Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Due to the lack of accurate registration of RSA and miscarriages, many early miscarriages are overlooked and not diagnosed or treated promptly in hospitals. This uncertainty in pathogenesis prevents clinicians from taking targeted therapeutic measures, leading to unsatisfactory treatment outcomes and placing a heavy burden on the patient's family and the healthcare system. Oxidative stress is present in embryonic development and affects the regulation of oxidative stress in pregnancy and the reproductive endocrine system. Oxidative stress injury is a significant pathogenesis of RSA, so improving the body's ability to resist oxidative stress injury is crucial in treating RSA. For patients with RSA, there is an urgent need for safe, efficient, and cost-effective anti-oxidative stress drugs, and there is growing evidence that treatment with Traditional Chinese medicine (TCM) can improve pregnancy success with fewer adverse effects. Many active ingredients for treating RSA are mainly derived from certain components of TCM, including flavonoids, phenols, and other compounds, which have been shown to treat RSA directly or indirectly by targeting anti-oxidative stress-related pathways. This article summarizes the experimental and clinical evidence of several common TCM compounds for treating RSA. It provides ideas and perspectives for further exploring the pathogenesis of RSA and TCM compounds for treating RSA.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303302424240724070133
2024-07-30
2025-06-26
Loading full text...

Full text loading...

References

  1. DimitriadisE. MenkhorstE. SaitoS. KuttehW.H. BrosensJ.J. Recurrent pregnancy loss.Nat. Rev. Dis. Primers2020619810.1038/s41572‑020‑00228‑z 33303732
    [Google Scholar]
  2. LaX. WangW. ZhangM. LiangL. Definition and multiple factors of recurrent spontaneous abortion.Adv. Exp. Med. Biol.2021130023125710.1007/978‑981‑33‑4187‑6_11 33523437
    [Google Scholar]
  3. Bender AtikR. ChristiansenO.B. ElsonJ. KolteA.M. LewisS. MiddeldorpS. McheikS. PeramoB. QuenbyS. NielsenH.S. van der HoornM.L. VermeulenN. GoddijnM. ESHRE guideline: recurrent pregnancy loss: An update in 2022.Hum. Reprod. Open202320231hoad002 36873081
    [Google Scholar]
  4. YoussefA. VermeulenN. LashleyE.E.L.O. GoddijnM. van der HoornM.L.P. Comparison and appraisal of (inter)national recurrent pregnancy loss guidelines.Reprod. Biomed. Online201939349750310.1016/j.rbmo.2019.04.008 31182358
    [Google Scholar]
  5. Al-SheikhY. GhneimH. AlharbiA. AlsheblyM. AljaserF. Aboul-SoudM. Molecular and biochemical investigations of key antioxidant/oxidant molecules in Saudi patients with recurrent miscarriage.Exp. Ther. Med.20191864450446010.3892/etm.2019.8082 31772636
    [Google Scholar]
  6. AgarwalA. Aponte-MelladoA. PremkumarB.J. ShamanA. GuptaS. The effects of oxidative stress on female reproduction: A review.Reprod. Biol. Endocrinol.20121014910.1186/1477‑7827‑10‑49 22748101
    [Google Scholar]
  7. SultanaZ. MaitiK. AitkenJ. MorrisJ. DedmanL. SmithR. Oxidative stress, placental ageing‐related pathologies and adverse pregnancy outcomes.Am. J. Reprod. Immunol.2017775e1265310.1111/aji.12653 28240397
    [Google Scholar]
  8. HussainT. MurtazaG. MetwallyE. KalhoroD.H. KalhoroM.S. RahuB.A. SahitoR.G.A. YinY. YangH. ChughtaiM.I. TanB. The role of oxidative stress and antioxidant balance in pregnancy.Mediators Inflamm.2021202111110.1155/2021/9962860 34616234
    [Google Scholar]
  9. LuJ. WangZ. CaoJ. ChenY. DongY. A novel and compact review on the role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.20181618010.1186/s12958‑018‑0391‑5 30126412
    [Google Scholar]
  10. ParkS. LimW. BazerF.W. SongG. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways.Phytomedicine20185023824610.1016/j.phymed.2017.08.026 30466984
    [Google Scholar]
  11. XiaC. MengQ. LiuL.Z. RojanasakulY. WangX.R. JiangB.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor.Cancer Res.20076722108231083010.1158/0008‑5472.CAN‑07‑0783 18006827
    [Google Scholar]
  12. PereiraA.C. MartelF. Oxidative stress in pregnancy and fertility pathologies.Cell Biol. Toxicol.201430530131210.1007/s10565‑014‑9285‑2 25030657
    [Google Scholar]
  13. MannaertsD. FaesE. CosP. BriedéJ.J. GyselaersW. CornetteJ. GorbanevY. BogaertsA. SpaandermanM. Van CraenenbroeckE. JacquemynY. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function.PLoS One2018139e020291910.1371/journal.pone.0202919 30204759
    [Google Scholar]
  14. JauniauxE. HempstockJ. GreenwoldN. BurtonG.J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies.Am. J. Pathol.2003162111512510.1016/S0002‑9440(10)63803‑5 12507895
    [Google Scholar]
  15. YiyenoğluÖ.B. UğurM.G. ÖzcanH.Ç. CanG. ÖztürkE. BalatÖ. ErelÖ. Assessment of oxidative stress markers in recurrent pregnancy loss: A prospective study.Arch. Gynecol. Obstet.201428961337134010.1007/s00404‑013‑3113‑4 24297302
    [Google Scholar]
  16. LiH. ShenQ. LiX. FengZ. ChenW. QianJ. ShenL. YuL. YangY. The efficacy of traditional chinese medicine shoutai pill combined with western medicine in the first trimester of pregnancy in women with unexplained recurrent spontaneous abortion: A Systematic Review and Meta-Analysis.BioMed Res. Int.2020202011310.1155/2020/7495161 32851085
    [Google Scholar]
  17. ZhuX. ZhaoL. FuJ. SuM. “Nourishing the kidney” and the treatment of recurrent pregnancy loss using traditional Chinese medicine.Int. J. Gynaecol. Obstet.20141271909110.1016/j.ijgo.2014.06.002 24994494
    [Google Scholar]
  18. YangG.Y. LuoH. LiaoX. LiuJ.P. Chinese herbal medicine for the treatment of recurrent miscarriage: A systematic review of randomized clinical trials.BMC Complement. Altern. Med.201313132010.1186/1472‑6882‑13‑320 24245671
    [Google Scholar]
  19. MengT. LiX. LiC. LiuJ. ChangH. JiangN. LiJ. ZhouY. LiuZ. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways.Front. Pharmacol.20221399759810.3389/fphar.2022.997598 36249778
    [Google Scholar]
  20. YangX. HeT. HanS. ZhangX. SunY. XingY. ShangH. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease.Oxid. Med. Cell. Longev.2019201911310.1155/2019/3231424 30918578
    [Google Scholar]
  21. ZhouJ. LiL. PanX. WangJ. QiQ. SunH. LiC. WangL. The effect of a traditional Chinese quadri-combination therapy and its component quercetin on recurrent spontaneous abortion: A clinical trial, network pharmacology and experiments-based study.Front. Pharmacol.20221396569410.3389/fphar.2022.965694 36339549
    [Google Scholar]
  22. Hipólito-ReisM. NetoA.C. NevesD. Impact of curcumin, quercetin, or resveratrol on the pathophysiology of endometriosis: A systematic review.Phytother. Res.20223662416243310.1002/ptr.7464 35583746
    [Google Scholar]
  23. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.20192019508084310.1155/2019/5080843 31737171
    [Google Scholar]
  24. GhneimH.K. Al-SheikhY.A. AlsheblyM.M. Aboul-SoudM.A.M. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage.Mol. Med. Rep.20161332606261210.3892/mmr.2016.4807 26821085
    [Google Scholar]
  25. GhneimH.K. AlsheblyM.M. Biochemical markers of oxidative stress in saudi women with recurrent miscarriage.J. Korean Med. Sci.20163119810510.3346/jkms.2016.31.1.98 26770044
    [Google Scholar]
  26. RayA. BhatiT. PradhanD. AroraR. ParvezS. RastogiS. Aberrant gene expression of superoxide dismutases in Chlamydia trachomatis-infected recurrent spontaneous aborters.Sci. Rep.20221211468810.1038/s41598‑022‑18941‑y 36038649
    [Google Scholar]
  27. KapilG. RamandeepK. HarkiranK. Correlation of enhanced oxidative stress with altered thyroid profile: Probable role in spontaneous abortion.Int. J. Appl. Basic Med. Res.201771202510.4103/2229‑516X.198514 28251103
    [Google Scholar]
  28. WangY. BranickyR. NoëA. HekimiS. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.J. Cell Biol.201821761915192810.1083/jcb.201708007 29669742
    [Google Scholar]
  29. LiJ. WangT. LiuP. YangF. WangX. ZhengW. SunW. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD.Food Funct.20211293898391810.1039/D0FO02736G 33977953
    [Google Scholar]
  30. SultanF. KaurR. TarfainN.U. MirA.H. DumkaV.K. SharmaS.K. Singh SainiS.P. Protective effect of rosuvastatin pretreatment against acute myocardial injury by regulating Nrf2, Bcl-2/Bax, iNOS, and TNF-α expressions affecting oxidative/nitrosative stress and inflammation.Hum. Exp. Toxicol.20224110.1177/09603271211066065 35130744
    [Google Scholar]
  31. Hullender RubinL. CantorD. MarxB.L. Recurrent pregnancy loss and traditional chinese medicine.Med. Acupunct.201325323223710.1089/acu.2012.0911 24761174
    [Google Scholar]
  32. FuZ. TianY. ZhouX. ZhouX. LanH. LanH. WuS. WuS. LouY. LouY. Effects of quercetin on immune regulation at the maternal-fetal interface.Zhejiang Da Xue Xue Bao Yi Xue Ban2023521687610.3724/zdxbyxb‑2022‑0499 37283120
    [Google Scholar]
  33. BastinA. TeimouriM. FaramarzS. ShabaniM. DoustimotlaghA.H. SadeghiA. In vitro and molecular docking analysis of quercetin as an anti-inflammatory and antioxidant.Curr. Pharm. Des.2023291188389110.2174/1381612829666230330084043 37005541
    [Google Scholar]
  34. MaC. XiangQ. SongG. WangX. Quercetin and polycystic ovary syndrome.Front. Pharmacol.202213100667810.3389/fphar.2022.1006678 36588716
    [Google Scholar]
  35. TavakoliZ. Tahmasebi DehkordiH. LorigooiniZ. Rahimi-MadisehM. KoraniM.S. Amini-KhoeiH. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress.Int. Immunopharmacol.202311610977210.1016/j.intimp.2023.109772 36731152
    [Google Scholar]
  36. EbegboniV.J. DickensonJ.M. SivasubramaniamS.D. Antioxidative effects of flavonoids and their metabolites against hypoxia/reoxygenation-induced oxidative stress in a human first trimester trophoblast cell line.Food Chem.201927211712510.1016/j.foodchem.2018.08.036 30309520
    [Google Scholar]
  37. XiaodanW. YongpingY. LiuY. MuL. XiuhuiZ. Effect of quercetin on the expression of Bcl-2/Bax apoptotic proteins in endometrial cells of lipopolysaccharide-induced-abortion mice.J. Tradit. Chin. Med.201636673774210.1016/S0254‑6272(17)30008‑0 29949703
    [Google Scholar]
  38. YangL. ChenY. LiuY. XingY. MiaoC. ZhaoY. ChangX. ZhangQ. The role of oxidative stress and natural antioxidants in ovarian aging.Front. Pharmacol.20211161784310.3389/fphar.2020.617843 33569007
    [Google Scholar]
  39. WuS. TianY. ZhangQ. FuZ. LanH. ZhouX. MaL. LouY. Protective effect of quercetin on lipopolysaccharide induced miscarriage based on animal experiments and network pharmacology.Mol. Med. Rep.20242969910.3892/mmr.2024.13223 38606505
    [Google Scholar]
  40. LaiN. FuX. HeiG. SongW. WeiR. ZhuX. GuoQ. ZhangZ. ChuC. XuK. LiX. The role of dendritic cell subsets in recurrent spontaneous abortion and the regulatory effect of baicalin on it.J. Immunol. Res.2022202211610.1155/2022/9693064 35224114
    [Google Scholar]
  41. LiuH. JingX. DongA. BaiB. WangH. Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/Mapks pathway.Cell. Physiol. Biochem.20174431011102310.1159/000485401 29179205
    [Google Scholar]
  42. FangD. ZhengC. MaY. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: A review.J. Integr. Med.2023211172510.1016/j.joim.2022.09.005 36216728
    [Google Scholar]
  43. HuangY. HuJ. ZhengJ. LiJ. WeiT. ZhengZ. ChenY. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by baicalin.J. Exp. Clin. Cancer Res.20123114810.1186/1756‑9966‑31‑48 22607709
    [Google Scholar]
  44. PanC. DongZ. Antiasthmatic effects of eugenol in a mouse model of allergic asthma by regulation of vitamin D3 upregulated protein 1/NF-κB pathway.Inflammation20153841385139310.1007/s10753‑015‑0110‑8 25588851
    [Google Scholar]
  45. BahmanpourS. BakhtariA. AbouhamzehB. Protective effect of vitrified-warmed media with clove bud (syzygium aromaticum) extract on mouse oocytes and resultant blastocysts.Cryo Lett.2018395288297 30963160
    [Google Scholar]
  46. VasconcelosE.M. CostaF.C. AzevedoA.V.N. BarrosoP.A.A. de AssisE.I.T. PaulinoL.R.F.M. SilvaB.R. SilvaA.W.B. SouzaA.L.P. SilvaJ.R.V. Eugenol influences the expression of messenger RNAs for superoxide dismutase and glutathione peroxidase 1 in bovine secondary follicles cultured in vitro.Zygote202129430130610.1017/S0967199420000908 33597054
    [Google Scholar]
  47. NamH. KimM.M. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells.Food Chem. Toxicol.20135510611210.1016/j.fct.2012.12.050 23313798
    [Google Scholar]
  48. PerluigiM. CocciaR. ButterfieldD.A. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: A toxic combination illuminated by redox proteomics studies.Antioxid. Redox Signal.201217111590160910.1089/ars.2011.4406 22114878
    [Google Scholar]
  49. NagababuE. LakshmaiahN. Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol.Free Radic. Res.199420425326610.3109/10715769409147521 8205227
    [Google Scholar]
  50. PontesN.H.L. ReisT.D.S. VasconcelosC.F.M. AragãoP.T.T.D. SouzaR.B. CatundaJunior F.E.A. AguiarL.M.V. CunhaR.M.S. Impact of eugenol on in vivo model of 6-hydroxydopamine-induced oxidative stress.Free Radic. Res.202155555656810.1080/10715762.2021.1971662 34424800
    [Google Scholar]
  51. SaraivaR.A. ArarunaM.K.A. OliveiraR.C. MenezesK.D.P. LeiteG.O. KerntopfM.R. CostaJ.G.M. RochaJ.B.T. ToméA.R. CamposA.R. MenezesI.R.A. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents.J. Ethnopharmacol.2011136350451010.1016/j.jep.2010.07.002 20621180
    [Google Scholar]
  52. da SilvaF.F.M. MonteF.J.Q. de LemosT.L.G. do NascimentoP.G.G. de Medeiros CostaA.K. de PaivaL.M.M. Eugenolderivatives: synthesis, characterization, and evaluation ofantibacterial and antioxidant activities.Chem. Cent. J.20181213410.1186/s13065‑018‑0407‑4 29611004
    [Google Scholar]
  53. ChowdhuryS. GhoshS. DasA.K. SilP.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy.Front. Pharmacol.2019102710.3389/fphar.2019.00027 30804780
    [Google Scholar]
  54. SunS. RuanY. YanM. XuK. YangY. ShenT. JinZ. Ferulic acid alleviates oxidative stress-induced cardiomyocyte injury by the regulation of miR-499-5p/p21 signal cascade.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/1921457 34917156
    [Google Scholar]
  55. GerinF. ErmanH. ErbogaM. SenerU. YilmazA. SeyhanH. GurelA. The effects of ferulic acid against oxidative stress and inflammation in formaldehyde-induced hepatotoxicity.Inflammation20163941377138610.1007/s10753‑016‑0369‑4 27235018
    [Google Scholar]
  56. LinT.Y. LuC.W. HuangS.K. WangS.J. Ferulic acid suppresses glutamate release through inhibition of voltage-dependent calcium entry in rat cerebrocortical nerve terminals.J. Med. Food201316211211910.1089/jmf.2012.2387 23342970
    [Google Scholar]
  57. ChengC. SuS. TangN. HoT. LoW. HsiehC. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABAB1 receptor expression in transient focal cerebral ischemia in rats.Acta Pharmacol. Sin.201031888989910.1038/aps.2010.66 20644551
    [Google Scholar]
  58. MaZ.C. HongQ. WangY.G. TanH.L. XiaoC.R. LiangQ.D. ZhangB.L. GaoY. Ferulic acid protectshuman umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways.Biol. Pharm. Bull.2010331293410.1248/bpb.33.29 20045931
    [Google Scholar]
  59. SahuR. DuaT.K. DasS. De FeoV. DewanjeeS. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis.Food Chem. Toxicol.201912550351910.1016/j.fct.2019.01.034 30735749
    [Google Scholar]
  60. YoonJ. JuhnK.M. JungE.H. ParkH.J. YoonS.H. KoY. HurC.Y. LimJ.H. Effects of resveratrol, granulocyte-macrophage colony-stimulating factor or dichloroacetic acid in the culture media on embryonic development and pregnancy rates in aged mice.Aging 20201232659266910.18632/aging.102768 32028268
    [Google Scholar]
  61. OkamotoN. SatoY. KawagoeY. ShimizuT. KawamuraK. Short-term resveratrol treatment restored the qualityof oocytes in aging mice.Aging (Albany NY)202214145628564010.18632/aging.204157 35802632
    [Google Scholar]
  62. Rodríguez-GonzálezG.L. Vargas-HernándezL. Reyes-CastroL.A. IbáñezC.A. BautistaC.J. Lomas-SoriaC. ItaniN. Estrada-GutierrezG. Espejel-NuñezA. Flores-PliegoA. Montoya-EstradaA. Reyes-MuñozE. TaylorP.D. NathanielszP.W. ZambranoE. Resveratrol supplementation in obese pregnant rats improves maternal metabolism and prevents increased placental oxidative stress.Antioxidants20221110187110.3390/antiox11101871 36290594
    [Google Scholar]
  63. GurusingheS. CoxA.G. RahmanR. ChanS.T. MuljadiR. SinghH. LeawB. MocklerJ.C. MarshallS.A. MurthiP. LimR. WallaceE.M. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2.Placenta201760748510.1016/j.placenta.2017.10.008 29208243
    [Google Scholar]
  64. ItoJ. ShirasunaK. KuwayamaT. IwataH. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes.Cryobiology202093374310.1016/j.cryobiol.2020.02.014 32171796
    [Google Scholar]
  65. LiuM. YinY. YeX. ZengM. ZhaoQ. KeefeD.L. LiuL. Resveratrol protects against age-associated infertility in mice.Hum. Reprod.201328370771710.1093/humrep/des437 23293221
    [Google Scholar]
  66. ParkS.J. AhmadF. PhilpA. BaarK. WilliamsT. LuoH. KeH. RehmannH. TaussigR. BrownA.L. KimM.K. BeavenM.A. BurginA.B. ManganielloV. ChungJ.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.Cell2012148342143310.1016/j.cell.2012.01.017 22304913
    [Google Scholar]
  67. RamliI. PosadinoA.M. GiordoR. FenuG. FardounM. IratniR. EidA.H. ZayedH. PintusG. Effect of resveratrol on pregnancy, prenatal complications and pregnancy-associated structure alterations.Antioxidants202312234110.3390/antiox12020341 36829900
    [Google Scholar]
  68. ZhangL. LiH. ZhangL. ZuZ. XuD. ZhangJ. Network pharmacology analysis of the mechanisms underlying the therapeutic effects of Yangjing zhongyu tang on thin endometrium.Drug Des. Devel. Ther.2023171805181810.2147/DDDT.S409659 37350984
    [Google Scholar]
  69. FilardiT. VarìR. FerrettiE. ZicariA. MoranoS. SantangeloC. Curcumin: Could this compound be useful in pregnancy and pregnancy-related complications?Nutrients20201210317910.3390/nu12103179 33080891
    [Google Scholar]
  70. TossettaG. FantoneS. GiannubiloS.R. MarzioniD. The multifaced actions of curcumin in pregnancy outcome.Antioxidants202110112610.3390/antiox10010126 33477354
    [Google Scholar]
  71. HosseiniM. GunelT. GumusogluE. BenianA. AydinliK. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss.Mol. Med. Rep.20181744941495210.3892/mmr.2018.8530 29393376
    [Google Scholar]
  72. QiL. JiangJ. ZhangJ. ZhangL. WangT. Curcumin protects human trophoblast htr8/svneo cells from H2O2-induced oxidative stress by activating nrf2 signaling pathway.Antioxidants20209212110.3390/antiox9020121 32024207
    [Google Scholar]
  73. AziziR. Soltani-ZangbarM.S. sheikhansari, G.; Pourmoghadam, Z.; Mehdizadeh, A.; Mahdipour, M.; Sandoghchian, S.; Danaii, S.; Koushaein, L.; Samadi Kafil, H.; Yousefi, M. Metabolic syndrome mediates inflammatory and oxidative stress responses in patients with recurrent pregnancy loss.J. Reprod. Immunol.2019133182610.1016/j.jri.2019.05.001 31100644
    [Google Scholar]
  74. NaemiM. FarahaniZ. NorooznezhadA.H. KhodarahmiR. HantoushzadehS. AhangariR. ShariatM. Possible potentials of curcumin for pregnancies complicated by intra-uterine growth restriction: Role of inflammation, angiogenesis, and oxidative stress.Heliyon202179e0803410.1016/j.heliyon.2021.e08034 34622047
    [Google Scholar]
  75. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  76. IslamM.S. GiampieriF. JanjusevicM. GasparriniM. Forbes-HernandezT.Y. MazzoniL. GrecoS. GiannubiloS.R. CiavattiniA. MezzettiB. CapocasaF. CastellucciM. BattinoM. CiarmelaP. An anthocyanin rich strawberry extract induces apoptosis and ROS while decreases glycolysis and fibrosis in human uterine leiomyoma cells.Oncotarget2017814235752358710.18632/oncotarget.15333 28212568
    [Google Scholar]
  77. AbarikwuS.O. OnuahC.L. SinghS.K. Plants in the management of male infertility.Andrologia2020523e1350910.1111/and.13509 31989693
    [Google Scholar]
  78. PieńkowskaN. BartoszG. FurdakP. Sadowska-BartoszI. Delphinidin increases the sensitivity of ovarian cancer cell lines to 3-bromopyruvate.Int. J. Mol. Sci.202122270910.3390/ijms22020709 33445795
    [Google Scholar]
  79. GarciaC. BlessoC.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis.Free Radic. Biol. Med.202117215216610.1016/j.freeradbiomed.2021.05.040 34087429
    [Google Scholar]
  80. HuangW. YanZ. LiD. MaY. ZhouJ. SuiZ. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells.Oxid. Med. Cell. Longev.2018201811010.1155/2018/1862462 29682153
    [Google Scholar]
  81. ElisiaI. KittsD.D. Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells.Mol. Cell. Biochem.20083121-213914510.1007/s11010‑008‑9729‑1 18327700
    [Google Scholar]
  82. SagC.M. WagnerS. MaierL.S. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.Free Radic. Biol. Med.20136333834910.1016/j.freeradbiomed.2013.05.035 23732518
    [Google Scholar]
  83. WangY. YangM. LeeS.G. DavisC.G. KennyA. KooS.I. ChunO.K. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.J. Nutr. Biochem.201223121725173110.1016/j.jnutbio.2011.12.004 22617460
    [Google Scholar]
  84. WangY. YangM. LeeS.G. DavisC.G. KooS.I. ChunO.K. Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults.J. Acad. Nutr. Diet.2012112101626163510.1016/j.jand.2012.06.007 23017573
    [Google Scholar]
  85. KaurK. SinghL. KaurA. BhattiR. Exploring the possible mechanism involved in the anti-nociceptive effect of β-sitosterol: modulation of oxidative stress, nitric oxide and IL-6.Inflammopharmacology202331151752710.1007/s10787‑022‑01122‑8 36574096
    [Google Scholar]
  86. YuY. CaoY. HuangW. LiuY. LuY. ZhaoJ. β-sitosterol ameliorates endometrium receptivity in pcos-like mice: The mediation of gut microbiota.Front. Nutr.2021866713010.3389/fnut.2021.667130 34179058
    [Google Scholar]
  87. NieminenP. PölönenI. MustonenA.M. Increased reproductive success in the white American mink (Neovison vison) with chronic dietary β-sitosterol supplement.Anim. Reprod. Sci.20101193-428729210.1016/j.anireprosci.2010.01.008 20153944
    [Google Scholar]
  88. LiuY. LiW. QianJ. WuM. DuH. XuL. LiuS. YiJ. HeG. Serum phytosterols associate with T helper 1 cytokine concentration in pregnant women.Food Sci. Nutr.2020873893389910.1002/fsn3.1697 32724650
    [Google Scholar]
  89. VivancosM. MorenoJ.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages.Free Radic. Biol. Med.2005391919710.1016/j.freeradbiomed.2005.02.025 15925281
    [Google Scholar]
  90. BabuS. JayaramanS. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management.Biomed. Pharmacother.202013111070210.1016/j.biopha.2020.110702 32882583
    [Google Scholar]
  91. LiM. WuX. AnP. DangH. LiuY. LiuR. Effects of resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model.Life Sci.202025611789010.1016/j.lfs.2020.117890 32497634
    [Google Scholar]
  92. WangX. ZhaoY. ZhongX. Protective effects of baicalin on decidua cells of LPS-induced mice abortion.J. Immunol. Res.201420141610.1155/2014/859812 25386564
    [Google Scholar]
  93. SadeghiM. DehnaviS. AsadiradA. XuS. MajeedM. JamialahmadiT. JohnstonT.P. SahebkarA. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases.Inflammopharmacology20233131069109310.1007/s10787‑023‑01136‑w 36997729
    [Google Scholar]
  94. YuC. PanS. ZhangJ. LiX. NiuY. Ferulic acid exerts Nrf2-dependent protection against prenatal lead exposure-induced cognitive impairment in offspring mice.J. Nutr. Biochem.20219110860310.1016/j.jnutbio.2021.108603 33548475
    [Google Scholar]
  95. GongW. WanJ. YuanQ. ManQ. ZhangX. Ferulic acid alleviates symptoms of preeclampsia in rats by upregulating vascular endothelial growth factor.Clin. Exp. Pharmacol. Physiol.201744101026103110.1111/1440‑1681.12801 28640960
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303302424240724070133
Loading
/content/journals/emiddt/10.2174/0118715303302424240724070133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test