Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people, causing the COVID-19 global pandemic. The use of novel technologies led to the development of different types of SARS-CoV-2 vaccines that have reduced severe disease courses and related deaths. Besides the positive impact of vaccination on the pandemic, local and systemic side effects have been reported; they are usually mild to moderate, although also serious adverse events have been described.

Case Presentation

A 21-year-old female was referred to our hospital for the recent onset of severe polyuria and polydipsia, with the need for about 8 liters of daily water intake. The symptoms developed seven days after the administration of the second dose of the mRNA-based (Pfizer-BioNTech® BNT162b2) SARS-CoV-2 vaccine. In the suspicion of central diabetes insipidus (DI) development, she started treatment with desmopressin (Minirin® tablets) 60 mg/day with an improvement of symptoms and thirst. A thickening of the pituitary stalk was observed at the pituitary MRI with loss of the posterior pituitary bright spot on T1 weighted images. To confirm the diagnosis of central DI, both the water deprivation test and arginine stimulated copeptin test were performed; whilst the former gave no clear-cut indication of DI, the latter showed a reduced copeptin peak after arginine infusion consistent with the diagnosis of partial central DI. Furthermore, the development of symptoms right after the second dose of the vaccine strengthened the hypothesis that DI was related to the vaccination itself. After our evaluation, there was a progressive reduction of desmopressin dose to a complete discontinuation with the maintenance of a normal hydroelectrolytic balance. Clinical and biochemical follow-up was performed by repeating a pituitary MRI and a second arginine-stimulated copeptin test 15 months after the diagnosis. This time, copeptin levels reached a significantly higher peak after arginine stimulation that completely excluded central DI and at pituitary MRI, the thickening of the pituitary stalk previously described was no longer visible.

Conclusion

Neurohypophysitis can have an abrupt onset independently of the etiology. Central DI is a rather exceptional event after SARS-CoV-2 vaccination but should be recalled in case of sudden polyuria and polydipsia. DI is indeed reported even after SARS-CoV-2 infection, thus, this report should not discourage the use of mRNA-based vaccines. Furthermore, our case demonstrates that full recovery of posterior pituitary function is possible after immunization with anti-Covid-19 BNT162b2 vaccine. Further studies are needed to clarify the possible mechanism relating to SARS-CoV-2 vaccination and this rare adverse event.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303286560231124115052
2024-01-12
2024-11-16
Loading full text...

Full text loading...

References

  1. World Health OrganizationWHO Coronavirus (COVID-19) Dashboard.Available From: https://covid19.who.int/ 2023
  2. WatsonO.J. BarnsleyG. ToorJ. HoganA.B. WinskillP. GhaniA.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study.Lancet Infect. Dis.20222291293130210.1016/S1473‑3099(22)00320‑6 35753318
    [Google Scholar]
  3. CreechC.B. WalkerS.C. SamuelsR.J. SARS-CoV-2 Vaccines.JAMA2021325131318132010.1001/jama.2021.3199 33635317
    [Google Scholar]
  4. LamprinouM. SachinidisA. StamoulaE. VavilisT. PapazisisG. COVID-19 vaccines adverse events: Potential molecular mechanisms.Immunol. Res.202371335637210.1007/s12026‑023‑09357‑5 36607502
    [Google Scholar]
  5. ZhaoY. WuX. Influence of COVID-19 vaccines on endocrine system.Endocrine202278224124610.1007/s12020‑022‑03119‑3 35751776
    [Google Scholar]
  6. FajeA. Hypophysitis: Evaluation and Management.Clin. Diabetes Endocrinol.2016211510.1186/s40842‑016‑0034‑8 28702249
    [Google Scholar]
  7. CaturegliP. Di DalmaziG. LombardiM. GrossoF. LarmanH.B. LarmanT. TavernaG. CosottiniM. LupiI. Hypophysitis secondary to cytotoxic T-lymphocyte–associated protein 4 blockade.Am. J. Pathol.2016186123225323510.1016/j.ajpath.2016.08.020 27750046
    [Google Scholar]
  8. KurokawaR. KurokawaM. BabaA. NakayaM. KatoS. BapurajJ. NakataY. OtaY. SrinivasanA. AbeO. MoritaniT. Neuroimaging of hypophysitis: Etiologies and imaging mimics.Jpn. J. Radiol.202341991192710.1007/s11604‑023‑01417‑y 37010787
    [Google Scholar]
  9. AnkireddypalliA.R. ChowL.S. RadulescuA. KawakamiY. ArakiT. A case of hypophysitis associated with SARS-CoV-2 vaccination.AACE Clin. Case Rep.20228520420910.1016/j.aace.2022.06.001 35754921
    [Google Scholar]
  10. IshayA. ShachamE.C. Central diabetes insipidus: A late sequela of BNT162b2 SARS-CoV-2 mRNA vaccine?BMC Endocr. Disord.20232314710.1186/s12902‑023‑01296‑4 36810011
    [Google Scholar]
  11. AchT. KammounF. FekihH.E. SlamaN.B.H. KahlounS. FredjF.B. Central diabetes insipidus revealing a hypophysitis induced by SARS-CoV-2 vaccine.Therapie202378445345510.1016/j.therap.2022.09.007
    [Google Scholar]
  12. PartenopeC. PedranziniQ. PetriA. RabboneI. ProdamF. BelloneS. AVP deficiency (central diabetes insipidus) following immunization with anti-COVID-19 BNT162b2 Comirnaty vaccine in adolescents: A case report.Front. Endocrinol. (Lausanne)202314116695310.3389/fendo.2023.1166953 37143723
    [Google Scholar]
  13. BouçaB. RoldãoM. BogalhoP. CerqueiraL. Silva-NunesJ. Central diabetes insipidus following immunization with BNT162b2 mRNA COVID-19 vaccine: A case report.Front. Endocrinol. (Lausanne)20221388907410.3389/fendo.2022.889074 35600593
    [Google Scholar]
  14. DasheA.M. CrammR.E. CristC.A. HabenerJ.F. Solomon DH. A water deprivation test for the differential diagnosis of polyuria.JAMA1963185969970310.1001/jama.1963.03060090031011
    [Google Scholar]
  15. WinzelerB. Cesana-NigroN. RefardtJ. VogtD.R. ImberC. MorinB. PopovicM. SteinmetzM. SailerC.O. SzinnaiG. ChifuI. FassnachtM. Christ-CrainM. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: A prospective diagnostic study.Lancet20193941019858759510.1016/S0140‑6736(19)31255‑3 31303316
    [Google Scholar]
  16. IppolitoS. GalloD. RossiniA. PateraB. LanzoN. FazzinoG.F.M. PiantanidaE. TandaM.L. SARS-CoV-2 vaccine-associated subacute thyroiditis: Insights from a systematic review.J. Endocrinol. Invest.20224561189120010.1007/s40618‑022‑01747‑0 35094372
    [Google Scholar]
  17. LeeH.J. SajanA. TomerY. Hyperglycemic Emergencies Associated With COVID-19 Vaccination: A Case Series and Discussion.J. Endocr. Soc.2021511bvab14110.1210/jendso/bvab141 34604689
    [Google Scholar]
  18. VaronaJ.F. García-IsidroM. MoeinvaziriM. Ramos-LópezM. Fernández-DomínguezM. Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia (VITT).Eur. J. Intern. Med.202191909210.1016/j.ejim.2021.06.025 34256983
    [Google Scholar]
  19. TaylorP. AllenL. ShrikrishnapalasuriyarN. StechmanM. ReesA. Vaccine‐induced thrombosis and thrombocytopenia with bilateral adrenal haemorrhage.Clin. Endocrinol. (Oxf.)2022971262710.1111/cen.14548 34235757
    [Google Scholar]
  20. AlibertiL. GagliardiI. RizzoR. BortolottiD. SchiumaG. FranceschettiP. GafàR. BorgattiL. CavalloM.A. ZatelliM.C. AmbrosioM.R. Pituitary apoplexy and COVID-19 vaccination: A case report and literature review.Front. Endocrinol. (Lausanne)202213103548210.3389/fendo.2022.1035482 36465651
    [Google Scholar]
  21. Piñar-GutiérrezA. Remón-RuizP. Soto-MorenoA. Case report: Pituitary apoplexy after COVID-19 vaccination.Med. Clin. (Barc.)20221581049849910.1016/j.medcli.2021.09.028 34895747
    [Google Scholar]
  22. TaiebA. AsmaB.A. MouniraE.E. Evidences that SARS-CoV-2 Vaccine-Induced apoplexy may not be solely due to ASIA or VITT syndrome’, Commentary on Pituitary apoplexy and COVID-19 vaccination: A case report and literature review.Front. Endocrinol. (Lausanne)202314111158110.3389/fendo.2023.1111581 36761192
    [Google Scholar]
  23. BragazziN.L. HejlyA. WatadA. AdawiM. AmitalH. ShoenfeldY. ASIA syndrome and endocrine autoimmune disorders.Best Pract. Res. Clin. Endocrinol. Metab.202034110141210.1016/j.beem.2020.101412 32265102
    [Google Scholar]
  24. BorbaV. MalkovaA. BasantsovaN. HalpertG. AndreoliL. TincaniA. AmitalH. ShoenfeldY. Classical Examples of the Concept of the ASIA Syndrome.Biomolecules20201010143610.3390/biom10101436 33053910
    [Google Scholar]
  25. ByunD.J. WolchokJ.D. RosenbergL.M. GirotraM. Cancer immunotherapy — immune checkpoint blockade and associated endocrinopathies.Nat. Rev. Endocrinol.201713419520710.1038/nrendo.2016.205 28106152
    [Google Scholar]
  26. PostowM.A. SidlowR. HellmannM.D. Immune-related adverse events associated with immune checkpoint blockade.N. Engl. J. Med.2018378215816810.1056/NEJMra1703481 29320654
    [Google Scholar]
  27. TakahashiY. MECHANISMS IN ENDOCRINOLOGY: Autoimmune hypopituitarism: Novel mechanistic insights.Eur. J. Endocrinol.20201824R59R6610.1530/EJE‑19‑1051 31999621
    [Google Scholar]
  28. CaturegliP. NewschafferC. OliviA. PomperM.G. BurgerP.C. Rose, NR Autoimmune hypophysitis.Endocrine Rev.200526559961410.1210/er.2004‑0011
    [Google Scholar]
  29. BarbaroD. LoniG. Lymphocytic hypophysitis and autoimmune thyroid disease.J. Endocrinol. Invest.200023533934010.1007/BF03343733
    [Google Scholar]
  30. LimS. ElstonM.S. SwarbrickM.J. ConaglenJ.V. Lymphocytic hypophysitis with associated thyroiditis in a man with aseptic meningitis.Pituitary200912437537910.1007/s11102‑008‑0119‑1 18401720
    [Google Scholar]
  31. IwamaS. ArimaH. Anti-pituitary antibodies as a marker of autoimmunity in pituitary glands.Endocr. J.202067111077108310.1507/endocrj.EJ20‑0436 33055452
    [Google Scholar]
  32. AriharaZ. SakuraiK. NiitsumaS. SatoR. YamadaS. InoshitaN. IwataN. FujisawaH. WatanabeT. SuzukiA. TakahashiK. SugimuraY. Studies on anti-rabphilin-3A antibodies in 15 consecutive patients presenting with central diabetes insipidus at a single referral center.Sci. Rep.2022121444010.1038/s41598‑022‑08552‑y 35292721
    [Google Scholar]
  33. YavariA. SharifanZ. LarijaniB. Mosadegh KhahA. Central diabetes insipidus secondary to COVID-19 infection: A case report.BMC Endocr. Disord.202222113410.1186/s12902‑022‑01048‑w 35590312
    [Google Scholar]
  34. RajevacH. BachanM. KhanZ. Diabetes insipidus as a symptom of COVID-19 infection: Case report.Chest20201584A257610.1016/j.chest.2020.09.172
    [Google Scholar]
  35. SheikhA.B. JavedN. SheikhA.A.E. UpadhyayS. ShekharR. Diabetes insipidus and concomitant myocarditis: A late sequelae of COVID-19 infection.J. Investig. Med. High Impact Case Rep.2021910.1177/2324709621999954 33686899
    [Google Scholar]
  36. MisgarR.A. RasoolA. WaniA.I. BashirM.I. Central diabetes insipidus (Infundibuloneuro hypophysitis): A late complication of COVID-19 infection.J. Endocrinol. Invest.202144122855285610.1007/s40618‑021‑01627‑z 34215999
    [Google Scholar]
  37. LizziM. AricòM. CarloneG. AnzellottiM.T. TrottaD. PalatinoV. Central diabetes insipidus: Another rare complication of SARS-CoV-2 infection in children?Pediatr. Infect. Dis. J.20224110e44810.1097/INF.0000000000003632 35830512
    [Google Scholar]
  38. EngelA. MaasD. PMON82 SARS-CoV-2 Associated hypophysitis and central diabetes insipidus.J. Endocr. Soc.20226Suppl. 1A56610.1210/jendso/bvac150.1175
    [Google Scholar]
  39. SheikhA.B. JavaidM.A. SheikhA.A.E. ShekharR. Central adrenal insufficiency and diabetes insipidus as potential endocrine manifestations of COVID-19 infection: A case report.Pan Afr. Med. J.20213822210.11604/pamj.2021.38.222.28243 34046127
    [Google Scholar]
  40. PalR. BanerjeeM. COVID-19 and the endocrine system: Exploring the unexplored.J. Endocrinol. Invest.20204371027103110.1007/s40618‑020‑01276‑8 32361826
    [Google Scholar]
  41. ShirbhateE. PandeyJ. PatelV.K. KamalM. JawaidT. GorainB. KesharwaniP. RajakH. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention.Pharmacol. Rep.20217361539155010.1007/s43440‑021‑00303‑6 34176080
    [Google Scholar]
  42. BrannD.H. TsukaharaT. WeinrebC. LipovsekM. Van den BergeK. GongB. ChanceR. MacaulayI.C. ChouH.J. FletcherR.B. DasD. StreetK. de BezieuxH.R. ChoiY.G. RissoD. DudoitS. PurdomE. MillJ. HachemR.A. MatsunamiH. LoganD.W. GoldsteinB.J. GrubbM.S. NgaiJ. DattaS.R. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia.Sci. Adv.2020631eabc580110.1126/sciadv.abc5801 32937591
    [Google Scholar]
  43. GuJ. GongE. ZhangB. ZhengJ. GaoZ. ZhongY. ZouW. ZhanJ. WangS. XieZ. ZhuangH. WuB. ZhongH. ShaoH. FangW. GaoD. PeiF. LiX. HeZ. XuD. ShiX. AndersonV.M. LeongA.S.Y. Multiple organ infection and the pathogenesis of SARS.J. Exp. Med.2005202341542410.1084/jem.20050828 16043521
    [Google Scholar]
  44. GuW.T. ZhouF. XieW.Q. WangS. YaoH. LiuY.T. GaoL. WuZ.B. A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors.Endocrine202172234034810.1007/s12020‑021‑02697‑y 33786714
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303286560231124115052
Loading
/content/journals/emiddt/10.2174/0118715303286560231124115052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test