Skip to content
2000
image of Exploration of the Relationship between Polycystic Ovary Syndrome and Recurrent Pregnancy Loss Based on Bioinformatics

Abstract

Background

Recurrent Pregnancy Loss (RPL) and Polycystic Ovary Syndrome (PCOS) are both common diseases involving women of childbearing age, and their pathogenesis is still not sufficiently known.

Objective

This study aimed to explore the relationship between RPL and PCOS in bioinformatics.

Methods

Two expression chips, GSE86241 (obtained from 8 PCOS patients and 9 healthy controls) and GSE73025 (obtained from 5 RPL patients and 5 healthy controls), were downloaded from the Gene Expression Omnibus (GEO) database. We used the GEO database to analyze the gene expression profiles of PCOS and RPL to identify the intersection of abnormal miRNA expression, predicted the target genes of the intersecting miRNAs from miRDB, miRTarBase, and TargetScan databases, and then incorporated the miRNA-mRNA modulation network. By using the string database, the PPI network was built, which could screen the Hub genes and enrich them for analysis. Ultimately, the critical miRNA-mRNA regulatory network was set on the basis of the relationship between hub genes and miRNA.

Results

A total of 39 significantly altered miRNAs of PCOS and 137 significantly altered miRNAs of RPL were obtained, three miRNAs (miR-767-5p, miR-3196, and miR-187-3p), five signaling pathways (PI3K-Akt, p53, Toll-like receptor, C-type lectin receptor, and TNF signaling pathways), and six Hub genes (CASP8, PIK3R1, ADAMTS2, ADAMTS3, COL3A1, and MDM2) were found to be related to the development and progression of two diseases. More importantly, all Hub genes were regulated by miR-767-5p.

Conclusion

This research clarifies the possible relationship between miRNA and mRNA with PCOS and RPL for the first time. It provides a basis for illustrating the pathogenic mechanism and a target of therapies for these two diseases.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303308816240918062247
2024-10-03
2024-11-15
Loading full text...

Full text loading...

References

  1. Dimitriadis E. Menkhorst E. Saito S. Kutteh W.H. Brosens J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers 2020 6 1 98 10.1038/s41572‑020‑00228‑z 33303732
    [Google Scholar]
  2. Practice Committee of the American Society for Reproductive Medicine Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012 98 5 1103 1111 10.1016/j.fertnstert.2012.06.048 22835448
    [Google Scholar]
  3. Bender Atik R. Christiansen O.B. Elson J. Kolte A.M. Lewis S. Middeldorp S. Mcheik S. Peramo B. Quenby S. Nielsen H.S. van der Hoorn M.L. Vermeulen N. Goddijn M. ESHRE Guideline Group on RPL ESHRE guideline: recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2022 2023 1 hoad002 10.1093/hropen/hoad002 36873081
    [Google Scholar]
  4. Bender Atik R. Christiansen O.B. Elson J. Kolte A.M. Lewis S. Middeldorp S. Nelen W. Peramo B. Quenby S. Vermeulen N. Goddijn M. ESHRE Guideline Group on RPL ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018 2018 2 hoy004 10.1093/hropen/hoy004 31486805
    [Google Scholar]
  5. Vomstein K. Krog M.C. Wrønding T. Nielsen H.S. The microbiome in recurrent pregnancy loss – A scoping review. J. Reprod. Immunol. 2024 163 104251 10.1016/j.jri.2024.104251 38718429
    [Google Scholar]
  6. Wolf W.M. Wattick R.A. Kinkade O.N. Olfert M.D. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int. J. Environ. Res. Public Health 2018 15 11 2589 10.3390/ijerph15112589 30463276
    [Google Scholar]
  7. Escobar-Morreale H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018 14 5 270 284 10.1038/nrendo.2018.24 29569621
    [Google Scholar]
  8. Joham A.E. Norman R.J. Stener-Victorin E. Legro R.S. Franks S. Moran L.J. Boyle J. Teede H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022 10 9 668 680 10.1016/S2213‑8587(22)00163‑2 35934017
    [Google Scholar]
  9. Liu Y. Du M. Gan Y. Bao S. Feng L. Zhang J. Triglyceride induced metabolic inflammation: Potential connection of insulin resistance and recurrent pregnancy loss. Front. Endocrinol. 2021 12 621845 10.3389/fendo.2021.621845 33935964
    [Google Scholar]
  10. Kiconco S. Teede H.J. Azziz R. Norman R.J. Joham A.E. the need to reassess the diagnosis of polycystic ovary syndrome (PCOS): A review of diagnostic recommendations from the international evidence-based guideline for the assessment and management of PCOS. Semin. Reprod. Med. 2021 39 03/04 071 077 10.1055/s‑0041‑1735259 34404096
    [Google Scholar]
  11. La X. Wang W. Zhang M. Liang L. Definition and multiple factors of recurrent spontaneous abortion. Adv. Exp. Med. Biol. 2021 1300 231 257 10.1007/978‑981‑33‑4187‑6_11 33523437
    [Google Scholar]
  12. Hantoushzadeh S. Kohandel Gargari O. Shafiee A. Seighali N. Ghaemi M. Glucose metabolism tests and recurrent pregnancy loss: Evidence from a systematic review and meta-analysis. Diabetol. Metab. Syndr. 2023 15 1 3 10.1186/s13098‑022‑00973‑z 36604717
    [Google Scholar]
  13. Chen B. Xu P. Wang J. Zhang C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene 2019 706 91 96 10.1016/j.gene.2019.04.082 31054362
    [Google Scholar]
  14. Li Y. Xiang Y. Song Y. Zhang D. Tan L. MALAT1 downregulation is associated with polycystic ovary syndrome via binding with MDM2 and repressing P53 degradation. Mol. Cell. Endocrinol. 2022 543 111528 10.1016/j.mce.2021.111528 34883204
    [Google Scholar]
  15. Lu T.X. Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol. 2018 141 4 1202 1207 10.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  16. Ali A. Bouma G.J. Anthony R.V. Winger Q.A. The role of LIN28-let-7-ARID3B pathway in placental development. Int. J. Mol. Sci. 2020 21 10 3637 10.3390/ijms21103637 32455665
    [Google Scholar]
  17. Andrei D. Nagy R.A. van Montfoort A. Tietge U. Terpstra M. Kok K. van den Berg A. Hoek A. Kluiver J. Donker R. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. MicroRNA 2018 8 1 61 67 10.2174/2211536607666180912152618 30207252
    [Google Scholar]
  18. Dehghan Z. Mohammadi-Yeganeh S. Salehi M. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation. Biol. Reprod. 2020 103 3 548 559 10.1093/biolre/ioaa098 32507875
    [Google Scholar]
  19. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  20. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  21. Wang X. Wei K. Wang M. Zhang L. Identification of potential key ferroptosis- and autophagy-related genes in myelomeningocele through bioinformatics analysis. Heliyon 2024 10 8 e29654 10.1016/j.heliyon.2024.e29654 38660270
    [Google Scholar]
  22. Sun R. Liu J. Nie S. Li S. Yang J. Jiang Y. Cheng W. Construction of miRNA-mRNA regulatory network and prognostic signature in endometrial cancer. OncoTargets Ther. 2021 14 2363 2378 10.2147/OTT.S272222 33854334
    [Google Scholar]
  23. Khomtchouk B.B. Van Booven D.J. Wahlestedt C. HeatmapGenerator: High performance RNAseq and microarray visualization software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline. Source Code Biol. Med. 2014 9 1 30 10.1186/s13029‑014‑0030‑2 25550709
    [Google Scholar]
  24. Ito K. Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst. Pharmacol. 2013 2 10 1 16 10.1038/psp.2013.56 24132163
    [Google Scholar]
  25. Khatun M.S. Alam M.A. Shoombuatong W. Mollah M.N.H. Kurata H. Hasan M.M. Recent development of bioinformatics tools for microRNA target prediction. Curr. Med. Chem. 2022 29 5 865 880 10.2174/0929867328666210804090224 34348604
    [Google Scholar]
  26. Chen L. Heikkinen L. Wang C. Yang Y. Sun H. Wong G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform. 2019 20 5 1836 1852 10.1093/bib/bby054 29982332
    [Google Scholar]
  27. Buccitelli C. Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020 21 10 630 644 10.1038/s41576‑020‑0258‑4 32709985
    [Google Scholar]
  28. de Sousa Abreu R. Penalva L.O. Marcotte E.M. Vogel C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 2009 5 12 1512 1526 10.1039/b908315d 20023718
    [Google Scholar]
  29. Wang W. Song X. Ding S. Ma H. Identification of diagnosis and typological characteristics associated with ferroptosis for ulcerative colitis via bioinformatics and machine learning. Endocr. Metab. Immune Disord. Drug Targets 2024 24 8 946 957 10.2174/0118715303263609231101074056 37957905
    [Google Scholar]
  30. Xu W. Liang Y. Zhuang Y. Yuan Z. Identification of miRNA-mRNA regulatory networks associated with diabetic retinopathy using bioinformatics analysis. Endocr. Metab. Immune Disord. Drug Targets 2023 23 13 1628 1636 10.2174/1871530323666230419081351 37114785
    [Google Scholar]
  31. Gu Y Wang JM Zhang ZF Wang J Cao YL Pan CJ Yin LR Du J The association between polymorphisms of genes related to inflammation and recurrent pregnancy loss. Gynecol. Endocrinol. 2018 34 349 352 10.1080/09513590.2017.1395837
    [Google Scholar]
  32. Alecsandru D. Klimczak A.M. Garcia Velasco J.A. Pirtea P. Franasiak J.M. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil. Steril. 2021 115 3 561 566 10.1016/j.fertnstert.2021.01.017 33610320
    [Google Scholar]
  33. Theocharis A.D. Skandalis S.S. Gialeli C. Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016 97 4 27 10.1016/j.addr.2015.11.001 26562801
    [Google Scholar]
  34. Karamanos N.K. Theocharis A.D. Piperigkou Z. Manou D. Passi A. Skandalis S.S. Vynios D.H. Orian-Rousseau V. Ricard-Blum S. Schmelzer C.E.H. Duca L. Durbeej M. Afratis N.A. Troeberg L. Franchi M. Masola V. Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021 288 24 6850 6912 10.1111/febs.15776 33605520
    [Google Scholar]
  35. Mouw J.K. Ou G. Weaver V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014 15 12 771 785 10.1038/nrm3902 25370693
    [Google Scholar]
  36. Heisenberg C.P. Fässler R. Cell–cell adhesion and extracellular matrix: Diversity counts. Curr. Opin. Cell Biol. 2012 24 5 559 561 10.1016/j.ceb.2012.09.002 23046839
    [Google Scholar]
  37. Kuivaniemi H. Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019 707 151 171 10.1016/j.gene.2019.05.003 31075413
    [Google Scholar]
  38. Manou D. Caon I. Bouris P. Triantaphyllidou I.E. Giaroni C. Passi A. Karamanos N.K. Vigetti D. Theocharis A.D. The complex interplay between extracellular matrix and cells in tissues. Methods Mol. Biol. 2019 1952 1 20 10.1007/978‑1‑4939‑9133‑4_1 30825161
    [Google Scholar]
  39. Theocharis A.D. Manou D. Karamanos N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019 286 15 2830 2869 10.1111/febs.14818 30908868
    [Google Scholar]
  40. Jamaluddin M.F.B. Nahar P. Tanwar P.S. Proteomic characterization of the extracellular matrix of human uterine fibroids. Endocrinology 2018 159 7 2656 2669 10.1210/en.2018‑00151 29788081
    [Google Scholar]
  41. Chermuła B. Kranc W. Jopek K. Budna-Tukan J. Hutchings G. Dompe C. Moncrieff L. Janowicz K. Józkowiak M. Jeseta M. Petitte J. Mozdziak P. Pawelczyk L. Spaczyński R.Z. Kempisty B. Human cumulus cells in long-term in vitro culture reflect differential expression profile of genes responsible for planned cell death and aging—a study of new molecular markers. Cells 2020 9 5 1265 10.3390/cells9051265 32455542
    [Google Scholar]
  42. Mead TJ Apte SS ADAMTS proteins in human disorders. Matrix Biol. 2018 71-72 225 239 10.1016/j.matbio.2018.06.002
    [Google Scholar]
  43. Zhang Q Godfred KT Zhang Y Wei X Chen W Zhang Q Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2023 40 638 644 10.7507/1001‑5515.202301029
    [Google Scholar]
  44. Que Y. Wong C. Qiu J. Gao W. Lin Y. Zhou H. Gao B. Li P. Deng Z. Shi H. Hu W. Liu S. Peng Y. Su P. Xu C. Liang A. Qiu X. Huang D. Maslinic acid alleviates intervertebral disc degeneration by inhibiting the PI3K/AKT and NF-κB signaling pathways. Acta Biochim. Biophys. Sin. 2024 56 5 776 788 10.3724/abbs.2024027 38495003
    [Google Scholar]
  45. Russell DL Brown HM Dunning KR ADAMTS proteases in fertility. Matrix Biol. 2015 44 46 10.1016/j.matbio.2015.03.007
    [Google Scholar]
  46. Bekhouche M Colige A The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol. 2015 44-46 46 53 10.1016/j.matbio.2015.04.001
    [Google Scholar]
  47. Wang L. Deng Z. Yang J. Zhao Y. Zhou L. Diao L. Li L. Cheng Y. Epigenetic and transcriptomic characterization of maternal-fetal interface in patients with recurrent miscarriage via an integrated multi-omics approach. J. Reprod. Immunol. 2022 154 103754 10.1016/j.jri.2022.103754 36206604
    [Google Scholar]
  48. Schatz F. Guzeloglu-Kayisli O. Arlier S. Kayisli U.A. Lockwood C.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update 2016 22 4 497 515 10.1093/humupd/dmw004 26912000
    [Google Scholar]
  49. Lockwood C.J. Paidas M. Murk W.K. Kayisli U.A. Gopinath A. Huang S.J. Krikun G. Schatz F. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption. Thromb. Res. 2009 124 5 516 520 10.1016/j.thromres.2009.07.017 19720393
    [Google Scholar]
  50. Hummitzsch K. Hatzirodos N. Macpherson A.M. Schwartz J. Rodgers R.J. Irving-Rodgers H.F. Transcriptome analyses of ovarian stroma: Tunica albuginea, interstitium and theca interna. Reproduction 2019 157 6 545 565 10.1530/REP‑18‑0323 30925461
    [Google Scholar]
  51. Kinnear H.M. Tomaszewski C.E. Chang A.L. Moravek M.B. Xu M. Padmanabhan V. Shikanov A. The ovarian stroma as a new frontier. Reproduction 2020 160 3 R25 R39 10.1530/REP‑19‑0501 32716007
    [Google Scholar]
  52. Briley S.M. Jasti S. McCracken J.M. Hornick J.E. Fegley B. Pritchard M.T. Duncan F.E. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 2016 152 3 245 260 10.1530/REP‑16‑0129 27491879
    [Google Scholar]
  53. Morsi A.A. A Mersal E. Razik H Farrag A. M Abdelmoneim A. M Abdelmenem A. S Salim M. Histomorphological changes in a rat model of polycystic ovary syndrome and the contribution of stevia leaf extract in modulating the ovarian fibrosis, VEGF, and TGF-β immunoexpressions: Comparison with metformin. Acta Histochem. Cytochem. 2022 55 1 9 23 10.1267/ahc.21‑00081 35444350
    [Google Scholar]
  54. Zhou F. Shi L.B. Zhang S.Y. Ovarian fibrosis. Chin. Med. J. 2017 130 3 365 371 10.4103/0366‑6999.198931 28139522
    [Google Scholar]
  55. Ouyang X. You S. Zhang Y. Zhang C. Zhang G. Shao X. He F. Hu L. Transplantation of human amnion epithelial cells improves endometrial regeneration in rat model of intrauterine adhesions. Stem Cells Dev. 2020 29 20 1346 1362 10.1089/scd.2019.0246 32772798
    [Google Scholar]
  56. Samakova A. Gazova A. Sabova N. Valaskova S. Jurikova M. Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol. Res. 2019 68 Suppl. 2 S131 S138 10.33549/physiolres.934345 31842576
    [Google Scholar]
  57. Machado-Neto J.A. Fenerich B.A. Rodrigues Alves A.P.N. Fernandes J.C. Scopim-Ribeiro R. Coelho-Silva J.L. Traina F. Insulin substrate receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (São Paulo) 2018 73 Suppl. 1 e566s 10.6061/clinics/2018/e566s 30328953
    [Google Scholar]
  58. Mu J. Yu P. Li Q. microRNA-103 contributes to progression of polycystic ovary syndrome through modulating the IRS1/PI3K/AKT signal axis. Arch. Med. Res. 2021 52 5 494 504 10.1016/j.arcmed.2021.01.008 33583602
    [Google Scholar]
  59. Li T. Mo H. Chen W. Li L. Xiao Y. Zhang J. Li X. Lu Y. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod. Sci. 2017 24 5 646 655 10.1177/1933719116667606 27613818
    [Google Scholar]
  60. Crespo R.P. Rocha T.P. Montenegro L.R. Nishi M.Y. Jorge A.A.L. Maciel G.A.R. Baracat E. Latronico A.C. Mendonca B.B. Gomes L.G. High-throughput sequencing to identify monogenic etiologies in a preselected polycystic ovary syndrome cohort. J. Endocr. Soc. 2022 6 9 bvac106 10.1210/jendso/bvac106 35898701
    [Google Scholar]
  61. Cai W.Y. Luo X. Lv H.Y. Fu K.Y. Xu J. Insulin resistance in women with recurrent miscarriage: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2022 22 1 916 10.1186/s12884‑022‑05256‑z 36482358
    [Google Scholar]
  62. Huang J. Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol. Ther. 2021 220 107720 10.1016/j.pharmthera.2020.107720 33130194
    [Google Scholar]
  63. Kubbutat M.H.G. Jones S.N. Vousden K.H. Regulation of p53 stability by Mdm2. Nature 1997 387 6630 299 303 10.1038/387299a0 9153396
    [Google Scholar]
  64. Rusiecki R. Witkowski J. Jaszczewska-Adamczak J. MDM2-p53 interaction inhibitors: The current state-of-art and updated patent review (2010-Present). Recent Patents Anticancer Drug Discov. 2020 14 4 324 369 10.2174/1574892814666191022163540 31642413
    [Google Scholar]
  65. Soni U.K. Chadchan S.B. Joshi A. Kumar V. Maurya V.K. Verma R.K. Jha R.K. Poly(ADP-ribose) polymerase-2 is essential for endometrial receptivity and blastocyst implantation, and regulated by caspase-8. Mol. Cell. Endocrinol. 2020 518 110946 10.1016/j.mce.2020.110946 32679243
    [Google Scholar]
  66. Kelleher A.M. Setlem R. Dantzer F. DeMayo F.J. Lydon J.P. Kraus W.L. Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc. Natl. Acad. Sci. U.S.A. 2021 118 40 e2109252118 10.1073/pnas.2109252118
    [Google Scholar]
  67. de Azevedo B.C. Mansur F. Podgaec S. A systematic review of toll-like receptors in endometriosis. Arch. Gynecol. Obstet. 2021 304 2 309 316 10.1007/s00404‑021‑06075‑x 33928453
    [Google Scholar]
  68. Fitzgerald K.A. Kagan J.C. Toll-like receptors and the control of immunity. Cell 2020 180 6 1044 1066 10.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  69. Brown G.D. Willment J.A. Whitehead L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018 18 6 374 389 10.1038/s41577‑018‑0004‑8 29581532
    [Google Scholar]
  70. Mayer S. Raulf M.K. Lepenies B. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 2017 147 2 223 237 10.1007/s00418‑016‑1523‑7 27999992
    [Google Scholar]
  71. Uzdogan A Kuru Pekcan M. Cil A. P. Kisa U. Akbiyik F. Progranulin and tumor necrosis factor-alpha in lean polycystic ovary syndrome patients. Gynecol. Endocrinol. 2021 37 925 929 10.1080/09513590.2021.1958311
    [Google Scholar]
  72. Liu D. Zhong Z. Karin M. NF-κB: A double-edged sword controlling inflammation. Biomedicines 2022 10 6 1250 10.3390/biomedicines10061250 35740272
    [Google Scholar]
  73. Park M. Hong J. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016 5 2 15 10.3390/cells5020015 27043634
    [Google Scholar]
  74. Hayden M.S. Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 2014 26 3 253 266 10.1016/j.smim.2014.05.004 24958609
    [Google Scholar]
  75. Liu T Zhang L Joo D Sun SC NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 17023 10.1038/sigtrans.2017.23
    [Google Scholar]
  76. Ruland J. Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat. Rev. Immunol. 2019 19 2 118 134 10.1038/s41577‑018‑0087‑2 30467369
    [Google Scholar]
  77. Janyga S. Kajdaniuk D. Czuba Z. Ogrodowczyk-Bobik M. Urbanek A. Kos-Kudła B. Marek B. Interleukin (IL)-23, IL-31, and IL-33 play a role in the course of autoimmune endocrine diseases. Endocr. Metab. Immune Disord. Drug Targets 2024 24 5 585 595 10.2174/1871530323666230908143521 37694787
    [Google Scholar]
  78. Jameel S. Bhuwalka R. Begum M. Bonu R. Jahan P. Circulating levels of cytokines (IL-6, IL-10 and TGF- β) and CD4+CD25+FOXP3+Treg cell population in recurrent pregnancy loss. Reprod. Biol. 2024 24 1 100842 10.1016/j.repbio.2023.100842 38176116
    [Google Scholar]
  79. Raghupathy R. Makhseed M. Azizieh F. Hassan N. Al-Azemi M. Al-Shamali E. Maternal Th1- and Th2-type reactivity to placental antigens in normal human pregnancy and unexplained recurrent spontaneous abortions. Cell. Immunol. 1999 196 2 122 130 10.1006/cimm.1999.1532 10527564
    [Google Scholar]
  80. Figueiredo A.S. Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016 148 1 13 21 10.1111/imm.12595 26855005
    [Google Scholar]
  81. Li Y. Yao G. Wang R. Zhu J. Li H. Yang D. Ma S. Fu Y. Liu C. Guan S. Maternal immune activation mediated prenatal chronic stress induces Th17/Treg cell imbalance may relate to the PI3K/Akt/NF-κB signaling pathway in offspring rats. Int. Immunopharmacol. 2024 126 111308 10.1016/j.intimp.2023.111308 38061121
    [Google Scholar]
  82. Nasri F. Doroudchi M. Namavar Jahromi B. Gharesi-Fard B. T helper cells profile and CD4+CD25+Foxp3+Regulatory T cells in polycystic ovary syndrome. Iran. J. Immunol. 2018 15 3 175 185 10.22034/iji.2018.39387 30246693
    [Google Scholar]
  83. Wang M. Zhang P. Yu S. Zhou G. Lv J. Nallapothula D. Guo C. Wang Q. Singh R.R. Heparin and aspirin combination therapy restores T-cell phenotype in pregnant patients with antiphospholipid syndrome-related recurrent pregnancy loss. Clin. Immunol. 2019 208 108259 10.1016/j.clim.2019.108259 31513884
    [Google Scholar]
  84. Ahmadi M Abdolmohammadi-Vahid S Ghaebi M Aghebati-Maleki L Afkham A Danaii S Abdollahi-Fard S Heidari L Jadidi-Niaragh F Younesi V Nouri M Yousefi M Effect of intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL). Biomed. Pharmacother. 2017 92 1095 1102 10.1016/j.biopha.2017.06.001
    [Google Scholar]
  85. Gong P Shi B Wang J Cao P Diao Z Wang Y Hu Y Li S Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome. Gynecol. Endocrinol. 2018 34 709 714 10.1080/09513590.2018.1428301
    [Google Scholar]
  86. Wang J Gong P Li C Pan M Ding Z Ge X Zhu W Shi B Correlation between leptin and IFN-γ involved in granulosa cell apoptosis in PCOS. Gynecol. Endocrinol. 2020 36 1051 1056 10.1080/09513590.2020.1760817
    [Google Scholar]
  87. Rostamtabar M. Esmaeilzadeh S. Tourani M. Rahmani A. Baee M. Shirafkan F. Saleki K. Mirzababayi S.S. Ebrahimpour S. Nouri H.R. Pathophysiological roles of chronic low‐grade inflammation mediators in polycystic ovary syndrome. J. Cell. Physiol. 2021 236 2 824 838 10.1002/jcp.29912 32617971
    [Google Scholar]
  88. Rudnicka E. Suchta K. Grymowicz M. Calik-Ksepka A. Smolarczyk K. Duszewska A.M. Smolarczyk R. Meczekalski B. Chronic low grade inflammation in pathogenesis of PCOS. Int. J. Mol. Sci. 2021 22 7 3789 10.3390/ijms22073789 33917519
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303308816240918062247
Loading
/content/journals/emiddt/10.2174/0118715303308816240918062247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test