Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Objectives

The aim of this study was to reveal the biological functionalities associated with endoplasmic reticulum stress (ERS)-related genes (ERSGs) in the context of diabetic retinopathy (DR).

Methods

Differentially expressed genes (DEGs) within the DR group and the Control group were identified and then integrated with ERSGs. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) methodologies were used to investigate potential biological mechanisms. A diagnostic model for ERS and a nomogram were formulated based on biomarkers selected through the Least Absolute Shrinkage and Selection Operator method. The diagnostic efficacy of this model was thoroughly evaluated. ERS-associated subtypes were identified, and the Single-Sample GSEA (ssGSEA) and CIBERSORT algorithms were used to assess immune infiltration.

Results

We identified 10 ERS-related DEGs (ERSRDEGs) within the DR Group. Subsequently, a diagnostic model was constructed based on 5 ERS genes, namely CCND1, IGFBP2, TLR4, TXNIP, and VIM. The validation analysis demonstrated the commendable diagnostic performance of the model. Analysis of the ssGSEA immune characteristics revealed a positive correlation in the DR group between myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and CCND1 TXNIP. Furthermore, a significant negative correlation was observed between central memory CD4 T cells and CCND1. In the context of CIBERSORT, the results indicated a positive correlation between macrophages and IGFBP2, as well as Tregs and IGFBP2 in the DR group. Notably, a conspicuous negative correlation was identified between resting mast cells and IGFBP2.

Conclusion

The present study provides novel diagnostic biomarkers for DR from an ERS perspective.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303300673240725114443
2024-07-29
2025-05-20
Loading full text...

Full text loading...

References

  1. YauJ.W.Y. RogersS.L. KawasakiR. LamoureuxE.L. KowalskiJ.W. BekT. ChenS.J. DekkerJ.M. FletcherA. GrauslundJ. HaffnerS. HammanR.F. IkramM.K. KayamaT. KleinB.E.K. KleinR. KrishnaiahS. MayurasakornK. O’HareJ.P. OrchardT.J. PortaM. RemaM. RoyM.S. SharmaT. ShawJ. TaylorH. TielschJ.M. VarmaR. WangJ.J. WangN. WestS. XuL. YasudaM. ZhangX. MitchellP. WongT.Y. Global prevalence and major risk factors of diabetic retinopathy.Diabetes Care201235355656410.2337/dc11‑190922301125
    [Google Scholar]
  2. RutaL.M. MaglianoD.J. LeMesurierR. TaylorH.R. ZimmetP.Z. ShawJ.E. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries.Diabet. Med.201330438739810.1111/dme.1211923331210
    [Google Scholar]
  3. TingD.S.W. CheungG.C.M. WongT.Y. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: A review.Clin. Exp. Ophthalmol.201644426027710.1111/ceo.1269626716602
    [Google Scholar]
  4. TeoZ.L. ThamY.C. YuM. CheeM.L. RimT.H. CheungN. BikbovM.M. WangY.X. TangY. LuY. WongI.Y. TingD.S.W. TanG.S.W. JonasJ.B. SabanayagamC. WongT.Y. ChengC.Y. Global prevalence of diabetic retinopathy and projection of burden through 2045.Ophthalmology2021128111580159110.1016/j.ophtha.2021.04.02733940045
    [Google Scholar]
  5. XuG-T. ZhangJ-F. TangL. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy.Neural Regen. Res.202318597698210.4103/1673‑5374.35574336254977
    [Google Scholar]
  6. HimasaF.I. SinghalM. OjhaA. KumarB. Prospective for diagnosis and treatment of diabetic retinopathy.Curr. Pharm. Des.202228756056910.2174/138161282766621111515490734781866
    [Google Scholar]
  7. XuH. ChenM. Diabetic retinopathy and dysregulated innate immunity.Vision Res.2017139394610.1016/j.visres.2017.04.01328571700
    [Google Scholar]
  8. RiazT.A. JunjappaR.P. HandigundM. FerdousJ. KimH.R. ChaeH.J. Role of endoplasmic reticulum stress sensor IRE1α in cellular physiology, calcium, ROS signaling, and metaflammation.Cells202095116010.3390/cells905116032397116
    [Google Scholar]
  9. Di ConzaG. HoP.C. ER stress responses: An emerging modulator for innate immunity.Cells20209369510.3390/cells903069532178254
    [Google Scholar]
  10. ChenX. ShiC. HeM. XiongS. XiaX. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets.Signal Transduct. Target. Ther.20238135210.1038/s41392‑023‑01570‑w37709773
    [Google Scholar]
  11. MakH.K. YungJ.S.Y. WeinrebR.N. NgS.H. CaoX. HoT.Y.C. NgT.K. ChuW.K. YungW.H. ChoyK.W. WangC.C. LeeT.L. LeungC.K. MicroRNA-19a-PTEN axis is involved in the developmental decline of axon regenerative capacity in retinal ganglion cells.Mol. Ther. Nucleic Acids20202125126310.1016/j.omtn.2020.05.03132599451
    [Google Scholar]
  12. BeckerK. KleinH. SimonE. ViolletC. HaslingerC. LeparcG. SchultheisC. ChongV. KuehnM.H. Fernandez-AlbertF. BakkerR.A. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy.Sci. Rep.20211111049410.1038/s41598‑021‑88698‑334006945
    [Google Scholar]
  13. BarrettT. TroupD.B. WilhiteS.E. LedouxP. RudnevD. EvangelistaC. KimI.F. SobolevaA. TomashevskyM. EdgarR. NCBI GEO: mining tens of millions of expression profiles-database and tools update.Nucleic Acids Res.200735DatabaseD760D76510.1093/nar/gkl88717099226
    [Google Scholar]
  14. LeekJ.T. JohnsonW.E. ParkerH.S. JaffeA.E. StoreyJ.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments.Bioinformatics201228688288310.1093/bioinformatics/bts03422257669
    [Google Scholar]
  15. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  16. Ben SalemK. Ben AbdelazizA. Principal component analysis (PCA).Tunis. Med.202199438338935244921
    [Google Scholar]
  17. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics2016541.30.11.30.3310.1002/cpbi.527322403
    [Google Scholar]
  18. YuG. Gene ontology semantic similarity analysis using GOSemSim.Methods Mol. Biol.2020211720721510.1007/978‑1‑0716‑0301‑7_1131960380
    [Google Scholar]
  19. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  20. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci.200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  21. MandrekarJ.N. Receiver operating characteristic curve in diagnostic test assessment.J. Thorac. Oncol.2010591315131610.1097/JTO.0b013e3181ec173d20736804
    [Google Scholar]
  22. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  23. BalchW.E. MorimotoR.I. DillinA. KellyJ.W. Adapting proteostasis for disease intervention.Science2008319586591691910.1126/science.114144818276881
    [Google Scholar]
  24. BurmanA. TanjoreH. BlackwellT.S. Endoplasmic reticulum stress in pulmonary fibrosis.Matrix Biol.20181281686910.1016/j.matbio.2018.03.015
    [Google Scholar]
  25. BeránekM. Kan̆kováK. Benes̆P. Izakovic̆ová-HolláL. ZnojilV. HájekD. VlkováE. VáchaJ. Polymorphism R25P in the gene encoding transforming growth factor‐beta (TGF-β1) is a newly identified risk factor for proliferative diabetic retinopathy.Am. J. Med. Genet.2002109427828310.1002/ajmg.1037211992481
    [Google Scholar]
  26. YadavH. QuijanoC. KamarajuA.K. GavrilovaO. MalekR. ChenW. ZerfasP. ZhigangD. WrightE.C. StueltenC. SunP. LonningS. SkarulisM. SumnerA.E. FinkelT. RaneS.G. Protection from obesity and diabetes by blockade of TGF‐β 1/Smad3 signaling.Cell Metab.2011141677910.1016/j.cmet.2011.04.01321723505
    [Google Scholar]
  27. ForresterJ.V. KuffovaL. DelibegovicM. The role of inflammation in diabetic retinopathy.Front. Immunol.20201158368710.3389/fimmu.2020.58368733240272
    [Google Scholar]
  28. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature0548517167474
    [Google Scholar]
  29. MénardC. WilsonA.M. DejdaA. MiloudiK. BinetF. Crespo-GarciaS. ParinotC. PilonF. JuneauR. AndriessenE.M.M.A. MawamboG. SanGiovanniJ.P. De GuireV. SapiehaP. miR-106b suppresses pathological retinal angiogenesis.Aging20201224248362485210.18632/aging.20240433361521
    [Google Scholar]
  30. HuangC.Y. DengJ.S. HuangW.C. JiangW.P. HuangG.J. Attenuation of Lipopolysaccharide-Induced acute lung injury by Hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy.Nutrients2020126174210.3390/nu1206174232532087
    [Google Scholar]
  31. WangJ. SuW. ZhangT. ZhangS. LeiH. MaF. ShiM. ShiW. XieX. DiC. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation.Cell Death Dis.202314424410.1038/s41419‑023‑05763‑737024471
    [Google Scholar]
  32. BustanyS. CahuJ. GuardiolaP. SolaB. Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway.BMC Cancer201515126210.1186/s12885‑015‑1240‑y25881299
    [Google Scholar]
  33. LiT. ForbesM.E. FullerG.N. LiJ. YangX. ZhangW. IGFBP2: integrative hub of developmental and oncogenic signaling network.Oncogene202039112243225710.1038/s41388‑020‑1154‑231925333
    [Google Scholar]
  34. ChoiE.H. ParkS.J. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target.Exp. Mol. Med.20235571348135610.1038/s12276‑023‑01019‑837394581
    [Google Scholar]
  35. TsubakiH. TooyamaI. WalkerD.G. Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases.Int. J. Mol. Sci.20202124935710.3390/ijms2124935733302545
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303300673240725114443
Loading
/content/journals/emiddt/10.2174/0118715303300673240725114443
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test