Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis.

Objective

This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of “Osteoporosis and bone metabolic cells”. Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain.

Methods

The Web of Science (WOS) Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles.

Results

Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. Nature medicine has the highest journal impact factor of 82.9, highlighting its prominence. The journal of bone and mineral research ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact.

Conclusion

This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303300989240702043834
2024-07-12
2025-05-24
Loading full text...

Full text loading...

References

  1. SarafraziN. WambogoE.A. ShepherdJ.A. Osteoporosis or low bone mass in older adults: United States, 2017-2018.NCHS Data Brief20214051810.15620/cdc:103477 34029181
    [Google Scholar]
  2. MorinS.N. FeldmanS. FunnellL. GiangregorioL. KimS. McDonald-BlumerH. SantessoN. RidoutR. WardW. AsheM.C. BardaiZ. BartleyJ. BinkleyN. BurrellS. ButtD. CadaretteS.M. CheungA.M. ChilibeckP. DunnS. FalkJ. FrameH. GittingsW. HayesK. HolmesC. IoannidisG. JaglalS.B. JosseR. KhanA.A. McIntyreV. NashL. NegmA. PapaioannouA. PonzanoM. RodriguesI.B. ThabaneL. ThomasC.A. TileL. WarkJ.D. Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update.CMAJ202319539E1333E134810.1503/cmaj.221647 37816527
    [Google Scholar]
  3. SrivastavaR.K. SapraL. MishraP.K. Osteometabolism: Metabolic alterations in bone pathologies.Cells20221123394310.3390/cells11233943
    [Google Scholar]
  4. HirschJ.E. An index to quantify an individual’s scientific research output.Proc. Natl. Acad. Sci.200510246165691657210.1073/pnas.0507655102 16275915
    [Google Scholar]
  5. van EckN.J. WaltmanL. Citation-based clustering of publications using CitNetExplorer and VOSviewer.Scientometrics201711121053107010.1007/s11192‑017‑2300‑7 28490825
    [Google Scholar]
  6. DempsterD.W. CompstonJ.E. DreznerM.K. GlorieuxF.H. KanisJ.A. MallucheH. MeunierP.J. OttS.M. ReckerR.R. ParfittA.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee.J. Bone Miner. Res.201328121710.1002/jbmr.1805 23197339
    [Google Scholar]
  7. BaronR. KneisselM. WNT signaling in bone homeostasis and disease: from human mutations to treatments.Nat. Med.201319217919210.1038/nm.3074 23389618
    [Google Scholar]
  8. KusumbeA.P. RamasamyS.K. AdamsR.H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature2014507749232332810.1038/nature13145 24646994
    [Google Scholar]
  9. NakashimaT. HayashiM. FukunagaT. Evidence for osteocyte regulation of bone homeostasis through RANKL expression.Nat. Med.201117101231123410.1038/nm.2452
    [Google Scholar]
  10. XiongJ. OnalM. JilkaR.L. WeinsteinR.S. ManolagasS.C. O’BrienC.A. Matrix-embedded cells control osteoclast formation.Nat. Med.201117101235124110.1038/nm.2448
    [Google Scholar]
  11. KongY.Y. FeigeU. SarosiI. BolonB. TafuriA. MoronyS. CapparelliC. LiJ. ElliottR. McCabeS. WongT. CampagnuoloG. MoranE. BogochE.R. VanG. NguyenL.T. OhashiP.S. LaceyD.L. FishE. BoyleW.J. PenningerJ.M. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.Nature1999402675930430910.1038/46303 10580503
    [Google Scholar]
  12. ZhivodernikovI.V. KirichenkoT.V. MarkinaY.V. PostnovA.Y. MarkinA.M. Molecular and cellular mechanisms of osteoporosis.Int. J. Mol. Sci.202324211577210.3390/ijms242115772
    [Google Scholar]
  13. SrivastavaR.K. SapraL. Mishra, PK steometabolism: Metabolic alterations in bone pathologies.Cells20221123394310.3390/cells11233943
    [Google Scholar]
  14. ZaidiM. KimS.M. MathewM. Bone circuitry and interorgan skeletal crosstalk.eLife202312e8314210.7554/eLife.83142
    [Google Scholar]
  15. XieH. CuiZ. WangL. XiaZ. HuY. XianL. LiC. XieL. CraneJ. WanM. ZhenG. BianQ. YuB. ChangW. QiuT. PickarskiM. DuongL.T. WindleJ.J. LuoX. LiaoE. CaoX. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis.Nat. Med.201420111270127810.1038/nm.3668 25282358
    [Google Scholar]
  16. CraneJ.L. CaoX. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling.J. Clin. Invest.2014124246647210.1172/JCI70050 24487640
    [Google Scholar]
  17. LuoZ.W. LiF.X.Z. LiuY.W. RaoS.S. YinH. HuangJ. ChenC.Y. HuY. ZhangY. TanY.J. YuanL.Q. ChenT.H. LiuH.M. CaoJ. LiuZ.Z. WangZ.X. XieH. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration.Nanoscale20191143208842089210.1039/C9NR02791B 31660556
    [Google Scholar]
  18. BiancoP. BoydeA. Confocal images of marrow stromal (Westen-Bainton) cells.Histochemistry19931002939910.1007/BF00572894 8244768
    [Google Scholar]
  19. Mohamed-AhmedS. YassinM.A. RashadA. EspedalH. IdrisS.B. Finne-WistrandA. MustafaK. VindenesH. FristadI. Comparison of bone regenerative capacity of donor-matched human adipose–derived and bone marrow mesenchymal stem cells.Cell Tissue Res.202138331061107510.1007/s00441‑020‑03315‑5 33242173
    [Google Scholar]
  20. BiancoP. CaoX. FrenetteP.S. MaoJ.J. RobeyP.G. SimmonsP.J. WangC.Y. The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine.Nat. Med.2013191354210.1038/nm.3028 23296015
    [Google Scholar]
  21. FarrJ.N. XuM. WeivodaM.M. MonroeD.G. FraserD.G. OnkenJ.L. NegleyB.A. SfeirJ.G. OgrodnikM.B. HachfeldC.M. LeBrasseurN.K. DrakeM.T. PignoloR.J. PirtskhalavaT. TchkoniaT. OurslerM.J. KirklandJ.L. KhoslaS. Targeting cellular senescence prevents age-related bone loss in mice.Nat. Med.20172391072107910.1038/nm.4385 28825716
    [Google Scholar]
  22. CorradoA. CiciD. RotondoC. MaruottiN. CantatoreF.P. Molecular basis of bone aging.Int. J. Mol. Sci.20202110367910.3390/ijms21103679
    [Google Scholar]
  23. DingP. GaoC. GaoY. Osteocytes regulate senescence of bone and bone marrow.eLife202211e8148010.7554/eLife.81480
    [Google Scholar]
  24. LiJ. KimS.G. BlenisJ. Rapamycin: one drug, many effects.Cell Metab.201419337337910.1016/j.cmet.2014.01.001 24508508
    [Google Scholar]
  25. GaoC. NingB. SangC. ZhangY. Rapamycin prevents the intervertebral disc degeneration via inhibiting differentiation and senescence of annulus fibrosus cells.Aging 201810113114310.18632/aging.101364 29348392
    [Google Scholar]
  26. AnJ.Y. KernsK.A. OuelletteA. Rapamycin rejuvenates oral health in aging mice.eLife20209e5431810.7554/eLife.54318
    [Google Scholar]
  27. SanchezC.P. HeY.Z. Bone growth during rapamycin therapy in young rats.BMC Pediatr.20099310.1186/1471‑2431‑9‑3
    [Google Scholar]
  28. MainardiLG. BorgesTC. GomesTLN. PichardC. LavianoA. Pimentel, GD Association of SARC-F and dissociation of SARC-F + calf circumference with comorbidities in older hospitalized cancer patients.Exp. Gerontol.202214811131510.1016/j.exger.2021.111315
    [Google Scholar]
  29. SuhK.S. LeeY.S. ChoiE.M. Pinacidil stimulates osteoblast function in osteoblastic MC3T3-E1 cells.Immunopharmacol. Immunotoxicol.201335335936410.3109/08923973.2013.773447 23464615
    [Google Scholar]
  30. ChoiE.M. JungW.W. SuhK.S. Pinacidil protects osteoblastic cells against antimycin A-induced oxidative damage.Mol. Med. Rep.201511174675210.3892/mmr.2014.2721 25334089
    [Google Scholar]
  31. ConstantinouA. DaviesA.A. WestS.C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells.Cell2001104225926810.1016/S0092‑8674(01)00210‑0 11207366
    [Google Scholar]
  32. ScherleP.A. JonesE.A. FavataM.F. DaulerioA.J. CovingtonM.B. NurnbergS.A. MagoldaR.L. TrzaskosJ.M. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes.J. Immunol.1998161105681568610.4049/jimmunol.161.10.5681 9820549
    [Google Scholar]
  33. LiN. LiX. Zheng, K Inhibition of Sirtuin 3 prevents titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK and JNK signaling.Int. J. Biol. Sci.20211751382139410.7150/ijbs.53992
    [Google Scholar]
  34. GeraS. KuoT.C. Gumerova, AA FSH-blocking therapeutic for osteoporosis.eLife202211e7802210.7554/eLife.78022
    [Google Scholar]
  35. KleyerA. ScholtysekC. BotteschE. HillienhofU. BeyerC. DistlerJ.H.W. TuckermannJ.P. SchettG. KrönkeG. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss.J. Bone Miner. Res.201227122442245110.1002/jbmr.1702 22806960
    [Google Scholar]
  36. MaZ. DengC. HuW. ZhouJ. FanC. DiS. LiuD. YangY. WangD. Liver X receptors and their agonists: Targeting for cholesterol homeostasis and cardiovascular diseases.Curr. Issues Mol. Biol.201722416410.21775/cimb.022.041 27669666
    [Google Scholar]
  37. ObriA. KhrimianL. KarsentyG. OuryF. Osteocalcin in the brain: from embryonic development to age-related decline in cognition.Nat. Rev. Endocrinol.201814317418210.1038/nrendo.2017.181 29376523
    [Google Scholar]
  38. KimS.M. TanejaC. Perez-PenaH. RyuV. GumerovaA. LiW. AhmadN. ZhuL.L. LiuP. MathewM. KorkmazF. GeraS. SantD. HadeliaE. IevlevaK. KuoT.C. MiyashitaH. LiuL. TourkovaI. StanleyS. LiznevaD. IqbalJ. SunL. TamlerR. BlairH.C. NewM.I. HaiderS. YuenT. ZaidiM. Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass.Proc. Natl. Acad. Sci. USA202011725143861439410.1073/pnas.2000950117 32513693
    [Google Scholar]
  39. KimS.M. YuenT. IqbalJ. RubinM.R. ZaidiM. The NO–cGMP–PKG pathway in skeletal remodeling.Ann. N. Y. Acad. Sci.202114871213010.1111/nyas.14486 32860248
    [Google Scholar]
  40. ZhuJ. ZhangC. JiaJ. WangH. LengH. XuY. WuC. ZhangQ. SongC. Osteogenic effects in a rat osteoporosis model and femur defect model by simvastatin microcrystals.Ann. N. Y. Acad. Sci.202114871314210.1111/nyas.14513 33098131
    [Google Scholar]
  41. LuegmayrE. GlantschnigH. WesolowskiG.A. GentileM.A. FisherJ.E. RodanG.A. ReszkaA.A. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins.Cell Death Differ.200411S1Suppl. 1S108S11810.1038/sj.cdd.4401399 15017384
    [Google Scholar]
  42. AnT. HaoJ. SunS. LiR. YangM. ChengG. ZouM. Efficacy of statins for osteoporosis: A systematic review and meta-analysis.Osteoporos. Int.2017281475710.1007/s00198‑016‑3844‑8 27888285
    [Google Scholar]
  43. WanX. WangX. PangR. XuC. ShiW. ZhangH. LiH. LiZ. Mapping knowledge landscapes and emerging trends of the links between osteoarthritis and osteoporosis: A bibliometric analysis.Front. Public Health202210101969110.3389/fpubh.2022.1019691 36600941
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303300989240702043834
Loading
/content/journals/emiddt/10.2174/0118715303300989240702043834
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Bibliometric analysis; bone metabolic cell; citations; osteoporosis; trends; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test