. Rees D.A. Adolf C. Hahner S. Quinkler M. Dekkers T. Deinum J. Biehl M. Keevil B.G. Shackleton C.H.L. Deeks J.J. Walch A.K. Beuschlein F. Reincke M. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2017 2 8 e93136 10.1172/jci.insight.93136 28422753
    [Google Scholar]
  27. Turcu A.F. Wannachalee T. Tsodikov A. Nanba A.T. Ren J. Shields J.J. O’Day P.J. Giacherio D. Rainey W.E. Auchus R.J. Comprehensive analysis of steroid biomarkers for guiding primary aldosteronism subtyping. Hypertension 2020 75 1 183 192 10.1161/HYPERTENSIONAHA.119.13866 31786984
    [Google Scholar]
  28. Peitzsch M. Dekkers T. Haase M. Sweep F.C.G.J. Quack I. Antoch G. Siegert G. Lenders J.W.M. Deinum J. Willenberg H.S. Eisenhofer G. An LC–MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J. Steroid Biochem. Mol. Biol. 2015 145 75 84 10.1016/j.jsbmb.2014.10.006 25312486
    [Google Scholar]
  29. Monticone S. Burrello J. Tizzani D. Bertello C. Viola A. Buffolo F. Gabetti L. Mengozzi G. Williams T.A. Rabbia F. Veglio F. Mulatero P. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 2017 69 14 1811 1820 10.1016/j.jacc.2017.01.052 28385310
    [Google Scholar]
  30. Choi M. Scholl U.I. Yue P. Björklund P. Zhao B. Williams N.C. Ji W. Cho Y. Patel A. Men C.J. Lolis E. Wisgerhof M.V. Geller D.S. Mane S. Hellman P. Westin G. Åkerström G. Wang W. Carling T. Lifton R.P. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011 331 6018 768 772 10.1126/science.1198785 21311022
    [Google Scholar]
  31. Zhou J. Shaikh L.H. Neogi S.G. McFarlane I. Zhao W. Figg N. Brighton C.A. Maniero C. Teo A.E.D. Azizan E.A.B. Brown M.J. DACH1, a zona glomerulosa selective gene in the human adrenal, activates transforming growth factor-β signaling and suppresses aldosterone secretion. Hypertension 2015 65 5 1103 1110 10.1161/HYP.0000000000000025 25776071
    [Google Scholar]
  32. Itcho K. Oki K. Sanchez G.C.E. Sanchez G.E.P. Ohno H. Kobuke K. Nagano G. Yoshii Y. Baba R. Hattori N. Yoneda M. Endoplasmic reticulum chaperone calmegin is upregulated in aldosterone-producing adenoma and associates with aldosterone production. Hypertension 2020 75 2 492 499 10.1161/HYPERTENSIONAHA.119.14062 31865789
    [Google Scholar]
  33. Hachem S. Yehya A. Masri E.J. Contemporary update on clinical and experimental prostate cancer biomarkers: A multi-omics-focused approach to detection and risk stratification. Biology 2024 13 10 762
    [Google Scholar]
  34. Tao Q. Fan L. P. Feng J. Platelet proteomics and tissue metabolomics investigation for the mechanism of aspirin eugenol ester on preventive thrombosis mechanism in a rat thrombosis model. Int. J. Mol. Sci. 2024 25 19 10747
    [Google Scholar]
  35. Su G.H. Xiao Y. You C. Zheng R.C. Zhao S. Sun S.Y. Zhou J.Y. Lin L.Y. Wang H. Shao Z.M. Gu Y.J. Jiang Y.Z. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. Sci. Adv. 2023 9 40 eadf0837 10.1126/sciadv.adf0837 37801493
    [Google Scholar]
  36. Johnson D. Chee C.E. Wong W. Lam R.C.T. Tan I.B.H. Ma B.B.Y. Current advances in targeted therapy for metastatic colorectal cancer – Clinical translation and future directions. Cancer Treat. Rev. 2024 125 102700 10.1016/j.ctrv.2024.102700 38422896
    [Google Scholar]
  37. Dicks K.V. Stout J.E. Molecular diagnostics for mycobacterium tuberculosis infection. Annu. Rev. Med. 2019 70 1 77 90 10.1146/annurev‑med‑040717‑051502 30125128
    [Google Scholar]
  38. Funder J.W. Carey R.M. Mantero F. Murad M.H. Reincke M. Shibata H. Stowasser M. Young W.F. Jr The management of primary aldosteronism: Case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2016 101 5 1889 1916 10.1210/jc.2015‑4061 26934393
    [Google Scholar]
  39. Zou W. She J. Tolstikov V. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer metabolic biomarker discovery using human plasma and urine. Metabolites 2013 3 3 787 819 10.3390/metabo3030787 24958150
    [Google Scholar]
  40. Villaseñor A. Ramamoorthy A. Silva dos Santos M. A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: Evidence for a response-related difference in mitochondrial networks. Br. J. Pharmacol. 2014 171 8 2230 2242 10.1111/bph.12494 24684390
    [Google Scholar]
  41. Lu J. Chen B. Chen T. Guo S. Xue X. Chen Q. Zhao M. Xia L. Zhu Z. Zheng L. Yin H. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biol. 2017 12 899 907 10.1016/j.redox.2017.04.032 28472752
    [Google Scholar]
  42. Shen X. Wang R. Xiong X. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 2019 10 1516 10.1038/s41467‑019‑09550‑x
    [Google Scholar]
  43. Verma A. Muthukumar T. Yang H. Lubetzky M. Cassidy M.F. Lee J.R. Dadhania D.M. Snopkowski C. Shankaranarayanan D. Salvatore S.P. Sharma V.K. Xiang J.Z. Vlaminck D.I. Seshan S.V. Mueller F.B. Suhre K. Elemento O. Suthanthiran M. Urinary cell transcriptomics and acute rejection in human kidney allografts. JCI Insight 2020 5 4 e131552 10.1172/jci.insight.131552 32102984
    [Google Scholar]
  44. Podnar J. Deiderick H. Huerta G. Smith H.S. Next-generation sequencing RNA-seq library construction. Curr. Protoc. Mol. Biol. 2014 106 4.21.1 4.21.19
    [Google Scholar]
  45. Hu F.X. Yang J. Yang C.H. Identification of lncRNA-mRNA regulatory network associated with isolated systolic hypertension and atherosclerotic cerebral infarction. Ann. Transl. Med. 2021 9 20 1589 10.21037/atm‑21‑5176 34790795
    [Google Scholar]
  46. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  47. Hickson L.J. Eirin A. Conley S.M. Taner T. Bian X. Saad A. Herrmann S.M. Mehta R.A. McKenzie T.J. Kellogg T.A. Kirkland J.L. Tchkonia T. Saadiq I.M. Tang H. Jordan K.L. Zhu X. Griffin M.D. Rule A.D. Wijnen v.A.J. Textor S.C. Lerman L.O. Diabetic kidney disease alters the transcriptome and function of human adipose-derived mesenchymal stromal cells but maintains immunomodulatory and paracrine activities important for renal repair. Diabetes 2021 70 7 1561 1574 10.2337/db19‑1268 33858824
    [Google Scholar]
  48. Khomtchouk B.B. Booven V.D.J. Wahlestedt C. HeatmapGenerator: High performance RNAseq and microarray visualization software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline. Source Code Biol. Med. 2014 9 1 30 10.1186/s13029‑014‑0030‑2 25550709
    [Google Scholar]
  49. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  50. Shen Z.J. Han Y.C. Nie M.W. Xiang R.L. Xie H.Z. Analyses of circRNA and mRNA profiles in the submandibular gland in hypertension. Genomics 2021 113 1 57 65 10.1016/j.ygeno.2020.11.016 33227410
    [Google Scholar]
  51. Xia J. Psychogios N. Young N. Wishart D. S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic. Acids. Res. 2009 37 Web Server issue W652 W660
    [Google Scholar]
  52. Rutledge S.A.C. Codreanu S.G. Sherrod S.D. McLean J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016 27 12 1897 1905 10.1007/s13361‑016‑1469‑y 27624161
    [Google Scholar]
  53. Sun K. Zhou C. Gong M. Zhang Y. Jiang Y. Song W. The prevalence of metabolic syndrome in primary aldosteronism and essential hypertension: A systematic review and meta‐analysis. J. Clin. Hypertens. 2024 26 8 879 889 10.1111/jch.14873 39037169
    [Google Scholar]
  54. Spaulding S. C. Choudhary V. Bollag W. B. Phospholipase D mediates very low-density lipoprotein-induced aldosterone production, in part, via lipin-1. J. Mol. Endocrinol. 2023 70 4 e220196
    [Google Scholar]
  55. Kawashima H. Intake of arachidonic acid-containing lipids in adult humans: Dietary surveys and clinical trials. Lipids Health Dis. 2019 18 1 101 10.1186/s12944‑019‑1039‑y 30992005
    [Google Scholar]
  56. Nascimento B.T. Ferreira N.S. Zanotto C.Z. Ramalho F. Pequeno I.O. Olivon V.C. Neves K.B. Lopes A.R. Campos E. Silva C.A.A. Fazan R. Carlos D. Mestriner F.L. Prado D. Pereira F.V. Braga T. Luiz J.P.M. Cau S.B. Elias P.C. Moreira A.C. Câmara N.O. Zamboni D.S. Filho A.J.C. Tostes R.C. NLRP3 inflammasome mediates aldosterone-induced vascular damage. Circulation 2016 134 23 1866 1880 10.1161/CIRCULATIONAHA.116.024369 27803035
    [Google Scholar]
  57. Moon S.J. Jang H.N. Kim J.H. Moon M.K. Lipid profiles in primary aldosteronism compared with essential hypertension: Propensity-score matching study. Endocrinol. Metab. (Seoul) 2021 36 4 885 894 10.3803/EnM.2021.1012 34372626
    [Google Scholar]
  58. Fallo F. Federspil G. Veglio F. Mulatero P. The metabolic syndrome in primary aldosteronism. Curr. Diab. Rep. 2008 8 1 42 47 10.1007/s11892‑008‑0009‑y 18366998
    [Google Scholar]
  59. Matrozova J. Steichen O. Amar L. Zacharieva S. Jeunemaitre X. Plouin P.F. Fasting plasma glucose and serum lipids in patients with primary aldosteronism: A controlled cross-sectional study. Hypertension 2009 53 4 605 610 10.1161/HYPERTENSIONAHA.108.122002 19221213
    [Google Scholar]
  60. Stehr C.B. Mellado R. Ocaranza M.P. Carvajal C.A. Mosso L. Becerra E. Solis M. García L. Lavandero S. Jalil J. Fardella C.E. Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. J. Hypertens. 2010 28 10 2120 2126 10.1097/HJH.0b013e32833d0177 20683341
    [Google Scholar]
  61. Carvajal C.A. Castillo T.A. Pérez J.A. Fardella C.E. Serum alpha-1-acid glycoprotein-1 and urinary extracellular vesicle mir-21-5p as potential biomarkers of primary aldosteronism. Front. Immunol. 2021 12 768734 10.3389/fimmu.2021.768734 34804057
    [Google Scholar]
  62. Ahokas R.A. Warrington K.J. Gerling I.C. Sun Y. Wodi L.A. Herring P.A. Lu L. Bhattacharya S.K. Postlethwaite A.E. Weber K.T. Aldosteronism and peripheral blood mononuclear cell activation: A neuroendocrine-immune interface. Circ. Res. 2003 93 10 e124 e135 10.1161/01.RES.0000102404.81461.25 14576195
    [Google Scholar]
  63. Kumar S.D. Lee J.K. Radhakrishnan N.K. Bang J.K. Kim B. Chaudhary S.C. Chelladurai A. Ganbaatar B. Kim E.Y. Lee C.W. Yang S. Kim Y. Shin S.Y. Antibacterial, antibiofilm, and anti-inflammatory effects of a novel thrombin-derived peptide in sepsis models: Insights into underlying mechanisms. J. Med. Chem. 2024 67 21 19791 19812 10.1021/acs.jmedchem.4c02157 39475485
    [Google Scholar]
  64. Zhou Y. Yu S. Zhang W. NOD-like receptor signaling pathway in gastrointestinal inflammatory diseases and cancers. Int. J. Mol. Sci. 2023 24 19 14511
    [Google Scholar]
  65. Shimizu T. RNA recognition in toll-like receptor signaling. Curr. Opin. Struct. Biol. 2024 88 102913 10.1016/j.sbi.2024.102913 39168045
    [Google Scholar]
  66. Bothou C. Beuschlein F. Spyroglou A. Links between aldosterone excess and metabolic complications: A comprehensive review. Diabetes Metab. 2020 46 1 1 7 10.1016/j.diabet.2019.02.003 30825519
    [Google Scholar]
  67. Vujačić N. Paunović I. Diklić A. Živaljević V. Slijepčević N. Kalezić N. Stojković M. Stojanović M. Beleslin B. Žarković M. Ćirić J. Biochemical and clinical characteristics of patients with primary aldosteronism: Single centre experience. J. Med. Biochem. 2020 39 2 240 248 33033458
    [Google Scholar]
  68. Hannemann A. Meisinger C. Bidlingmaier M. Association of plasma aldosterone with the metabolic syndrome in two German populations. Eur. J. Endocrinol. 2011 164 5 751 758 10.1530/EJE‑10‑1074 21357289
    [Google Scholar]
  69. Kidambi S. Kotchen J.M. Grim C.E. Raff H. Mao J. Singh R.J. Kotchen T.A. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 2007 49 3 704 711 10.1161/01.HYP.0000253258.36141.c7 17159085
    [Google Scholar]
  70. Bochud M. Nussberger J. Bovet P. Maillard M.R. Elston R.C. Paccaud F. Shamlaye C. Burnier M. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 2006 48 2 239 245 10.1161/01.HYP.0000231338.41548.fc 16785327
    [Google Scholar]
  71. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  72. Labory J. Fierville M. Ait-El-Mkadem S. Bannwarth S. Flucklinger P.V. Bottini S. Multi-omics approaches to improve mitochondrial disease diagnosis: Challenges, advances, and perspectives. Front. Mol. Biosci. 2020 7 590842 10.3389/fmolb.2020.590842 33240932
    [Google Scholar]
  73. Spaulding S.C. Bollag W.B. The role of lipid second messengers in aldosterone synthesis and secretion. J. Lipid Res. 2022 63 4 100191 10.1016/j.jlr.2022.100191 35278411
    [Google Scholar]
  74. Natarajan R. Stern N. Hsueh W. Do Y. Nadler J. Role of the lipoxygenase pathway in angiotensin II-mediated aldosterone biosynthesis in human adrenal glomerulosa cells. J. Clin. Endocrinol. Metab. 1988 67 3 584 591 10.1210/jcem‑67‑3‑584 2842363
    [Google Scholar]
  75. Gu J. Wen Y. Mison A. Nadler J.L. 12-lipoxygenase pathway increases aldosterone production, 3′,5′-cyclic adenosine monophosphate response element-binding protein phosphorylation, and p38 mitogen-activated protein kinase activation in H295R human adrenocortical cells. Endocrinology 2003 144 2 534 543 10.1210/en.2002‑220580 12538614
    [Google Scholar]
  76. Mele P.G. Duarte A. Paz C. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line. Endocrinology 1537 153 7 3284 3294
    [Google Scholar]
  77. Liu P. Zhang S. Gao J. Lin Y. Shi G. He W. Touyz R.M. Yan L. Huang H. Downregulated serum 14, 15-epoxyeicosatrienoic acid is associated with abdominal aortic calcification in patients with primary aldosteronism. Hypertension 2018 71 4 592 598 10.1161/HYPERTENSIONAHA.117.10644 29440332
    [Google Scholar]
  78. Goodfriend T.L. Ball D.L. Egan B.M. Campbell W.B. Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension 2004 43 2 358 363 10.1161/01.HYP.0000113294.06704.64 14718355
    [Google Scholar]
  79. Goodfriend T.L. Ball D.L. Gardner H.W. An oxidized derivative of linoleic acid affects aldosterone secretion by adrenal cells in vitro. Prostaglandins Leukot. Essent. Fatty Acids 2002 67 2-3 163 167 10.1054/plef.2002.0414 12324236
    [Google Scholar]
  80. Wang Y. Chen W. Li K. Tissue-based metabolomics reveals metabolic signatures and major metabolic pathways of gastric cancer with help of transcriptomic data from TCGA. Biosci. Rep. 2021 41 10 BSR20211476
    [Google Scholar]
  81. Dai Y. Li J. Wen H. In silico analysis of the gene expression patterns between aldosterone-producing adenoma and nonfunctional adrenocortical adenoma. Genet. Res. 2021 4 9553637
    [Google Scholar]
  82. Shen Z. Belcheva K.T. Jelcic M. Hui K.L. Katikaneni A. Niethammer P. A synergy between mechanosensitive calcium- and membrane-binding mediates tension-sensing by C2-like domains. Proc. Natl. Acad. Sci. USA 2022 119 1 e2112390119 10.1073/pnas.2112390119
    [Google Scholar]
  83. Roumeliotis S. Roumeliotis A. Stamou A. Panagoutsos S. Manolopoulos V.G. Tsetsos F. Georgitsi M. Liakopoulos V. Association of rs11780592 polymorphism in the human soluble epoxide hydrolase gene (ephx2) with oxidized ldl and mortality in patients with diabetic chronic kidney disease. Oxid. Med. Cell. Longev. 2021 2021 1 8817502 10.1155/2021/8817502 34040693
    [Google Scholar]
  84. Enayetallah A.E. Grant D.F. Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis. Biochem. Biophys. Res. Commun. 2006 341 1 254 260 10.1016/j.bbrc.2005.12.180 16414022
    [Google Scholar]
  85. Dreisbach A.W. Japa S. Sigel A. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am. J. Hypertens. 2005 18 10 1276 1281 10.1016/j.amjhyper.2005.04.019 16202848
    [Google Scholar]
  86. Zhu X. Li Y. Yu T. Li S. Chen M. A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene 2022 822 146340 10.1016/j.gene.2022.146340 35183688
    [Google Scholar]
  87. Zhan K. Bai Y. Liao S. Chen H. Kuang L. Luo Q. Lv L. Qiu L. Mei Z. Identification and validation of EPHX2 as a prognostic biomarker in hepatocellular carcinoma. Mol. Med. Rep. 2021 24 3 650 10.3892/mmr.2021.12289
    [Google Scholar]
  88. Corcos L. Lucas D. Le Jossic-Corcos C. Dréano Y. Simon B. Gautier P.E. Amet Y. Salaün J.P. Human cytochrome P450 4F3: Structure, functions, and prospects. dmdi 2012 27 2 63 71 10.1515/dmdi‑2011‑0037 22706230
    [Google Scholar]
  89. Yin J. Liu H. Liu Z. Owzar K. Han Y. Su L. Wei Y. Hung R.J. Brhane Y. McLaughlin J. Brennan P. Bickeboeller H. Rosenberger A. Houlston R.S. Caporaso N. Landi M.T. Heinrich J. Risch A. Christiani D.C. Amos C.I. Wei Q. Pathway‐analysis of published genome‐wide association studies of lung cancer: A potential role for the CYP4F3 locus. Mol. Carcinog. 2017 56 6 1663 1672 10.1002/mc.22622 28150878
    [Google Scholar]
  90. Liu F. Wei W.Q. Cormier R.T. Zhang S.T. Qiao Y.L. Li X.Q. Zhu S.T. Zhai Y.C. Peng X.X. Yan Y.X. Wu L.J. He D. He Y. Association of single nucleotide polymorphisms in the prostaglandin-endoperoxide synthase 2 (PTGS2) and phospholipase A₂ group IIA (PLA2G2A) genes with susceptibility to esophageal squamous cell carcinoma. Asian Pac. J. Cancer Prev. 2014 15 4 1797 1802 10.7314/APJCP.2014.15.4.1797 24641411
    [Google Scholar]
  91. Wise R. M. Ghadban A.S. Harrison M. A. A. Short-term autophagy preconditioning upregulates the expression of cox2 and pge2 and alters the immune phenotype of human adipose-derived stem cells in vitro. Cells. 2022 11 9 1376
    [Google Scholar]
  92. Ramsden D. Smith D. Arenas R. Frederick K. Cerny M.A. Identification and characterization of a selective human carbonyl reductase 1 substrate. Drug Metab. Dispos. 2018 46 10 1434 1440 10.1124/dmd.118.082487 30068520
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303361250250119035029
Loading
/content/journals/emiddt/10.2174/0118715303361250250119035029
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test