Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Diabetic wound represents a serious issue with a substantial impact and an exceptionally complex pathology affecting patients’ mental health and quality of life. So, we have developed a novel 3D organo-hydrogel nanocomposite of polydopamine/TiO nanoparticles and cu (PDA-TiO@Cu) and examined its efficacy in diabetic wound healing.

Methods

Forty-five adult male albino rats were divided into normal control rats (non-diabetic rats with non-treated skin wounds), diabetic control rats (diabetic rats with non-treated skin wounds), and organo-hydrogel-treated rats (diabetic wounds treated with topically applied organo-hydrogel once daily). Macroscopic changes of the wound were observed on days 0, 3, 5, 7, and 10 to measure wound diameters. Skin specimens from the wound tissue were taken on days 3, 7, and 10, respectively, and examined histologically and immunohistochemically. Also, the gene expressions of collagen I, Matrix Metalloproteinase-9 (MMP-9), and Epidermal Growth Factor (EGF), and levels of Interleukin 6 (IL-6) and Superoxide Dismutase (SOD) were assessed.

Results

Our observed results indicated that the developed patch significantly accelerated the healing time compared to the normal control and diabetic control groups. Moreover, the patch-loaded group revealed complete re-epithelization and a highly significant increase in the mean area % of CD31 immunostaining on day 7. The organo-hydrogel-loaded group displayed a significant decrease in gene expression of MMP-9 and a significant increase in gene expression of EGF and collagen I. Additionally, the organo-hydrogel-loaded group exhibited a significant decrease in levels of IL-6 and a significant increase in levels of SOD, compared to the normal diabetic control groups.

Conclusion

The organo-hydrogel can be used for treating and decreasing the healing period of diabetic wounds.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303280532240415094718
2024-04-26
2025-01-29
Loading full text...

Full text loading...

References

  1. HuY. WuB. XiongY. TaoR. PanayiA.C. ChenL. TianW. XueH. ShiL. ZhangX. XiongL. MiB. LiuG. Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing.Chem. Eng. J.202142613063410.1016/j.cej.2021.130634
    [Google Scholar]
  2. RastogiA. GoyalG. KesavanR. BalA. KumarH. Mangalanadanam; Kamath, P.; Jude, E.B.; Armstrong, D.G.; Bhansali, A. Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study.Diabetes Res. Clin. Pract.202016210811310.1016/j.diabres.2020.108113 32165163
    [Google Scholar]
  3. LeeH.J. JeongM. NaY.G. KimS.J. LeeH.K. ChoC.W. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats.Molecules20202520461010.3390/molecules25204610 33050393
    [Google Scholar]
  4. LiuJ. QuM. WangC. XueY. HuangH. ChenQ. SunW. ZhouX. XuG. JiangX. A dual-cross-linked hydrogel patch for promoting diabetic wound healing.Small20221817e210617210.1002/smll.202106172
    [Google Scholar]
  5. CuiJ. ZhangS. ChengS. ShenH. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers.Front. Bioeng. Biotechnol.202311107749010.3389/fbioe.2023.1077490 36860881
    [Google Scholar]
  6. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina20215710107210.3390/medicina57101072 34684109
    [Google Scholar]
  7. ChinJ.S. MaddenL. ChewS.Y. BeckerD.L. Drug therapies and delivery mechanisms to treat perturbed skin wound healing.Adv. Drug Deliv. Rev.2019149-15021810.1016/j.addr.2019.03.006 30959068
    [Google Scholar]
  8. ChenJ. LiuY. ChengG. GuoJ. DuS. QiuJ. WangC. LiC. YangX. ChenT. ChenZ. Tailored hydrogel delivering niobium carbide boosts ros‐scavenging and antimicrobial activities for diabetic wound healing.Small20221827220130010.1002/smll.202201300 35678523
    [Google Scholar]
  9. AfonsoA.C. OliveiraD. SaavedraM.J. BorgesA. SimõesM. Biofilms in diabetic foot ulcers: Impact, risk factors and control strategies.Int. J. Mol. Sci.20212215827810.3390/ijms22158278 34361044
    [Google Scholar]
  10. ChenP. CampilloN. KetanV. LobmannR. WuS. GameF. McintoshC. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes.Diabetes Metab. Res. Rev.202325e364410.1002/dmrr.3644
    [Google Scholar]
  11. LiG. KoC.N. LiD. YangC. WangW. YangG.J. Di PrimoC. WongV.K.W. XiangY. LinL. MaD.L. LeungC.H. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing.Nat. Commun.2021121336310.1038/s41467‑021‑23448‑7 34099651
    [Google Scholar]
  12. GuoZ. LiuH. ShiZ. LinL. LiY. WangM. PanG. LeiY. XueL. Responsive hydrogel-based microneedle dressing for diabetic wound healing.J. Mater. Chem. B. Mater. Biol. Med202210183501351110.1039/D2TB00126H 35416225
    [Google Scholar]
  13. ZhangM. ZhaoX. Alginate hydrogel dressings for advanced wound management.Int. J. Biol. Macromol.20201621414142810.1016/j.ijbiomac.2020.07.311 32777428
    [Google Scholar]
  14. TavakoliS. KlarA.S. Advanced hydrogels as wound dressings.Biomolecules2020108116910.3390/biom10081169 32796593
    [Google Scholar]
  15. BarrosoA. MestreH. AscensoA. SimõesS. ReisC. Nanomaterials in wound healing: From material sciences to wound healing applications.Nano Select20201544346010.1002/nano.202000055
    [Google Scholar]
  16. NikpasandA. ParviziM.R. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; an animal model study.Bull. Emerg. Trauma20197436637210.29252/beat‑070405 31857999
    [Google Scholar]
  17. ArafaM.G. El-KasedR.F. ElmazarM.M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents.Sci. Rep.2018811367410.1038/s41598‑018‑31895‑4 30209256
    [Google Scholar]
  18. AnandS. RajinikanthP.S. AryaD.K. PandeyP. GuptaR.K. SankhwarR. ChidambaramK. Multifunctional biomimetic nanofibrous scaffold loaded with asiaticoside for rapid diabetic wound healing.Pharmaceutics202214227310.3390/pharmaceutics14020273 35214006
    [Google Scholar]
  19. YuM. LiuW. LiJ. LuJ. LuH. JiaW. LiuF. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway.Stem Cell Res. Ther.202011135010.1186/s13287‑020‑01824‑2 32787917
    [Google Scholar]
  20. ElksassS. AlkabesH.A. El-KemaryN.M. El-KelanyK.E. El-KemaryM. Anti-bacterial and multi-functional smart wearable sensor based on organo-hydrogel for diagnosis of the anterior cruciate ligament injuries, and sensing glove for rehabilitation of joints motion.Mater. Today Commun.20223210413110.1016/j.mtcomm.2022.104131
    [Google Scholar]
  21. WangM. YangY. YuanK. YangS. TangT. Dual-functional hybrid quaternized chitosan/Mg/alginate dressing with antibacterial and angiogenic potential for diabetic wound healing.J. Orthop. Translat.20213061510.1016/j.jot.2021.07.006 34466384
    [Google Scholar]
  22. ManneA.A. ArigelaB. GiduturiA.K. KomaravoluR.K. MangamuriU. PodaS. Pterocarpus marsupium Roxburgh heartwood extract/chitosan nanoparticles loaded hydrogel as an innovative wound healing agent in the diabetic rat model.Mater. Today Commun.20212610191610.1016/j.mtcomm.2020.101916
    [Google Scholar]
  23. YangZ. HuangR. ZhengB. GuoW. LiC. HeW. WeiY. DuY. WangH. WuD. WangH. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing.Adv. Sci.202188200362710.1002/advs.202003627 33898178
    [Google Scholar]
  24. ShamsiH. VelayatiM. RahimzadehH. MozafariN. Beneficial effects of nanocurcumin loaded chitosan biofilm on healing of full thickness excisional wounds in diabetic rats.Iran. J. Vet. Surg.202015324110.30500/ivsa.2020.208499.1203
    [Google Scholar]
  25. KhazaeliP. AlaeiM. KhaksarihadadM. RanjbarM. Preparation of PLA/chitosan nanoscaffolds containing cod liver oil and experimental diabetic wound healing in male rats study.J. Nanobiotechnology202018117610.1186/s12951‑020‑00737‑9 33256764
    [Google Scholar]
  26. ZhouJ. NiM. LiuX. RenZ. ZhengZ. Curcumol promotes vascular endothelial growth factor (vegf)-mediated diabetic wound healing in streptozotocin-induced hyperglycemic rats.Med. Sci. Monit.20172355556210.12659/MSM.902859 28138126
    [Google Scholar]
  27. ChenL.Y. ChengH.L. KuanY.H. LiangT.J. ChaoY.Y. LinH.C. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats.Biomedicines20219776110.3390/biomedicines9070761 34209369
    [Google Scholar]
  28. ChenL.Y. HuangC.N. LiaoC.K. ChangH.M. KuanY-H. TsengT-J. YenK-J. YangK-L. LinH-C. Effects of rutin on wound healing in hyperglycemic rats.Antioxidants2020911112210.3390/antiox9111122
    [Google Scholar]
  29. KamarS.S. Abdel-KaderD.H. RashedL.A. Beneficial effect of curcumin nanoparticles-hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies.Ann. Anat.20192229410210.1016/j.aanat.2018.11.005 30521949
    [Google Scholar]
  30. Al-RomaimaA. GuanX. QinX. LiaoY. QinG. TangS. FengJ. Topical application of chinese formula yeliangen promotes wound healing in streptozotocin-induced diabetic rats.J. Diabetes Res.2022202211410.1155/2022/1193392 36484062
    [Google Scholar]
  31. FuJ. HuangJ. LinM. XieT. YouT. Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization.J. Surg. Res.202024621322310.1016/j.jss.2019.09.011 31606511
    [Google Scholar]
  32. AlsarayrehA.Z. OranS.A. ShakhanbehJ.M. Effect of Rhus coriaria L. methanolic fruit extract on wound healing in diabetic and non‐diabetic rats.J. Cosmet. Dermatol.20222183567357710.1111/jocd.14668 34928525
    [Google Scholar]
  33. AlkabesH.A. ElksassS. El-KelanyK.E. El-KemaryM. A multifunctional wearable electronic skin: Wide range temperature sensing based on copper nanoclusters organo-hydrogel with self-healable, self-adhesive, anti-freezing properties.Sens. Actuators A Phys.202436511488510.1016/j.sna.2023.114885
    [Google Scholar]
  34. VijayakumarV. SamalS.K. MohantyS. NayakS.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management.Int. J. Biol. Macromol.201912213714810.1016/j.ijbiomac.2018.10.120 30342131
    [Google Scholar]
  35. SiedleckaD. MicałW. Krzewicka-RomaniukE. Streptozotocin: An antibiotic used to induce diabetes on experimental animals.J. Educ. Health Sport202010990690910.12775/JEHS.2020.10.09.110
    [Google Scholar]
  36. FurmanB.L. Streptozotocin‐induced diabetic models in mice and rats.Curr. Protoc.202114e7810.1002/cpz1.78 33905609
    [Google Scholar]
  37. Silva-ReisR. Faustino-RochaA.I. SilvaJ. ValadaA. AzevedoT. AnjosL. GonçalvesL. PintoM.L. FerreiraR. SilvaA.M.S. CardosoS.M. OliveiraP.A. Studying and analyzing humane endpoints in the fructose-fed and streptozotocin-injected rat model of diabetes.Animals2023138139710.3390/ani13081397 37106960
    [Google Scholar]
  38. AasyN.K.A. El-LakanyS.A. MasangaP.M. KamounE.A. EL-Moslamy, S.H.; Abu-Serie, M.; Aly, R.G.; Elgindy, N.A. Concurrent tissue engineering for wound healing in diabetic rats utilizing dual actions of green synthesized cuo nps prepared from two plants grown in egypt.Int. J. Nanomedicine2023181927194710.2147/IJN.S397045 37064292
    [Google Scholar]
  39. DongH. WangL. DuL. WangX. LiQ. WangX. ZhangJ. NieJ. MaG. Smart polycationic hydrogel dressing for dynamic wound healing.Small20221825220162010.1002/smll.202201620 35599229
    [Google Scholar]
  40. DingQ. SunT. SuW. JingX. YeB. SuY. ZengL. QuY. YangX. WuY. LuoZ. GuoX. Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: A stepwise countermeasure for diabetic skin wound healing.Adv. Healthc. Mater.20221112210279110.1002/adhm.202102791 35182097
    [Google Scholar]
  41. BardaaS. MakniK. BoudaouaraO. BardaaT. KtariN. HachichaS. Ben SalahR. KallelR. SahnounZ. BoufiS. Development and evaluation of the wound healing effect of a novel topical cream formula based on ginkgo biloba extract on wounds in diabetic rats.BioMed Res. Int.2021202111210.1155/2021/6474706 34692837
    [Google Scholar]
  42. ChakrabortyT. GuptaS. NairA. ChauhanS. SainiV. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats.J. Drug Deliv. Sci. Technol.20216410260110.1016/j.jddst.2021.102601
    [Google Scholar]
  43. ShahS.A. SohailM. KhanS.A. KousarM. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels.Mater. Sci. Eng. C202112611216910.1016/j.msec.2021.112169 34082970
    [Google Scholar]
  44. MaW. ZhangX. LiuY. FanL. GanJ. LiuW. ZhaoY. SunL. Polydopamine decorated microneedles with Fe‐MSC‐derived nanovesicles encapsulation for wound healing.Adv. Sci.2022913210331710.1002/advs.202103317 35266637
    [Google Scholar]
  45. OuQ. ZhangS. FuC. YuL. XinP. GuZ. CaoZ. WuJ. WangY. More natural more better: Triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing.J. Nanobiotechnology202119123710.1186/s12951‑021‑00973‑7 34380475
    [Google Scholar]
  46. OnlineV.A. HuC. LiuW. LongL. WangZ. YuanY. ZhangW. HeS. WangJ. YangL. LuL. WangY. hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type II.J. Mater. Chem. B.2021102132810.1039/D1TB02170B
    [Google Scholar]
  47. AbdollahiZ. ZareE.N. SalimiF. GoudarziI. TayF.R. MakvandiP. Bioactive carboxymethyl starch-based hydrogels decorated with cuo nanoparticles: antioxidant and antimicrobial properties and accelerated wound healing in vivo.Int. J. Mol. Sci.2021225253110.3390/ijms22052531 33802469
    [Google Scholar]
  48. ZhengD. HuangC. ZhuX. HuangH. XuC. Performance of polydopamine complex and mechanisms in wound healing.Int. J. Mol. Sci.202122191056310.3390/ijms221910563 34638906
    [Google Scholar]
  49. EzhilarasuH. VishalliD. DheenS.T. BayB.H. SrinivasanD.K. Nanoparticle-based therapeutic approach for diabetic wound healing.Nanomaterials2020106123410.3390/nano10061234 32630377
    [Google Scholar]
  50. HaqueS.T. SahaK. Biomaterials Science in vitro and in vivo clinical studies for diabetic.Biomater. Sci.202197705774710.1039/D1BM01211H 34709244
    [Google Scholar]
  51. AitchesonS.M. FrentiuF.D. HurnS.E. EdwardsK. MurrayR.Z. Skin wound healing: Normal macrophage function and macrophage dysfunction in diabetic wounds.Molecules20212616491710.3390/molecules26164917 34443506
    [Google Scholar]
  52. KrishnaswamyV.R. MintzD. SagiI. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds.Biochim. Biophys. Acta Mol. Cell Res.20171864112220222710.1016/j.bbamcr.2017.08.003 28797647
    [Google Scholar]
  53. IsmailN.A. AminK.A.M. MajidF.A.A. RazaliM.H. MajidA. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies.Mater. Sci. Eng. C201910310977010.1016/j.msec.2019.109770
    [Google Scholar]
  54. ShalabyM.A. MoustaphaM. HeshamA. Nanomaterials for application in wound Healing : Current state - of - the - art and future perspectives.Springer Netherlands20222910.1007/s10965‑021‑02870‑x
    [Google Scholar]
  55. ZhaoY. LiZ. SongS. YangK. LiuH. YangZ. WangJ. YangB. LinQ. Skin‐inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings.Adv. Funct. Mater.20192931190147410.1002/adfm.201901474
    [Google Scholar]
  56. Ferrer-TasiesL. SantanaH. Cabrera-PuigI. González-MiraE. Ballell-HosaL. Castellar-ÁlvarezC. CórdobaA. Merlo-MasJ. GerónimoH. ChineaG. FalcónV. Moreno-CalvoE. PedersenJ.S. RomeroJ. Navarro-RequenaC. ValdésC. LimontaM. BerlangaJ. SalaS. MartínezE. VecianaJ. VentosaN. Recombinant human epidermal growth factor/quatsome nanoconjugates: A robust topical delivery system for complex wound healing.Adv. Ther.202146200026010.1002/adtp.202000260
    [Google Scholar]
  57. García-OjalvoA. Berlanga AcostaJ. Figueroa-MartínezA. Béquet-RomeroM. Mendoza-MaríY. Fernández-MayolaM. Fabelo-MartínezA. Guillén-NietoG. Systemic translation of locally infiltrated epidermal growth factor in diabetic lower extremity wounds.Int. Wound J.20191661294130310.1111/iwj.13189 31429187
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303280532240415094718
Loading
/content/journals/emiddt/10.2174/0118715303280532240415094718
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Diabetic wound; EGF; IL-6; MMP-9; organo-hydrogel nanocomposite; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test