Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

The dysregulation of the innate immune system plays a crucial role in the development of Diabetic Retinopathy (DR). To gain an insight into the underlying mechanism of DR, it is essential to identify specific biomarkers associated with immune cell infiltration.

Methods

In this study, we retrieved the GSE94019 and GSE60436 datasets from the Gene Expression Omnibus (GEO) database. By utilizing CIBERSORT, MCPcounter, and xCell algorithms, we conducted a comprehensive analysis of the immune cell infiltration landscape in DR. The limma package was employed to identify Differentially Expressed Necroptosis-related Genes (DENRGs). Subsequently, enrichment analysis was performed to investigate the potential functions of the DENRGs. To identify the core DENRGs, the CytoHubba plug-in in Cytoscape software was utilized. The expression levels of these core DENRGs were verified in an independent dataset.

Results

Our analysis identified 213 DENRGs, and among them, Platelet-derived Growth Factor subunit A (PDGFA) was identified as a core DENRG. Notably, the expression of PDGFA was found to be upregulated in DR, and this finding was further validated in the GSE102485 dataset. Additionally, the results of GSVA and GSEA revealed that in the high PDGFA group, there was activation of pathways related to inflammation and the immune system. Moreover, analysis of immune infiltration demonstrated a significant association between PDGFA gene expression and the infiltration levels of specific immune cells, including basophils, macrophages M1, macrophages, neutrophils, monocytes, NK cells, and B cells.

Conclusion

The involvement of neutrophils in the development and progression of DR is suggested. PDGFA has emerged as a potential marker and is linked to the infiltration of immune cells in DR. These findings shed new light on the underlying mechanisms of DR.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303279463240220050158
2024-03-19
2025-05-19
Loading full text...

Full text loading...

References

  1. AntonettiD.A. KleinR. GardnerT.W. Diabetic retinopathy.N. Engl. J. Med.2012366131227123910.1056/NEJMra100507322455417
    [Google Scholar]
  2. JiangW.M. TangL.S. Role of Microglia in the Pathology of Diabetic Retinopathy. Medicine & Philosophy.Clinical Decision Making Forum Edition2011
    [Google Scholar]
  3. OlaM. NawazM. KhanH. AlhomidaA. Neurodegeneration and neuroprotection in diabetic retinopathy.Int. J. Mol. Sci.20131422559257210.3390/ijms14022559
    [Google Scholar]
  4. FerrisF.L. III Results of 20 years of research on the treatment of diabetic retinopathy.Prev. Med.199423574074210.1006/pmed.1994.11277845951
    [Google Scholar]
  5. StittA.W. CurtisT.M. ChenM. MedinaR.J. McKayG.J. JenkinsA. GardinerT.A. LyonsT.J. HammesH.P. SimóR. LoisN. The progress in understanding and treatment of diabetic retinopathy.Prog. Retin. Eye Res.20165115618610.1016/j.preteyeres.2015.08.00126297071
    [Google Scholar]
  6. SimóR. HernándezC. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy.Diabetologia20085191574158010.1007/s00125‑008‑0989‑918404258
    [Google Scholar]
  7. CalugaruD. CalugaruM. Pro-permeability factors in diabetic macular edema; The diabetic macular edema treated with ozurdex trial.Int. J. Ophthalmol.20161, 170244845
    [Google Scholar]
  8. SemeraroF. CancariniA. dell’OmoR. RezzolaS. RomanoM.R. CostagliolaC. Diabetic retinopathy: Vascular and inflammatory disease.J. Diabetes Res.2015201511610.1155/2015/58206026137497
    [Google Scholar]
  9. PetrovskiG. KaarnirantaK. PetrovičD. Oxidative stress, epigenetics, environment, and epidemiology of diabetic retinopathy.J. Diabetes Res.201720171210.1155/2017/641935728321416
    [Google Scholar]
  10. StreileinJ.W. Ocular immune privilege: Therapeutic opportunities from an experiment of nature.Nat. Rev. Immunol.200331187988910.1038/nri122414668804
    [Google Scholar]
  11. ChenM. LuoC. ZhaoJ. DevarajanG. XuH. Immune regulation in the aging retina.Prog. Retin. Eye Res.20196915917210.1016/j.preteyeres.2018.10.00330352305
    [Google Scholar]
  12. PanW.W. LinF. FortP.E. The innate immune system in diabetic retinopathy.Prog. Retin. Eye Res.20218410094010.1016/j.preteyeres.2021.10094033429059
    [Google Scholar]
  13. XuH. ChenM. Diabetic retinopathy and dysregulated innate immunity.Vision Res.2017139394610.1016/j.visres.2017.04.01328571700
    [Google Scholar]
  14. WuH. WangM. LiX. ShaoY. The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy.Hum. Cell20213461617162810.1007/s13577‑021‑00580‑634324139
    [Google Scholar]
  15. TakeuchiM. SatoT. TanakaA. MuraokaT. TaguchiM. SakuraiY. KarasawaY. ItoM. Elevated levels of cytokines associated with Th2 and Th17 cells in vitreous fluid of proliferative diabetic retinopathy patients.PLoS One2015109e013735810.1371/journal.pone.013735826352837
    [Google Scholar]
  16. WangL. ZhouX. YinY. MaiY. WangD. ZhangX. Hyperglycemia induces neutrophil extracellular traps formation through an NADPH oxidase-dependent pathway in diabetic retinopathy.Front. Immunol.20199307610.3389/fimmu.2018.0307630671057
    [Google Scholar]
  17. ChungJ.O. ParkS.Y. ChoD.H. ChungD.J. ChungM.Y. Plasma neutrophil gelatinase‐associated lipocalin levels are positively associated with diabetic retinopathy in patients with Type 2 diabetes.Diabet. Med.201633121649165410.1111/dme.1314127100138
    [Google Scholar]
  18. LiY. ChenD. SunL. WuY. ZouY. LiangC. BaoY. YiJ. ZhangY. HouJ. LiZ. YuF. HuangY. YuC. LiuL. LiuZ. ZhangY. LiY. Induced expression of VEGFC, ANGPT, and EFNB2 and their receptors characterizes neovascularization in proliferative diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.201960134084409610.1167/iovs.19‑2676731574534
    [Google Scholar]
  19. IshikawaK. YoshidaS. KobayashiY. ZhouY. NakamaT. NakaoS. SassaY. OshimaY. NiiroH. AkashiK. KonoT. IshibashiT. Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.201556293294610.1167/iovs.14‑1558925604687
    [Google Scholar]
  20. LamJ.D. OhD.J. WongL.L. AmarnaniD. Park-WindholC. SanchezA.V. Cardona-VelezJ. McGuoneD. Stemmer-RachamimovA.O. EliottD. BielenbergD.R. van ZylT. ShenL. GaiX. D’AmoreP.A. KimL.A. Arboleda-VelasquezJ.F. Identification of RUNX1 as a mediator of aberrant retinal angiogenesis.Diabetes20176671950195610.2337/db16‑103528400392
    [Google Scholar]
  21. AranD. HuZ. ButteA.J. xCell: digitally portraying the tissue cellular heterogeneity landscape.Genome Biol.201718122010.1186/s13059‑017‑1349‑129141660
    [Google Scholar]
  22. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  23. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  24. TingD.S.W. CheungG.C.M. WongT.Y. Diabetic retinopathy: Global prevalence, major risk factors, screening practices and public health challenges: A review.Clin. Exp. Ophthalmol.201644426027710.1111/ceo.1269626716602
    [Google Scholar]
  25. Simó-ServatO. HernándezC. SimóR. Diabetic retinopathy in the context of patients with diabetes.Ophthalmic Res.201962421121710.1159/00049954131129667
    [Google Scholar]
  26. GálvezM.I. Protein kinase C inhibitors in the treatment of diabetic retinopathy. Review.Curr. Pharm. Biotechnol.201112338639110.2174/13892011179448060620939796
    [Google Scholar]
  27. LorenziM. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient.Exp. Diabetes Res.2007200711010.1155/2007/6103818224243
    [Google Scholar]
  28. KangQ. YangC. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.Redox Biol.20203710179910.1016/j.redox.2020.10179933248932
    [Google Scholar]
  29. KongD.Q. LiL. LiuY. ZhengG.Y. Association between endoplasmic reticulum stress and risk factors of diabetic retinopathy.Int. J. Ophthalmol.201811101704171030364130
    [Google Scholar]
  30. LiL. DaiY. KeD. LiuJ. ChenP. WeiD. WangT. TengY. YuanX. ZhangZ. Ferroptosis: New insight into the mechanisms of diabetic nephropathy and retinopathy.Front. Endocrinol.202314121529210.3389/fendo.2023.121529237600716
    [Google Scholar]
  31. ForresterJ.V. XuH. LambeT. CornallR. Immune privilege or privileged immunity?Mucosal Immunol.20081537238110.1038/mi.2008.2719079201
    [Google Scholar]
  32. BinetF. CagnoneG. Crespo-GarciaS. HataM. NeaultM. DejdaA. WilsonA.M. BuscarletM. MawamboG.T. HowardJ.P. Diaz-MarinR. ParinotC. GuberV. PilonF. JuneauR. LaflammeR. SawchynC. BoulayK. LeclercS. Abu-ThuraiaA. CôtéJ.F. AndelfingerG. RezendeF.A. SennlaubF. JoyalJ.S. MalletteF.A. SapiehaP. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy.Science20203696506eaay535610.1126/science.aay535632820093
    [Google Scholar]
  33. Martínez-AlberquillaI. GasullX. Pérez-LunaP. Seco-MeraR. Ruiz-AlcocerJ. CrookeA. Neutrophils and neutrophil extracellular trap components: Emerging biomarkers and therapeutic targets for age-related eye diseases.Ageing Res. Rev.20227410155310.1016/j.arr.2021.10155334971794
    [Google Scholar]
  34. LiG. VeenstraA.A. TalahalliR.R. WangX. Gubitosi-KlugR.A. SheibaniN. KernT.S. Marrow-derived cells regulate the development of early diabetic retinopathy and tactile allodynia in mice.Diabetes201261123294330310.2337/db11‑124922923475
    [Google Scholar]
  35. ParkJ.H. KimJ.E. GuJ.Y. YooH.J. ParkS.H. KimY.I. Nam-GoongI.S. KimE.S. KimH.K. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology.German Diabetes Assoc.2016124557561
    [Google Scholar]
  36. LeiH. RheaumeM.A. KazlauskasA. Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy.Exp. Eye Res.201090337638110.1016/j.exer.2009.11.00319931527
    [Google Scholar]
  37. RobbinsS.G. MixonR.N. WilsonD.J. HartC.E. RobertsonJ.E. WestraI. PlanckS.R. RosenbaumJ.T. Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases.Invest. Ophthalmol. Vis. Sci.19943510364936638088954
    [Google Scholar]
  38. LefevereE. Van HoveI. SergeysJ. SteelD.H.W. SchlingemannR. MoonsL. KlaassenI. PDGF as an important initiator for neurite outgrowth associated with fibrovascular membranes in proliferative diabetic retinopathy.Curr. Eye Res.202247227728610.1080/02713683.2021.196647934612091
    [Google Scholar]
  39. LeeJ. LeeJ. YunJ.H. ChoiC. ChoS. KimS.J. KimJ.H. Autocrine DUSP28 signaling mediates pancreatic cancer malignancy via regulation of PDGF-A.Sci. Rep.2017711276010.1038/s41598‑017‑13023‑w28986588
    [Google Scholar]
  40. AppelmannI. LierschR. KesslerT. MestersR.M. BerdelW.E. Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: Biological functions and role in malignancy.Recent Results Cancer Res.2010180518110.1007/978‑3‑540‑78281‑0_520033378
    [Google Scholar]
  41. ZhaoY. HaginoyaK. SunG. DaiH. OnumaA. IinumaK. Platelet‐derived growth factor and its receptors are related to the progression of human muscular dystrophy: An immunohistochemical study.J. Pathol.2003201114915910.1002/path.141412950028
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303279463240220050158
Loading
/content/journals/emiddt/10.2174/0118715303279463240220050158
Loading

Data & Media loading...

Supplements

Supplementary material will be available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test