Skip to content
2000
image of Effects of ethanol extract from senna leaf (EESL) on inflammation and oxidative stress in mice: A non-targeted metabolomic study

Abstract

Background

Senna leaf is a commonly used medication for treating constipation, and long-term use can cause damage to the intestinal mucosa and lead to drug dependence. But the exact mechanism remains unclear.

Objective

Using non-targeted metabolomics technology to study the mechanism of senna leaf ethanol extract (EESL) inducing inflammation and oxidative stress in mice and causing side effects.

Methods

EESL was administered to mice by gavage to detect inflammation and oxidative stress-related factors in mice, and the EESL components and differential metabolites in mouse plasma were analyzed using non-targeted metabolome techniques.

Results

23 anthraquinone compounds were identified in the EESL, including sennoside and their derivatives. Administration of EESL to mice resulted in a significant increase in pro-inflammatory factors, IL-1β, and IL-6 in the plasma, while the levels of IgA significantly decreased. The levels of oxidative stress significantly increased, and the intestinal mucosal integrity was impaired. 21 endogenous in plasma metabolites were identified as differential metabolites related with taurine and taurine metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, tryptophan metabolism, and sphingolipid metabolism. These metabolic pathways are related to oxidative stress and inflammation.

Conclusion

Senna leaf can inhibit the expression of tight junction proteins in the intestinal mucosa and disrupt intestinal mucosal barrier integrity, exacerbating oxidative stress and inflammation induced by bacterial LPS entering the bloodstream. In addition, the impact of Senna leaf on tryptophan metabolism may be linked to the occurrence of drug dependence.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303325372241014152811
2024-10-24
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303325372241014152811/BMS-EMIDDT-2024-193.html?itemId=/content/journals/emiddt/10.2174/0118715303325372241014152811&mimeType=html&fmt=ahah

References

  1. Wu C. Zheng K. Meng T. Wang J. Effects of endovascular stent-assisted effects of various frequencies of abdominal naprapathy on changes in gastrointestinal mucosal cells in spleen-deficient rabbits. Med. Sci. Monit. 2020 26 e921039 10.12659/MSM.921039 32394977
    [Google Scholar]
  2. Rao S.S.C. Brenner D.M. Efficacy and safety of over-the-counter therapies for chronic constipation: An updated systematic review. Am. J. Gastroenterol. 2021 116 6 1156 1181 10.14309/ajg.0000000000001222 33767108
    [Google Scholar]
  3. Zhu J. Li X. Deng N. Peng X. Tan Z. Diarrhea with deficiency kidney-yang syndrome caused by adenine combined with Folium senna was associated with gut mucosal microbiota. Front. Microbiol. 2022 13 1007609 10.3389/fmicb.2022.1007609 36304943
    [Google Scholar]
  4. Kiliś-Pstrusińska K. Wiela-Hojeńska A. Nephrotoxicity of herbal products in Europe-A review of an underestimated problem. Int. J. Mol. Sci. 2021 22 8 4132 10.3390/ijms22084132 33923686
    [Google Scholar]
  5. Coskun Y. Yuksel I. Polyethylene glycol versus split high‐dose senna for bowel preparation: A comparative prospective randomized study. J. Gastroenterol. Hepatol. 2020 35 11 1923 1929 10.1111/jgh.15101 32424868
    [Google Scholar]
  6. Kiambi Mworia J. Mwiti Kibiti C. JN Ngeranwa J. Piero Ngugi M. Anti-inflammatory potential of dichloromethane leaf extracts of Eucalyptus globulus (Labill) and Senna didymobotrya (Fresenius) in mice. Afr. Health Sci. 2021 21 1 397 409 10.4314/ahs.v21i1.50 34394322
    [Google Scholar]
  7. Arana-Argáez V.E. Domínguez F. Moreno D.A. Isiordia-Espinoza M.A. Lara-Riegos J.C. Ceballos-Góngora E. Zapata-Morales J.R. Franco-de la Torre L. Sánchez-Enríquez S. Alonso-Castro A.J. Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis. Inflammopharmacology 2020 28 2 541 549 10.1007/s10787‑019‑00657‑7 31679123
    [Google Scholar]
  8. Nadeau S.E. Lawhern R.A. Management of chronic non-cancer pain: a framework. Pain Manag. (Lond.) 2022 12 6 751 777 10.2217/pmt‑2022‑0017 35642546
    [Google Scholar]
  9. Oladeji O.S. Adelowo F.E. Oluyori A.P. Bankole D.T. Ethnobotanical description and biological activities of Senna alata. Evid. Based Compl. Alternat. Med. 2020 2020 2580259 10.1155/2020/2580259
    [Google Scholar]
  10. Towanou R. Phytochemical screening, antioxidant activity, and acute toxicity evaluation of Senna italica extract used in traditional medicine. J. Toxicol. 2023 2023 6405415 10.1155/2023/6405415
    [Google Scholar]
  11. Castro D.T.H. Leite D.F. da Silva Baldivia D. dos Santos H.F. Balogun S.O. da Silva D.B. Carollo C.A. de Picoli Souza K. dos Santos E.L. Structural Characterization and Anticancer Activity of a New Anthraquinone from Senna velutina (Fabaceae). Pharmaceuticals (Basel) 2023 16 7 951 10.3390/ph16070951 37513863
    [Google Scholar]
  12. Roy S. Kundu S. Lyndem L.M. Senna leaf extracts induced Ca +2 homeostasis in a zoonotic tapeworm Hymenolepis diminuta. Pharm. Biol. 2016 54 10 2353 2357 10.3109/13880209.2016.1139600 26878612
    [Google Scholar]
  13. Li X. Peng X. Qiao B. Peng M. Deng N. Yu R. Tan Z. Gut-kidney impairment process of adenine ombined with folium sennae-induced diarrhea: association with interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and acetic acid, inflammation, and kidney function. Cells 2022 11 20 3261 10.3390/cells11203261 36291135
    [Google Scholar]
  14. Candelli M. Franza L. Pignataro G. Ojetti V. Covino M. Piccioni A. Gasbarrini A. Franceschi F. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int. J. Mol. Sci. 2021 22 12 6242 10.3390/ijms22126242 34200555
    [Google Scholar]
  15. Burini R.C. Anderson E. Durstine J.L. Carson J.A. Inflammation, physical activity, and chronic disease: An evolutionary perspective. Sports Med. Health Sci. 2020 2 1 1 6 10.1016/j.smhs.2020.03.004 35783338
    [Google Scholar]
  16. Guarize L. da Costa J.C. Dutra L.B. Mendes R.F. Lima I.V.A. Scio E. Anti-inflammatory, laxative and intestinal motility effects of Senna macranthera leaves. Nat. Prod. Res. 2012 26 4 331 343 10.1080/14786411003754264 21432718
    [Google Scholar]
  17. Salguero M. Al-Obaide M. Singh R. Siepmann T. Vasylyeva T. Dysbiosis of Gram‑negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type�2 diabetic patients with chronic kidney disease. Exp. Ther. Med. 2019 18 5 3461 3469 10.3892/etm.2019.7943 31602221
    [Google Scholar]
  18. Li J. Sun Y. Yang N. Zhang H. Hu Y. Wang H. Zhang R. Ge M. Protective effects of maternal administration of total saponins of Codonopsis pilosula in the mice offspring following diarrhea: role of immune function, antioxidant function, and intestinal inflammatory injury. Environ. Sci. Pollut. Res. Int. 2023 30 53 113903 113916 10.1007/s11356‑023‑30281‑6 37858017
    [Google Scholar]
  19. Zhao T. Wang Z. Liu Z. Xu Y. Pivotal role of the interaction between herbal medicines and gut microbiota on disease treatment. Curr. Drug Targets 2021 22 3 336 346 10.2174/1389450121666200324151530 32208116
    [Google Scholar]
  20. Paramita Pal P. Sajeli Begum A. Ameer Basha S. Araya H. Fujimoto Y. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies. Int. Immunopharmacol. 2023 117 109940 10.1016/j.intimp.2023.109940 37012863
    [Google Scholar]
  21. Wang J. Zhang C. Guo C. Li X. Chitosan ameliorates DSS-induced ulcerative colitis mice by enhancing intestinal barrier function and improving microflora. Int. J. Mol. Sci. 2019 20 22 5751 10.3390/ijms20225751 31731793
    [Google Scholar]
  22. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  23. Mohammad S. Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 2021 11 594150 10.3389/fimmu.2020.594150 33505393
    [Google Scholar]
  24. Gesualdo L. Di Leo V. Coppo R. The mucosal immune system and IgA nephropathy. Semin. Immunopathol. 2021 43 5 657 668 10.1007/s00281‑021‑00871‑y 34642783
    [Google Scholar]
  25. Bai Y. Huang F. Zhang R. Ma Q. Dong L. Su D. Chi J. Zhang M. Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis. Food Funct. 2020 11 3 2738 2748 10.1039/C9FO02780G 32175536
    [Google Scholar]
  26. Li Y. Jin L. Chen T. The effects of secretory IgA in the mucosal immune system. Biomed. Res. Int. 2020 2020 2032057 10.1155/2020/2032057
    [Google Scholar]
  27. Li S. Liang T. Zhang Y. Huang K. Yang S. Lv H. Chen Y. Zhang C. Guan X. Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties. Free Radic. Biol. Med. 2021 171 332 344 10.1016/j.freeradbiomed.2021.05.028 34029693
    [Google Scholar]
  28. Zhang Y. Li Y. Feng Q. Shao M. Yuan F. Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. Chemosphere 2020 248 126009 10.1016/j.chemosphere.2020.126009 32000039
    [Google Scholar]
  29. Di Meo S. Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell Longev. 2020 2020 9829176 10.1155/2020/9829176
    [Google Scholar]
  30. Ghonimi N.A.M. Elsharkawi K.A. Khyal D.S.M. Abdelghani A.A. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult. Scler. Relat. Disord. 2021 51 102941 10.1016/j.msard.2021.102941 33895606
    [Google Scholar]
  31. Alizadeh M. Kheirouri S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: a comprehensive meta-analysis of randomized controlled trials. Biomedicine (Taipei) 2019 9 4 23 10.1051/bmdcn/2019090423 31724938
    [Google Scholar]
  32. Cecerska-Heryć E. Surowska O. Heryć R. Serwin N. Napiontek-Balińska S. Dołęgowska B. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients – A review. Clin. Biochem. 2021 93 1 8 10.1016/j.clinbiochem.2021.03.008 33773993
    [Google Scholar]
  33. Zeng Z. He X. Li C. Lin S. Chen H. Liu L. Feng X. Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021 271 120753 10.1016/j.biomaterials.2021.120753 33725585
    [Google Scholar]
  34. Krzystek-Korpacka M. Kempiński R. Bromke M.A. Neubauer K. Oxidative stress markers in inflammatory bowel diseases: systematic review. Diagnostics (Basel) 2020 10 8 601 10.3390/diagnostics10080601 32824619
    [Google Scholar]
  35. Djuricic I. Calder P.C. Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients 2021 13 7 2421 10.3390/nu13072421 34371930
    [Google Scholar]
  36. Fanelli G. Belardo A. Savino R. Rinalducci S. Zolla L. Testosterone replacement therapy in insulin‐sensitive hypogonadal men restores phosphatidylcholine levels by regulation of arachidonic acid metabolism. J. Cell. Mol. Med. 2020 24 14 8266 8269 10.1111/jcmm.15392 32491269
    [Google Scholar]
  37. Siddiqui M.K. Smith G. St Jean P. Dawed A.Y. Bell S. Soto-Pedre E. Kennedy G. Carr F. Wallentin L. White H. Macphee C.H. Waterworth D. Palmer C.N.A. Diabetes status modifies the long-term effect of lipoprotein-associated phospholipase A2 on major coronary events. Diabetologia 2022 65 1 101 112 10.1007/s00125‑021‑05574‑5 34562103
    [Google Scholar]
  38. Moreira V. Leiguez E. Janovits P.M. Maia-Marques R. Fernandes C.M. Teixeira C. Inflammatory effects of bothrops phospholipases A(2): mechanisms involved in biosynthesis of lipid mediators and lipid accumulation. Toxins (Basel) 2021 13 12 868 10.3390/toxins13120868 34941706
    [Google Scholar]
  39. Spisni E. Petrocelli G. Imbesi V. Spigarelli R. Azzinnari D. Donati Sarti M. Campieri M. Valerii M.C. Antioxidant, anti-inflammatory, and microbial-modulating activities of essential oils: implications in colonic pathophysiology. Int. J. Mol. Sci. 2020 21 11 4152 10.3390/ijms21114152 32532055
    [Google Scholar]
  40. Sztolsztener K. Chabowski A. Harasim-Symbor E. Bielawiec P. Konstantynowicz-Nowicka K. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development. Biomolecules 2020 10 8 1133 10.3390/biom10081133 32751983
    [Google Scholar]
  41. Amaral E.P. Vinhaes C.L. Oliveira-de-Souza D. Nogueira B. Akrami K.M. Andrade B.B. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis. Antioxid. Redox Signal. 2021 34 6 471 485 10.1089/ars.2020.8124 32559410
    [Google Scholar]
  42. He J. Zhang P. Shen L. Niu L. Tan Y. Chen L. Zhao Y. Bai L. Hao X. Li X. Zhang S. Zhu L. Short-chain fatty acids and their association with signalling pathways in inflammation, Glucose and lipid metabolism. Int. J. Mol. Sci. 2020 21 17 6356 10.3390/ijms21176356 32887215
    [Google Scholar]
  43. Suzuki R. Mishima M. Nagane M. Mizugaki H. Suzuki T. Komuro M. Shimizu T. Fukuyama T. Takeda S. Ogata M. Miyamoto T. Aihara N. Kamiie J. Kamisuki S. Yokaryo H. Yamashita T. Satoh T. The novel sustained 3‐hydroxybutyrate donor poly‐D ‐3‐hydroxybutyric acid prevents inflammatory bowel disease through upregulation of regulatory T‐cells. FASEB J. 2023 37 1 e22708 10.1096/fj.202200919R 36562544
    [Google Scholar]
  44. Zhang M. Wang Y. Zhao X. Liu C. Wang B. Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr. Res. 2021 95 1 18 10.1016/j.nutres.2021.08.007 34757305
    [Google Scholar]
  45. Zhang L. Qi Y. ALuo Z. Liu S. Zhang Z. Zhou L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct. 2019 10 1 216 223 10.1039/C8FO02004C 30534761
    [Google Scholar]
  46. Wang C. Ma C. Gong L. Dai S. Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur. J. Pharmacol. 2021 912 174604 10.1016/j.ejphar.2021.174604 34743980
    [Google Scholar]
  47. Arumugam M.K. Paal M.C. Donohue T.M. Jr Ganesan M. Osna N.A. Kharbanda K.K. Beneficial effects of betaine: a comprehensive review. Biology (Basel) 2021 10 6 456 10.3390/biology10060456 34067313
    [Google Scholar]
  48. Meng D. Sommella E. Salviati E. Campiglia P. Ganguli K. Djebali K. Zhu W. Walker W.A. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr. Res. 2020 88 2 209 217 10.1038/s41390‑019‑0740‑x 31945773
    [Google Scholar]
  49. Wei G.Z. Martin K.A. Xing P.Y. Agrawal R. Whiley L. Wood T.K. Hejndorf S. Ng Y.Z. Low J.Z.Y. Rossant J. Nechanitzky R. Holmes E. Nicholson J.K. Tan E.K. Matthews P.M. Pettersson S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 2021 118 27 e2021091118 10.1073/pnas.2021091118 34210797
    [Google Scholar]
  50. Pernomian L. Duarte-Silva M. de Barros Cardoso C.R. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. Clin. Rev. Allergy Immunol. 2020 59 3 382 390 10.1007/s12016‑020‑08789‑3 32279195
    [Google Scholar]
  51. Puccetti M. Pariano M. Borghi M. Barola C. Moretti S. Galarini R. Mosci P. Ricci M. Costantini C. Giovagnoli S. Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome. Int. J. Pharm. 2021 602 120610 10.1016/j.ijpharm.2021.120610 33865951
    [Google Scholar]
  52. Bock K.W. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions. Biochem. Pharmacol. 2020 178 114093 10.1016/j.bcp.2020.114093 32535108
    [Google Scholar]
  53. Xu X. Sun S. Liang L. Lou C. He Q. Ran M. Zhang L. Zhang J. Yan C. Yuan H. Zhou L. Chen X. Dai X. Wang B. Zhang J. Zhao J. Role of the aryl hydrocarbon receptor and gut microbiota-derived metabolites indole-3-acetic acid in sulforaphane alleviates hepatic steatosis in mice. Front. Nutr. 2021 8 756565 10.3389/fnut.2021.756565 34722615
    [Google Scholar]
  54. Davidson M. Rashidi N. Hossain M.K. Raza A. Nurgali K. Apostolopoulos V. Tryptophan and substance abuse: mechanisms and impact. Int. J. Mol. Sci. 2023 24 3 2737 10.3390/ijms24032737 36769059
    [Google Scholar]
  55. Chen Z. Lin Y. Zhou Q. Xiao S. Li C. Lin R. Li J. Chen Y. Luo C. Mo Z. Ginsenoside Rg1 mitigates morphine dependence via regulation of gut microbiota, tryptophan metabolism, and serotonergic system function. Biomed. Pharmacother. 2022 150 112935 10.1016/j.biopha.2022.112935 35447543
    [Google Scholar]
  56. Huang T. Zhao L. Lin C.Y. Lu L. Ning Z.W. Hu D.D. Zhong L.L.D. Yang Z.J. Bian Z.X. Chinese herbal medicine (MaZiRenWan) improves bowel movement in functional constipation through down-regulating oleamide. Front. Pharmacol. 2020 10 1570 10.3389/fphar.2019.01570 32038247
    [Google Scholar]
  57. Kałużna-Czaplińska J. Gątarek P. Chirumbolo S. Chartrand M.S. Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019 59 1 72 88 10.1080/10408398.2017.1357534 28799778
    [Google Scholar]
  58. Gu Z. Pei W. Shen Y. Wang L. Zhu J. Zhang Y. Fan S. Wu Q. Li L. Zhang Z. Akkermansia muciniphila and its outer protein Amuc_1100 regulates tryptophan metabolism in colitis. Food Funct. 2021 12 20 10184 10195 10.1039/D1FO02172A 34532729
    [Google Scholar]
  59. Peredo-Lovillo A. Romero-Luna H.E. Jiménez-Fernández M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food res. int. 2020 136 109473 10.1016/j.foodres.2020.109473
    [Google Scholar]
  60. Gostner J.M. Geisler S. Stonig M. Mair L. Sperner-Unterweger B. Fuchs D. Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle. Neuropsychobiology 2020 79 1 89 99 10.1159/000496293 30808841
    [Google Scholar]
  61. Xue C. Li G. Zheng Q. Gu X. Shi Q. Su Y. Chu Q. Yuan X. Bao Z. Lu J. Li L. Tryptophan metabolism in health and disease. Cell Metab. 2023 35 8 1304 1326 10.1016/j.cmet.2023.06.004 37352864
    [Google Scholar]
  62. Correia A.S. Vale N. Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways. Int. J. Mol. Sci. 2022 23 15 8493 10.3390/ijms23158493 35955633
    [Google Scholar]
  63. Höglund E. Øverli Ø. Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front. Endocrinol. (Lausanne) 2019 10 158 10.3389/fendo.2019.00158 31024440
    [Google Scholar]
  64. Gallegos A. Isseroff R.R. Simultaneous determination of tryptophan, 5-hydroxytryptophan, tryptamine, serotonin, and 5-HIAA in small volumes of mouse serum using UHPLC-ED. MethodsX 2022 9 101624 10.1016/j.mex.2022.101624 35141137
    [Google Scholar]
  65. Zhang Z.W. Gao C.S. Zhang H. Yang J. Wang Y.P. Pan L.B. Yu H. He C.Y. Luo H.B. Zhao Z.X. Zhou X.B. Wang Y.L. Fu J. Han P. Dong Y.H. Wang G. Li S. Wang Y. Jiang J.D. Zhong W. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm. Sin. B 2022 12 8 3298 3312 10.1016/j.apsb.2022.02.032 35967282
    [Google Scholar]
  66. Fukuwatari T. Possibility of amino acid treatment to prevent the psychiatric disorders via modulation of the production of tryptophan metabolite kynurenic acid. Nutrients 2020 12 5 1403 10.3390/nu12051403 32414200
    [Google Scholar]
  67. Dehhaghi M. Kazemi Shariat Panahi H. Guillemin G.J. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 2019 12 10.1177/1178646919852996 31258331
    [Google Scholar]
  68. Chen L.M. Bao C.H. Wu Y. Liang S.H. Wang D. Wu L.Y. Huang Y. Liu H.R. Wu H.G. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease. J. Neuroinflammation 2021 18 1 135 10.1186/s12974‑021‑02175‑2 34127024
    [Google Scholar]
  69. Hughes T.D. Güner O.F. Iradukunda E.C. Phillips R.S. Bowen J.P. The kynurenine pathway and kynurenine 3-monooxygenase inhibitors. Molecules 2022 27 1 273 10.3390/molecules27010273 35011505
    [Google Scholar]
  70. Chen Y. Zhang J. Yang Y. Xiang K. Li H. Sun D. Chen L. Kynurenine‐3‐monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. J. Cell. Physiol. 2022 237 12 4339 4355 10.1002/jcp.30876 36088660
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303325372241014152811
Loading
/content/journals/emiddt/10.2174/0118715303325372241014152811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test