Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background and Aims

Inflammatory Bowel Disease (IBD) is a refractory disease with repeated attacks, and there is no accurate treatment target at present. Dipyridamole, a phosphodiesterase (PDE) inhibitor, has been proven to be an effective treatment for IBD in a pilot study. This study explored the therapeutic target of IBD and the pharmacological mechanism of dipyridamole for the treatment of IBD.

Materials and Methods

The candidate targets of dipyridamole were obtained by searching the pharmMapper online server and Swiss Target Prediction Database. The IBD-related targets were selected from four GEO chips and three databases, including Genecards, DisGeNET, and TTD database. A protein-protein interaction (PPI) network was constructed, and the core targets were identified according to the topological structure. KEGG and GO enrichment analysis and BioGPS location were performed. Finally, molecular docking was used to verify dipyridamole and the hub targets.

Results

We obtained 112 up-regulated genes and 157 down-regulated genes, as well as 105 composite targets of Dipyridamole-IBD. Through the PPI network analysis, we obtained the 7 hub targets, including SRC, EGFR, MAPK1, MAPK14, MAPK8, PTPN11, and LCK. The BioGPS showed that these genes were highly expressed in the immune system, digestive system, and endocrine system. In addition, the 7 hub targets had good intermolecular interactions with dipyridamole. The therapeutic effect of dipyridamole on IBD may involve immune system activation and regulation of inflammatory reactions involved in the regulation of extracellular matrix, perinuclear region of cytoplasm, protein kinase binding, and positive regulation of programmed cell death through cancer pathway (proteoglycans in cancer), lipid metabolism, Ras signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, Th17 cell differentiation, and other cellular and innate immune signaling pathways.

Conclusion

This study predicted the therapeutic target of IBD and the molecular mechanism of dipyridamole in treating IBD, providing a new direction for the treatment of IBD and a theoretical basis for further research.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303287122240429092014
2024-05-27
2025-01-18
Loading full text...

Full text loading...

References

  1. KhanI. UllahN. ZhaL. BaiY. KhanA. ZhaoT. CheT. ZhangC. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome.Pathogens20198312610.3390/pathogens8030126 31412603
    [Google Scholar]
  2. BisgaardT.H. AllinK.H. KeeferL. AnanthakrishnanA.N. JessT. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment.Nat. Rev. Gastroenterol. Hepatol.2022191171772610.1038/s41575‑022‑00634‑6 35732730
    [Google Scholar]
  3. ElhagD.A. KumarM. SaadaouiM. AkobengA.K. Al-MudahkaF. ElawadM. Al KhodorS. Inflammatory bowel disease treatments and predictive biomarkers of therapeutic response.Int. J. Mol. Sci.20222313696610.3390/ijms23136966 35805965
    [Google Scholar]
  4. SteinbergJ.M. CharabatyA. The management approach to the adolescent IBD patient: Health maintenance and medication considerations.Curr. Gastroenterol. Rep.2020221510.1007/s11894‑019‑0739‑9 31997099
    [Google Scholar]
  5. ChapmanT.P. Frias GomesC. LouisE. ColombelJ.F. SatsangiJ. Review article: withdrawal of 5-aminosalicylates in inflammatory bowel disease.Aliment. Pharmacol. Ther.2020521738410.1111/apt.15771 32452591
    [Google Scholar]
  6. GuS. XueY. GaoY. ShenS. ZhangY. ChenK. XueS. PanJ. TangY. ZhuH. WuH. DouD. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking.Sci. Rep.20201011520410.1038/s41598‑020‑71030‑w 32938944
    [Google Scholar]
  7. PanW. XiangL. LiangX. DuW. ZhaoJ. ZhangS. ZhouX. GengL. GongS. XuW. Vitronectin destroyed intestinal epithelial cell differentiation through activation of pde4-mediated ferroptosis in inflammatory bowel disease.Mediators Inflamm.2023202311610.1155/2023/6623329 37501933
    [Google Scholar]
  8. AllahhamM. Why not dipyridamole: a review of current guidelines and re-evaluation of utility in the modern era.Cardiovasc. Drugs Ther.2021363525532 34245446
    [Google Scholar]
  9. FengR. TianZ. MaoR. MaR. LuoW. ZhaoM. LiX. LiuY. HuangK. XiangL. ZhuangX. HuoB. YuT. ChenS. ChenM. ZhuY. Gut microbiome-generated phenylacetylglutamine from dietary protein is associated with crohn’s disease and exacerbates colitis in mouse model possibly via platelet activation.J. Crohn’s Colitis202317111833184610.1093/ecco‑jcc/jjad098 37350766
    [Google Scholar]
  10. LiuH. WangQ. HuangY. DengJ. XieX. ZhuJ. YuanY. HeY.M. HuangY.Y. LuoH.B. HeX. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of Inflammatory Bowel Diseases.Eur. J. Med. Chem.202224211463110.1016/j.ejmech.2022.114631 35985255
    [Google Scholar]
  11. HuangB. ChenZ. GengL. WangJ. LiangH. CaoY. ChenH. HuangW. SuM. WangH. XuY. LiuY. LuB. XianH. LiH. LiH. RenL. XieJ. YeL. WangH. ZhaoJ. ChenP. ZhangL. ZhaoS. ZhangT. XuB. CheD. SiW. GuX. ZengL. WangY. LiD. ZhanY. DelfounesoD. LewA.M. CuiJ. TangW.H. ZhangY. GongS. BaiF. YangM. ZhangY. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways.Cell2019179511601176.e2410.1016/j.cell.2019.10.027 31730855
    [Google Scholar]
  12. JiangY. ZhongM. LongF. YangR. ZhangY. LiuT. Network pharmacology-based prediction of active ingredients and mechanisms of Lamiophlomis rotata (Benth.) kudo against rheumatoid arthritis.Front. Pharmacol.201910143510.3389/fphar.2019.01435 31849678
    [Google Scholar]
  13. ZhouW. ZhangH. WangX. KangJ. GuoW. ZhouL. LiuH. WangM. JiaR. DuX. WangW. ZhangB. LiS. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis.Phytomedicine20229515383710.1016/j.phymed.2021.153837 34883416
    [Google Scholar]
  14. WangY. YuanY. WangW. HeY. ZhongH. ZhouX. ChenY. CaiX.J. LiuL. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.105454 35367781
    [Google Scholar]
  15. SafranM. The GeneCards Suite Chapter. In: Practical Guide to Life Science Databases.SingaporeSpringer20222756
    [Google Scholar]
  16. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  17. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855 31680165
    [Google Scholar]
  18. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  19. DainaA. MichielinO. ZoeteV. Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  20. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  21. WuC. OrozcoC. BoyerJ. LegliseM. GoodaleJ. BatalovS. HodgeC.L. HaaseJ. JanesJ. HussJ.W.III SuA.I. BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources.Genome Biol.20091011R13010.1186/gb‑2009‑10‑11‑r130 19919682
    [Google Scholar]
  22. WuC. JinX. TsuengG. AfrasiabiC. SuA.I. BioGPS: Building your own mash-up of gene annotations and expression profiles.Nucleic Acids Res.201644D1D313D31610.1093/nar/gkv1104 26578587
    [Google Scholar]
  23. WangH. ZhuH. ZhuW. XuY. WangN. HanB. SongH. QiaoJ. Bioinformatic analysis identifies potential key genes in the pathogenesis of turner syndrome.Front. Endocrinol.20201110410.3389/fendo.2020.00104 32210915
    [Google Scholar]
  24. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  25. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  26. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  27. TaniguchiK. WuL.W. GrivennikovS.I. de JongP.R. LianI. YuF.X. WangK. HoS.B. BolandB.S. ChangJ.T. SandbornW.J. HardimanG. RazE. MaeharaY. YoshimuraA. Zucman-RossiJ. GuanK.L. KarinM. A gp130–Src–YAP module links inflammation to epithelial regeneration.Nature20155197541576210.1038/nature14228 25731159
    [Google Scholar]
  28. RunkleK.B. KharbandaA. StypulkowskiE. CaoX.J. WangW. GarciaB.A. WitzeE.S. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling.Mol. Cell201662338539610.1016/j.molcel.2016.04.003 27153536
    [Google Scholar]
  29. ParkS.H. KimJ. MoonY. Caveolar communication with xenobiotic-stalled ribosomes compromises gut barrier integrity.Commun. Biol.20203127010.1038/s42003‑020‑0994‑1 32461676
    [Google Scholar]
  30. QianK. XuJ.X. DengY. PengH. PengJ. OuC.M. LiuZ. JiangL.H. TaiY.H. Signaling pathways of genetic variants and miRNAs in the pathogenesis of myasthenia gravis.Gland Surg.2020961933194410.21037/gs‑20‑39 33447544
    [Google Scholar]
  31. RoulisM. NikolaouC. KotsakiE. KaffeE. KaragianniN. KoliarakiV. SalpeaK. RagoussisJ. AidinisV. MartiniE. BeckerC. HerschmanH.R. VetranoS. DaneseS. KolliasG. Intestinal myofibroblast-specific Tpl2-Cox-2-PGE2 pathway links innate sensing to epithelial homeostasis.Proc. Natl. Acad. Sci. USA201411143E4658E466710.1073/pnas.1415762111 25316791
    [Google Scholar]
  32. QuaglioA.E.V. CastilhoA.C.S. Di StasiL.C. Experimental evidence of MAP kinase gene expression on the response of intestinal anti-inflammatory drugs.Life Sci.2015136606610.1016/j.lfs.2015.06.012 26141991
    [Google Scholar]
  33. LiuH. LiangJ. ZhongY. XiaoG. EfferthT. GeorgievM.I. Vargas-De-La-CruzC. BajpaiV.K. CaprioliG. LiuJ. LinJ. WuH. PengL. LiY. MaL. XiaoJ. WangQ. Dendrobium officinale polysaccharide alleviates intestinal inflammation by promoting small extracellular vesicle packaging of miR-433-3p.J. Agric. Food Chem.20216945135101352310.1021/acs.jafc.1c05134 34739249
    [Google Scholar]
  34. GrossiV. HyamsJ.S. GliddenN.C. KnightB.E. YoungE.E. Characterizing clinical features and creating a gene expression profile associated with pain burden in children with inflammatory bowel disease.Inflamm. Bowel Dis.20202681283129010.1093/ibd/izz240 31627210
    [Google Scholar]
  35. HishidaA. MatsuoK. GotoY. NaitoM. WakaiK. TajimaK. HamajimaN. Associations of a PTPN11 G/A polymorphism at intron 3 with Helicobactor pylori seropositivity, gastric atrophy and gastric cancer in Japanese.BMC Gastroenterol.2009915110.1186/1471‑230X‑9‑51 19589142
    [Google Scholar]
  36. Bard-ChapeauE.A. LiS. DingJ. ZhangS.S. ZhuH.H. PrincenF. FangD.D. HanT. Bailly-MaitreB. PoliV. VarkiN.M. WangH. FengG.S. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis.Cancer Cell201119562963910.1016/j.ccr.2011.03.023 21575863
    [Google Scholar]
  37. ZhangX. MeiD. ZhangL. WeiW. Src family protein kinase controls the fate of b cells in autoimmune diseases.Inflammation202144242343310.1007/s10753‑020‑01355‑1 33037966
    [Google Scholar]
  38. RomanoM. DE FrancescoF. ZarantonelloL. RuffoloC. FerraroG.A. ZanusG. GiordanoA. BassiN. CilloU. From inflammation to cancer in inflammatory bowel disease: Molecular perspectives.Anticancer Res.201636414471460 27069120
    [Google Scholar]
  39. BhatA.A. UppadaS. AchkarI.W. HashemS. YadavS.K. ShanmugakonarM. Al-NaemiH.A. HarisM. UddinS. Tight junction proteins and signaling pathways in cancer and inflammation: A functional crosstalk.Front. Physiol.20199194210.3389/fphys.2018.01942 30728783
    [Google Scholar]
  40. WangY. YuH. HeJ. Role of dyslipidemia in accelerating inflammation, autoimmunity, and atherosclerosis in systemic lupus erythematosus and other autoimmune diseases.Discov. Med.2020301594956 33357362
    [Google Scholar]
  41. EsquejoR.M. Roqueta-RiveraM. ShaoW. PhelanP.E. SeneviratneU. am Ende, C.W.; Hershberger, P.M.; Machamer, C.E.; Espenshade, P.J.; Osborne, T.F. Dipyridamole inhibits lipogenic gene expression by retaining SCAP-SREBP in the endoplasmic reticulum.Cell Chem. Biol.2021282169179.e710.1016/j.chembiol.2020.10.003 33096051
    [Google Scholar]
  42. SalmenkariH. KorpelaR. VapaataloH. Renin–angiotensin system in intestinal inflammation-Angiotensin inhibitors to treat inflammatory bowel diseases?Basic Clin. Pharmacol. Toxicol.2021129316117210.1111/bcpt.13624 34128327
    [Google Scholar]
  43. GargM. RoyceS.G. LubelJ.S. Letter: Intestinal inflammation, COVID-19 and gastrointestinal ACE2-exploring RAS inhibitors.Aliment. Pharmacol. Ther.202052356957010.1111/apt.15814 32374032
    [Google Scholar]
  44. LuoH. VongC.T. TanD. ZhangJ. YuH. YangL. ZhangC. LuoC. ZhongZ. WangY. Panax notoginseng saponins modulate the inflammatory response and improve IBD-Like symptoms via TLR/NF-κB and MAPK signaling pathways.Am. J. Chin. Med.202149492593910.1142/S0192415X21500440 33829964
    [Google Scholar]
  45. ZhouS. XuH. TangQ. XiaH. BiF. Dipyridamole enhances the cytotoxicities of trametinib against colon cancer cells through combined targeting of HMGCS1 and MEK pathway.Mol. Cancer Ther.202019113514610.1158/1535‑7163.MCT‑19‑0413 31554653
    [Google Scholar]
  46. WangL. BoX. YiX. XiaoX. ZhengQ. MaL. LiB. Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway.Cell Death Dis.202011972310.1038/s41419‑020‑02810‑5 32895368
    [Google Scholar]
  47. LiX. TianR. LiuL. WangL. HeD. CaoK. MaJ.K. HuangC. Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells.J. Int. Med. Res.202048810.1177/0300060520946169 32787737
    [Google Scholar]
  48. ZhangM.M. WangD. LuF. ZhaoR. YeX. HeL. AiL. WuC.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking.BioData Min.2021141110.1186/s13040‑020‑00232‑9 33430939
    [Google Scholar]
  49. ZhuL. ShenH. GuP.Q. LiuY.J. ZhangL. ChengJ.F. Baicalin alleviates TNBS induced colitis by inhibiting PI3K/AKT pathway activation.Exp. Ther. Med.202020158159010.3892/etm.2020.8718 32537016
    [Google Scholar]
  50. ZhangL. ZhangY. ZhongW. DiC. LinX. XiaZ. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.J. Biol. Chem.201428939268472685810.1074/jbc.M114.590554 25112868
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303287122240429092014
Loading
/content/journals/emiddt/10.2174/0118715303287122240429092014
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test