Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

One important phytochemical is naringenin, which belongs to the flavanone class of polyphenols. It is found in citrus fruits, such as grapefruits, but it can also be found in tomatoes, cherries, and other food-grade medicinal plants. Naringenin has a significant chemotherapeutic promise, as several investigations have conclusively shown. Therefore, the goal of this review is to synthesize the literature that has been done on naringenin as a possible anti-cancer agent and clarify the mechanisms of action that have been described in treatment plans for different kinds of cancer. In a variety of cancer cells, naringenin works by affecting several pathways associated with cell cycle arrest, anti-metastasis, apoptosis, anti-angiogenesis, and DNA repair. It has been shown to alter several molecular targets linked to the development of cancer, such as drug transporters, transcription factors, reactive nitrogen species, reactive oxygen species, cellular kinases, and inflammatory cytokines and regulators of the cell cycle. In summary, this research provides significant insights into the potential of naringenin as a strong and prospective candidate for use in medicines, nutraceuticals, functional foods, and dietary supplements to improve the management of carcinoma.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303308238240705061522
2024-07-12
2025-05-27
Loading full text...

Full text loading...

References

  1. MotallebiM. BhiaM. RajaniH.F. BhiaI. TabarraeiH. MohammadkhaniN. Pereira-SilvaM. KasaiiM.S. Nouri-MajdS. MuellerA.L. VeigaF.J.B. Paiva-SantosA.C. ShakibaeiM. Naringenin: A potential flavonoid phytochemical for cancer therapy.Life Sci.202230512075210.1016/j.lfs.2022.120752 35779626
    [Google Scholar]
  2. ZhouJ. LiH. WuB. ZhuL. HuangQ. GuoZ. HeQ. WangL. PengX. GuoT. Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer.Sci. Rep.2024141186010.1038/s41598‑024‑52413‑9 38253629
    [Google Scholar]
  3. GuptaD. GulianiE. Flavonoids: Molecular mechanism behind natural chemoprotective behavior-a mini review.Biointerface Res. Appl. Chem.202212559835995
    [Google Scholar]
  4. BhiaM. MotallebiM. AbadiB. ZarepourA. Pereira-SilvaM. SaremnejadF. SantosA.C. ZarrabiA. MeleroA. JafariS.M. ShakibaeiM. Naringenin nano-delivery systems and their therapeutic applications.Pharmaceutics202113229110.3390/pharmaceutics13020291 33672366
    [Google Scholar]
  5. ArafahA. RehmanM.U. MirT.M. WaliA.F. AliR. QamarW. KhanR. AhmadA. AgaS.S. AlqahtaniS. AlmatroudiN.M. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): experimental evidence and mechanisms.Plants2020912178410.3390/plants9121784 33339267
    [Google Scholar]
  6. AminI. MajidS. FarooqA. WaniH.A. NoorF. KhanR. ShakeelS. BhatS.A. AhmadA. MadkhaliH. AhmadM. RehmanM.U. Naringenin (4,5,7-trihydroxyflavanone) as a potent neuroprotective agent: From chemistry to medicine.Stud. Nat. Prod. Chem.20206527130010.1016/B978‑0‑12‑817905‑5.00008‑1
    [Google Scholar]
  7. ZhouD. BaiZ. GuoT. LiJ. LiY. HouY. ChenG. LiN. Dietary flavonoids and human top-ranked diseases: The perspective of in vivo bioactivity and bioavailability.Trends Food Sci. Technol.202212037438610.1016/j.tifs.2022.01.019
    [Google Scholar]
  8. SlikaH. MansourH. WehbeN. NasserS.A. IratniR. NasrallahG. ShaitoA. GhaddarT. KobeissyF. EidA.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms.Biomed. Pharmacother.202214611244210.1016/j.biopha.2021.112442 35062053
    [Google Scholar]
  9. RaufA. ShariatiM.A. ImranM. BashirK. KhanS.A. MitraS. EmranT.B. BadalovaK. UddinM.S. MubarakM.S. AljohaniA.S.M. AlhumaydhiF.A. DerkhoM. KorpayevS. ZenginG. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent.Environ. Sci. Pollut. Res. Int.20222921310253104110.1007/s11356‑022‑18754‑6 35119637
    [Google Scholar]
  10. YakupovaE.N. ZiyatdinovaG.K. Modern methods and current trends in the analytical chemistry of flavanones.J. Anal. Chem.202378440342510.1134/S1061934823040159
    [Google Scholar]
  11. AndarwulanN. Cahyarani PuspitaN. Saraswati; Średnicka-Tober, D. Antioxidants such as flavonoids and carotenoids in the diet of Bogor, Indonesia residents.Antioxidants202110458710.3390/antiox10040587 33920414
    [Google Scholar]
  12. Cortés-ChitalaM.C. Flores-MartínezH. Orozco-ÁvilaI. León-CamposC. Suárez-JacoboÁ. Estarrón-EspinosaM. López-MurairaI. Identification and quantification of phenolic compounds from Mexican oregano (Lippia graveolens HBK) hydroethanolic extracts and evaluation of its antioxidant capacity.Molecules202126370210.3390/molecules26030702 33572779
    [Google Scholar]
  13. Saludes-ZanfañoM.I. Vivar-QuintanaA.M. Morales-CortsM.R. Pistacia root and leaf extracts as potential bioherbicides.Plants202211791610.3390/plants11070916 35406895
    [Google Scholar]
  14. TanS. KeZ. ChaiD. MiaoY. LuoK. LiW. Lycopene, polyphenols and antioxidant activities of three characteristic tomato cultivars subjected to two drying methods.Food Chem.202133812806210.1016/j.foodchem.2020.128062 32950009
    [Google Scholar]
  15. PiccoloV. MaistoM. SchianoE. IannuzzoF. KeivaniN. Manuela RiganoM. SantiniA. NovellinoE. Carlo TenoreG. SummaV. Phytochemical investigation and antioxidant properties of unripe tomato cultivars (Solanum lycopersicum L.).Food Chem.202443813786310.1016/j.foodchem.2023.137863 37980871
    [Google Scholar]
  16. CaltagironeC. PeanoC. SottileF. Post-harvest industrial processes of almond (Prunus dulcis L. Mill) in Sicily influence the nutraceutical properties of by-products at harvest and during storage.Front. Nutr.2021865937810.3389/fnut.2021.659378 34150827
    [Google Scholar]
  17. Sánchez-BravoP. Martínez-ToméJ. HernándezF. SendraE. Noguera-ArtiagaL. Conventional vs. Organic: Evaluation of nutritional, functional and sensory quality of Citrus limon.Foods20231223430410.3390/foods12234304 38231768
    [Google Scholar]
  18. SinghD. Cellular and molecular interactions of dietary flavonoids toward seizures suppression in epilepsy.Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders.Academic Press202330532510.1016/B978‑0‑323‑90052‑2.00030‑5
    [Google Scholar]
  19. PandeyP. KhanF. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits.Nutr. Res.202192213110.1016/j.nutres.2021.05.011 34273640
    [Google Scholar]
  20. StabrauskieneJ. KopustinskieneD.M. LazauskasR. BernatonieneJ. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities.Biomedicines2022107168610.3390/biomedicines10071686 35884991
    [Google Scholar]
  21. AtokiA.V. AjaP.M. ShinkafiT.S. OndariE.N. AwuchiC.G. Naringenin: its chemistry and roles in neuroprotection.Nutr. Neurosci.20232023130 37585716
    [Google Scholar]
  22. BaiY. PengW. YangC. ZouW. LiuM. WuH. FanL. LiP. ZengX. SuW. Pharmacokinetics and metabolism of naringin and active metabolite naringenin in rats, dogs, humans, and the differences between species.Front. Pharmacol.20201136410.3389/fphar.2020.00364 32292344
    [Google Scholar]
  23. NajmanováI. VopršalováM. SasoL. MladěnkaP. The pharmacokinetics of flavanones.Crit. Rev. Food Sci. Nutr.202060183155317110.1080/10408398.2019.1679085 31650849
    [Google Scholar]
  24. WangH. LiX. YangH. WangJ. LiQ. QuR. WuX. Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin.Int. J. Pharm.202057811913310.1016/j.ijpharm.2020.119133 32057887
    [Google Scholar]
  25. PintoD. AlmeidaA. López-YerenaA. PintoS. SarmentoB. Lamuela-RaventósR. Vallverdú-QueraltA. Delerue-MatosC. RodriguesF. Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays – A targeted metabolomic approach in phenolic compounds.Food Chem.2023404Pt A13454610.1016/j.foodchem.2022.13454636240567
    [Google Scholar]
  26. BrescianiL. Di PedeG. FavariC. CalaniL. FrancinelliV. RivaA. PetrangoliniG. AllegriniP. MenaP. Del RioD. In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts.Food Res. Int.202114111013710.1016/j.foodres.2021.110137 33642004
    [Google Scholar]
  27. YangY. TrevethanM. WangS. ZhaoL. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms.J. Nutr. Biochem.202210410896710.1016/j.jnutbio.2022.108967 35189328
    [Google Scholar]
  28. YuanD. GuoY. PuF. YangC. XiaoX. DuH. HeJ. LuS. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective.Food Chem.202443013711510.1016/j.foodchem.2023.137115 37566979
    [Google Scholar]
  29. PalP. JanaS. BiswasI. MandalD.P. BhattacharjeeS. Biphasic effect of the dietary phytochemical linalool on angiogenesis and metastasis.Mol. Cell. Biochem.202247741041105210.1007/s11010‑021‑04341‑9 34994923
    [Google Scholar]
  30. HermansyahD. ZulhendriF. PereraC.O. FirstyN.N. ChandrasekaranK. AbdulahR. HermanH. LesmanaR. The potential use of propolis as an adjunctive therapy in breast cancers.Integr. Cancer Ther.20222110.1177/15347354221096868 35593403
    [Google Scholar]
  31. KhanA.U. DagurH.S. KhanM. MalikN. AlamM. MushtaqueM. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives.Euro. J. Med. Chem. Reports2021310001010.1016/j.ejmcr.2021.100010
    [Google Scholar]
  32. KimM. JeeS.C. SungJ.S. Hepatoprotective effects of flavonoids against benzo[a]pyrene-induced oxidative liver damage along its metabolic pathways.Antioxidants202413218010.3390/antiox13020180 38397778
    [Google Scholar]
  33. El-KershD.M. EzzatS.M. SalamaM.M. MahrousE.A. AttiaY.M. AhmedM.S. ElmazarM.M. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer.Sci. Rep.2021111712110.1038/s41598‑021‑86599‑z 33782546
    [Google Scholar]
  34. Kamala PriyaM.R. IyerP.R. A study on ER stress-induced apoptosis pathway in cervical cancer HeLa cells treated with biosynthesized gold nanoparticles.Bull. Natl. Res. Cent.202145121210.1186/s42269‑021‑00670‑3
    [Google Scholar]
  35. RussellA.E. GinesB.R. Chalcones: Potential chemotherapeutic compounds and educational tools for closing the loop in STEM.Acc. Chem. Res.202356111256126210.1021/acs.accounts.2c00583 36696370
    [Google Scholar]
  36. LyubitelevA. StuditskyV. Inhibition of cancer development by natural plant polyphenols: Molecular mechanisms.Int. J. Mol. Sci.202324131066310.3390/ijms241310663 37445850
    [Google Scholar]
  37. AhmadG.M. Abu SerieM.M. Abdel-LatifM.S. GhoneemT. GhareebD.A. YacoutG.A. Potential anti-proliferative activity of Salix mucronata and Triticum spelta plant extracts on liver and colorectal cancer cell lines.Sci. Rep.2023131381510.1038/s41598‑023‑30845‑z 36882428
    [Google Scholar]
  38. MaugeriA. CalderaroA. PatanèG.T. NavarraM. BarrecaD. CirmiS. FeliceM.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms.Int. J. Mol. Sci.2023243295210.3390/ijms24032952 36769274
    [Google Scholar]
  39. FotieJ. MatherneC.M. MatherJ.B. WroblewskiJ.E. JohnsonK. BoudreauxL.G. PerezA.A. The fundamental role of oxime and oxime ether moieties in improving the physicochemical and anticancer properties of structurally diverse scaffolds.Int. J. Mol. Sci.202324231685410.3390/ijms242316854 38069175
    [Google Scholar]
  40. SobhaniM. FarzaeiM.H. KianiS. KhodarahmiR. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites.Food Rev. Int.202137875981110.1080/87559129.2020.1717523
    [Google Scholar]
  41. TorricelliP. EliaA.C. MagaraG. FeriottoG. ForniC. BorromeoI. De MartinoA. TabolacciC. MischiatiC. BeninatiS. Reduction of oxidative stress and ornithine decarboxylase expression in a human prostate cancer cell line PC-3 by a combined treatment with α-tocopherol and naringenin.Amino Acids2021531637210.1007/s00726‑020‑02925‑1 33398525
    [Google Scholar]
  42. KleihM. BöppleK. DongM. GaißlerA. HeineS. OlayioyeM.A. AulitzkyW.E. EssmannF. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells.Cell Death Dis.2019101185110.1038/s41419‑019‑2081‑4 31699970
    [Google Scholar]
  43. SwethaT.K. PriyaA. PandianS.K. Flavonoids for therapeutic applications.Plant Metabolites.Methods, Applications and Prospects2020347378
    [Google Scholar]
  44. FaramarziF. AlimohammadiM. RahimiA. Alizadeh-NavaeiR. ShakibR.J. RafieiA. Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data.Nutr. Res.2022105335210.1016/j.nutres.2022.05.003 35797732
    [Google Scholar]
  45. SonY.B. BhartiD. KimS.B. JoC.H. BokE.Y. LeeS.L. KangY.H. RhoG.J. Comparison of pluripotency, differentiation, and mitochondrial metabolism capacity in three-dimensional spheroid formation of dental pulp-derived mesenchymal stem cells.BioMed Res. Int.2021202111010.1155/2021/5540877 34337022
    [Google Scholar]
  46. ChouJ. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy.Cancer Discov.2020103351370
    [Google Scholar]
  47. LiuZ. TankeN. NealA. YuT. BranchT. CookJ.G. BautchV.L. Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis.bioRxiv202401.04.5742392024
    [Google Scholar]
  48. LiuY. FuL. WuJ. LiuM. WangG. LiuB. ZhangL. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy.Eur. J. Med. Chem.202222911405610.1016/j.ejmech.2021.114056 34942431
    [Google Scholar]
  49. EngelandK. Cell cycle regulation: p53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  50. LuW.L. YuC.T.R. LienH.M. SheuG.T. CherngS.H. Cytotoxicity of naringenin induces Bax‐mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells.Environ. Toxicol.202035121386139410.1002/tox.23003 32667124
    [Google Scholar]
  51. ShahbazM. NaeemH. MomalU. ImranM. AlsagabyS.A. Al AbdulmonemW. WaqarA.B. El-GhorabA.H. GhoneimM.M. AbdelgawadM.A. ShakerM.E. UmarM. HussainM. KumarR. Al JbawiE. Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies.Int. J. Food Prop.20232612590262610.1080/10942912.2023.2252619
    [Google Scholar]
  52. XuZ. HuS. LuoN. LiuJ. RenX. PanX. Naringenin induces different proliferative effects in estrogen receptor-alpha-66 negative breast cancer cells.Int. J. Clin. Exp. Med.61089089910.21203/rs.3.rs‑3266516/v1
    [Google Scholar]
  53. Jalalpour ChoupananM. ShahbaziS. ReiisiS. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines.Mol. Biol. Rep.20235097489750010.1007/s11033‑023‑08664‑2 37480513
    [Google Scholar]
  54. AhmadA. AfzaalM. SaeedF. AliS.W. ImranA. ZaidiS.Y.R. SaleemM.A. HussainM. Al JbawiE. A comprehensive review of the therapeutic potential of citrus bioflavonoid hesperidin against lifestyle-related disorders.Cogent Food Agric.202391222642710.1080/23311932.2023.2226427
    [Google Scholar]
  55. LeeC.W. HuangC.C.Y. ChiM.C. LeeK.H. PengK.T. FangM.L. ChiangY.C. LiuJ.F. Naringenin induces ROS-mediated ER stress, autophagy, and apoptosis in human osteosarcoma cell lines.Molecules202227237310.3390/molecules27020373 35056691
    [Google Scholar]
  56. MarreroA.D. QuesadaA.R. Martínez-PovedaB. MedinaM.Á. Antiangiogenic phytochemicals constituent of diet as promising candidates for chemoprevention of cancer.Antioxidants202211230210.3390/antiox11020302 35204185
    [Google Scholar]
  57. FarooqiA.A. TahirF. FakharM. ButtG. Colombo PimentelT. WuN. YulaevnaI.M. AttarR. Antimetastatic effects of Citrus-derived bioactive ingredients: Mechanistic insights.Cell. Mol. Biol.202167217818610.14715/cmb/2021.67.2.28 34817319
    [Google Scholar]
  58. ZhouW. YangL. NieL. LinH. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis.Am. J. Cancer Res.2021112301317 33575073
    [Google Scholar]
  59. MemarianiZ. AbbasS.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review.Pharmacol. Res.202117110526410.1016/j.phrs.2020.105264 33166734
    [Google Scholar]
  60. SinghP. LimB. Targeting apoptosis in cancer.Curr. Oncol. Rep.202224327328410.1007/s11912‑022‑01199‑y 35113355
    [Google Scholar]
  61. VeikoA.G. SekowskiS. LapshinaE.A. WilczewskaA.Z. MarkiewiczK.H. ZamaraevaM. ZhaoH. ZavodnikI.B. Flavonoids modulate liposomal membrane structure, regulate mitochondrial membrane permeability and prevent erythrocyte oxidative damage.Biochim. Biophys. Acta Biomembr.202018621118344210.1016/j.bbamem.2020.183442 32814117
    [Google Scholar]
  62. QiZ. KongS. ZhaoS. TangQ. Naringenin inhibits human breast cancer cells (MDA-MB-231) by inducing programmed cell death, caspase stimulation, G2/M phase cell cycle arrest and suppresses cancer metastasis.Cell. Mol. Biol.202167281310.14715/cmb/2021.67.2.2 34817344
    [Google Scholar]
  63. DükelM. TavsanZ. KayaliH.A. Flavonoids regulate cell death-related cellular signaling via ROS in human colon cancer cells.Process Biochem.2021101112510.1016/j.procbio.2020.10.002
    [Google Scholar]
  64. BabyJ. DevanA.R. KumarA.R. GorantlaJ.N. NairB. AishwaryaT.S. NathL.R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review.J. Food Biochem.2021457e1376110.1111/jfbc.13761 34028054
    [Google Scholar]
  65. Ben-AryeE. LavieO. HeylW. RamondettaL. BermanT. SamuelsN. Integrative Medicine for Ovarian Cancer.Curr. Oncol. Rep.202325655956810.1007/s11912‑023‑01359‑8 36939963
    [Google Scholar]
  66. KozłowskaJ. Duda-MadejA. BaczyńskaD. Antiproliferative Activity and Impact on Human Gut Microbiota of New O-Alkyl Derivatives of Naringenin and Their Oximes.Int. J. Mol. Sci.20232412985610.3390/ijms24129856 37373004
    [Google Scholar]
  67. PimentelJ.M. ZhouJ.Y. WuG.S. The role of TRAIL in apoptosis and immunosurveillance in cancer.Cancers (Basel)20231510275210.3390/cancers15102752 37345089
    [Google Scholar]
  68. ShiX. LuoX. ChenT. GuoW. LiangC. TangS. MoJ. RETRACTED: Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro.J. Cell. Mol. Med.20212552563257110.1111/jcmm.16226 33523599
    [Google Scholar]
  69. MuralidharanS. Antony Joseph VelanganniA. ShanmugamK. Inhibition of Breast Cancer Proteins by the Flavonoid Naringenin and its Derivative: A Molecular Docking Study.J. Nat. Rem.2022221516410.18311/jnr/2022/28194
    [Google Scholar]
  70. AmelimojaradM. AmelimojaradM. WangJ. NoourbakhshM. Anti-inflammation and anti-cancer effects of Naringenin combination with Artemisinins in human lung cancer cells.Gene Rep.20222610153210.1016/j.genrep.2022.101532
    [Google Scholar]
  71. TiwariP. MishraK.P. Role of Plant-Derived Flavonoids in Cancer Treatment.Nutr. Cancer202375243044910.1080/01635581.2022.2135744 36264133
    [Google Scholar]
  72. WenC. LuX. SunY. LiQ. LiaoJ. LiL. Naringenin induces the cell apoptosis of acute myeloid leukemia cells by regulating the lncRNA XIST/miR-34a/HDAC1 signaling.Heliyon202395e1582610.1016/j.heliyon.2023.e15826 37206002
    [Google Scholar]
  73. WongS.C. KamarudinM.N.A. NaiduR. Anticancer mechanism of flavonoids on high-grade adult-type diffuse gliomas.Nutrients202315479710.3390/nu15040797 36839156
    [Google Scholar]
  74. García-HernándezL. García-OrtegaM.B. Ruiz-AlcaláG. CarrilloE. MarchalJ.A. GarcíaM.Á. The p38 MAPK components and modulators as biomarkers and molecular targets in cancer.Int. J. Mol. Sci.202123137010.3390/ijms23010370 35008796
    [Google Scholar]
  75. ChoiJ. LeeD.H. JangH. ParkS.Y. SeolJ.W. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma.Int. J. Med. Sci.202017183049305710.7150/ijms.44804 33173425
    [Google Scholar]
  76. UçarK. GöktaşZ. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies.Nutr. Res.2023119435510.1016/j.nutres.2023.08.006 37738874
    [Google Scholar]
  77. VelusamyP. MuthusamiS. ArumugamR. In vitro evaluation of p-coumaric acid and naringin combination in human epidermoid carcinoma cell line (A431).Med. Oncol.2023411410.1007/s12032‑023‑02230‑3 38019336
    [Google Scholar]
  78. ZhangN. WuW. HuangY. AnL. HeZ. ChangZ. HeZ. LaiY. Citrus flavone tangeretin inhibits crpc cell proliferation by regulating Cx26, AKT, and AR signaling.Evid. Based Complement. Alternat. Med.2022202211510.1155/2022/6422500 35111229
    [Google Scholar]
  79. CimminoA. FasciglioneG.F. GioiaM. MariniS. CiaccioC. Multi-anticancer activities of phytoestrogens in human osteosarcoma.Int. J. Mol. Sci.202324171334410.3390/ijms241713344 37686148
    [Google Scholar]
  80. AkrawiS.H. GorainB. NairA.B. ChoudhuryH. PandeyM. ShahJ.N. VenugopalaK.N. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing.Pharmaceutics202012989310.3390/pharmaceutics12090893 32962195
    [Google Scholar]
  81. YudantiG.P. KuncahyoI. IkasariE.D. In vitro Naringenin SNEDDS Release Test by Dissolution.Nat. Sci. Eng. Technol. J.202331161167
    [Google Scholar]
  82. FuiorE.V. MocanuC.A. DeleanuM. VoicuG. AnghelacheM. RebleanuD. SimionescuM. CalinM. Evaluation of VCAM-1 targeted naringenin/indocyanine green-loaded lipid nanoemulsions as theranostic nanoplatforms in inflammation.Pharmaceutics20201211106610.3390/pharmaceutics12111066 33182380
    [Google Scholar]
  83. SaravananA. KumarP.S. KarishmaS. VoD.V.N. JeevananthamS. YaashikaaP.R. GeorgeC.S. A review on biosynthesis of metal nanoparticles and its environmental applications.Chemosphere2021264Pt 212858010.1016/j.chemosphere.2020.128580 33059285
    [Google Scholar]
  84. MrS. NallamuthuI. SingsitD. AnandT. Toxicological evaluation of PLA/PVA-naringenin nanoparticles: In vitro and in vivo studies.OpenNano2022710006110.1016/j.onano.2022.100061
    [Google Scholar]
  85. BarhoumA. García-BetancourtM.L. JeevanandamJ. HussienE.A. MekkawyS.A. MostafaM. OmranM.M.S. AbdallaM. BechelanyM. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations.Nanomaterials (Basel)202212217710.3390/nano12020177 35055196
    [Google Scholar]
  86. DewanjeeS. ChakrabortyP. BhattacharyaH. SinghS.K. DuaK. DeyA. JhaN.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy.Drug Discov. Today202328110340910.1016/j.drudis.2022.103409 36265733
    [Google Scholar]
  87. AkhterM.H. KumarS. NomaniS. Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies.Drug Dev. Ind. Pharm.202046465967210.1080/03639045.2020.1747485 32208984
    [Google Scholar]
  88. GeorgeD. MaheswariP.U. BegumK.M.M.S. Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin.React. Funct. Polym.202014810448010.1016/j.reactfunctpolym.2020.104480
    [Google Scholar]
  89. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics15031025 36986885
    [Google Scholar]
  90. KasatY.K. PotaleY. KumarA. JamwalV. 2024Exploring the pharmacological potential of naringenin and its nanoparticles: A review on bioavailability and solubility enhancement strategies.BIO Web of Conf.2024860103010.1051/bioconf/20248601030
    [Google Scholar]
  91. CarissimiG. MontalbánM.G. VílloraG. BarthA. Direct quantification of drug loading content in polymeric nanoparticles by infrared spectroscopy.Pharmaceutics2020121091210.3390/pharmaceutics12100912 32977658
    [Google Scholar]
  92. MoraisR.P. NovaisG.B. SangenitoL.S. SantosA.L.S. PrieferR. MorsinkM. MendonçaM.C. SoutoE.B. SeverinoP. CardosoJ.C. Naringenin-functionalized multi-walled carbon nanotubes: a potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells.Int. J. Mol. Sci.20202112455710.3390/ijms21124557 32604979
    [Google Scholar]
  93. YildirimS. AltunS. GumushanH. PatelA. DjamgozM.B.A. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo.Cancer Lett.20123231586110.1016/j.canlet.2012.03.036 22484465
    [Google Scholar]
  94. Gumushan AktasH. AkgunT. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels.Biomed. Pharmacother.201810677077510.1016/j.biopha.2018.07.008 29990870
    [Google Scholar]
  95. OzdalT. CabaZ.T. KaracaA.C. CavdarH. CapanogluE. TomasM. Narirutin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology.Handbook of Dietary Flavonoids.Springer2023
    [Google Scholar]
  96. GemsD. de MagalhãesJ.P. The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm.Ageing Res. Rev.20217010140710.1016/j.arr.2021.101407 34271186
    [Google Scholar]
  97. HouJ. KarinM. SunB. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age?Nat. Rev. Clin. Oncol.202118526127910.1038/s41571‑020‑00459‑9 33469195
    [Google Scholar]
  98. PereiraQ.C. dos SantosT.W. FortunatoI.M. RibeiroM.L. The molecular mechanism of polyphenols in the regulation of ageing hallmarks.Int. J. Mol. Sci.2023246550810.3390/ijms24065508 36982583
    [Google Scholar]
  99. BerbenL. FlorisG. WildiersH. HatseS. Cancer and aging: two tightly interconnected biological processes.Cancers (Basel)2021136140010.3390/cancers13061400 33808654
    [Google Scholar]
  100. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. Hallmarks of aging: An expanding universe.Cell2023186224327810.1016/j.cell.2022.11.001 36599349
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303308238240705061522
Loading
/content/journals/emiddt/10.2174/0118715303308238240705061522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Cancer; flavanoid; naringenin; reactive nitrogen species; signaling pathways
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test