Skip to content
2000
image of Therapeutic Targeting of Quercetin to Breast Cancer Cells under In Vitro Conditions: A Systematic Review

Abstract

Background

Quercetin (QT) is an effective plant compound in treating various diseases, including certain types of cancer. Therefore, this systematic review study was conducted to investigate the positive effects of quercetin (QT) on different breast cancer cell lines under conditions.

Objective

The purpose of this study was to explore the beneficial effects of quercetin (QT) on various breast cancer cell lines in an setting.

Methods

Using various databases, including PubMed, Scopus, Science Direct, and Google Scholar, we searched for publications from 2018 to May 2024 based on relevant terms and keywords for this systematic review. Inclusion criteria focused on English, open access, and original studies that exclusively examined the effects of QT on breast cancer cell types .

Results

From the initial search, 1308 publications were identified. However, only 46 met the inclusion criteria and were included in this systematic review.

Conclusion

In summary, quercetin (QT) shows anti-tumor effects on different breast cancer cell lines by activating the PI3K/AKT/mTOR, IGF1/IGF1R, MAPK, Transforming Growth Factor-β (TGFβ), and JAK/STAT1 pathways. Nonetheless, further extensive animal and clinical studies are essential to draw definitive conclusions.

Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048332611250106075111
2025-01-28
2025-05-08
Loading full text...

Full text loading...

References

  1. Sopik V. International variation in breast cancer incidence and mortality in young women. Breast Cancer Res. Treat. 2021 186 2 497 507 10.1007/s10549‑020‑06003‑8 33145697
    [Google Scholar]
  2. Liang Y. Zhang H. Song X. Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Seminars in cancer biology. Elsevier 2020
    [Google Scholar]
  3. Niazvand F. Orazizadeh M. Khorsandi L. Abbaspour M. Mansouri E. Khodadadi A. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina 2019 55 4 114 10.3390/medicina55040114 31013662
    [Google Scholar]
  4. Mokbel K Mokbel K Chemoprevention of breast cancer with vitamins and micronutrients: A concise review. In Vivo 2019 33 4 983 997
    [Google Scholar]
  5. Senkus E. Kyriakides S. Ohno S. Penault-Llorca F. Poortmans P. Rutgers E. Zackrisson S. Cardoso F. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015 26 Suppl. 5 v8 v30 10.1093/annonc/mdv298 26314782
    [Google Scholar]
  6. Kandaswami C. Lee L-T. Lee P-P.H. Hwang J-J. Ke F-C. Huang Y-T. Lee M.T. The antitumor activities of flavonoids. In Vivo 2005 19 5 895 909 16097445
    [Google Scholar]
  7. Tu S-H. Chen L-C. Ho Y-S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. Yao Wu Shi Pin Fen Xi 2017 25 1 119 124 28911529
    [Google Scholar]
  8. Wang C-C Ho C-T Lee S-C Way T-D Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells. J Food Drug Anal 2016 24 1 105 111
    [Google Scholar]
  9. Wen L. Zhao Y. Jiang Y. Yu L. Zeng X. Yang J. Tian M. Liu H. Yang B. Identification of a flavonoid C -glycoside as potent antioxidant. Free Radic. Biol. Med. 2017 110 92 101 10.1016/j.freeradbiomed.2017.05.027 28587909
    [Google Scholar]
  10. Nikolaou K.C. Talianidis I. Hepatic cancer stem cells may arise from adult ductal progenitors. Mol. Cell. Oncol. 2016 3 1 e1021946 10.1080/23723556.2015.1021946 27308536
    [Google Scholar]
  11. Kobori M. Takahashi Y. Sakurai M. Akimoto Y. Tsushida T. Oike H. Ippoushi K. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice. Mol. Nutr. Food Res. 2016 60 2 300 312 10.1002/mnfr.201500595 26499876
    [Google Scholar]
  12. Noolu B Gogulothu R Bhat M In vivo inhibition of proteasome activity and tumour growth by murraya koenigii leaf extract in breast cancer xenografts and by its active flavonoids in breast cancer cells. Anticancer Agents Med Chem 2016 16 12 1605 1614
    [Google Scholar]
  13. Liberati A. Altman D.G. Tetzlaff J. Mulrow C. Gøtzsche P.C. Ioannidis J.P. Clarke M. Devereaux P.J. Kleijnen J. Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009 151 4 W 10.7326/0003‑4819‑151‑4‑200908180‑00136 19622512
    [Google Scholar]
  14. Manouchehri J.M. Turner K.A. Kalafatis M. TRAIL-induced apoptosis in TRAIL-resistant breast carcinoma through quercetin cotreatment. Breast Cancer 2018 12 1178223417749855 10.1177/1178223417749855 29434473
    [Google Scholar]
  15. Wu Q. Kroon P.A. Shao H. Needs P.W. Yang X. Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells. J. Agric. Food Chem. 2018 66 27 7181 7189 10.1021/acs.jafc.8b02420 29905475
    [Google Scholar]
  16. Ponraj T. Vivek R. Paulpandi M. Rejeeth C. Nipun Babu V. Vimala K. Anand K. Sivaselvam S. Vasanthakumar A. Ponpandian N. Kannan S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2 NPs. J. Mater. Chem. B Mater. Biol. Med. 2018 6 21 3555 3570 10.1039/C8TB00769A 32254451
    [Google Scholar]
  17. Cao L. Yang Y. Ye Z. Lin B. Zeng J. Li C. Liang T. Zhou K. Li J. Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways. Int. J. Mol. Med. 2018 42 3 1625 1636 10.3892/ijmm.2018.3741 29956731
    [Google Scholar]
  18. Aghapour F. Moghadamnia A.A. Nicolini A. Kani S.N.M. Barari L. Morakabati P. Rezazadeh L. Kazemi S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun. 2018 500 4 860 865 10.1016/j.bbrc.2018.04.174 29698680
    [Google Scholar]
  19. Li S. Yuan S. Zhao Q. Wang B. Wang X. Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother. 2018 100 441 447 10.1016/j.biopha.2018.02.055 29475141
    [Google Scholar]
  20. de Oliveira Pedro R. Hoffmann S. Pereira S. Goycoolea F.M. Schmitt C.C. Neumann M.G. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur. J. Pharm. Biopharm. 2018 131 203 210 10.1016/j.ejpb.2018.08.009 30145220
    [Google Scholar]
  21. Li X. Zhou N. Wang J. Liu Z. Wang X. Zhang Q. Liu Q. Gao L. Wang R. Quercetin suppresses breast cancer stem cells (CD44 + /CD24 − ) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018 196 56 62 10.1016/j.lfs.2018.01.014 29355544
    [Google Scholar]
  22. Jia L. Huang S. Yin X. Zan Y. Guo Y. Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018 208 123 130 10.1016/j.lfs.2018.07.027 30025823
    [Google Scholar]
  23. Wang R. Yang L. Li S. Ye D. Yang L. Liu Q. Zhao Z. Cai Q. Tan J. Li X. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med. Sci. Monit. 2018 24 412 420 10.12659/MSM.908022 29353288
    [Google Scholar]
  24. Roy S. Banerjee S. Chakraborty T. Vanadium quercetin complex attenuates mammary cancer by regulating the P53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events. Biometals 2018 31 4 647 671 10.1007/s10534‑018‑0117‑3 29855745
    [Google Scholar]
  25. Karthick V. Panda S. Kumar V.G. Kumar D. Shrestha L.K. Ariga K. Vasanth K. Chinnathambi S. Dhas T.S. Suganya K.S.U. Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Appl. Surf. Sci. 2019 487 211 217 10.1016/j.apsusc.2019.05.047
    [Google Scholar]
  26. Sadhukhan P. Kundu M. Chatterjee S. Ghosh N. Manna P. Das J. Sil P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C 2019 100 129 140 10.1016/j.msec.2019.02.096 30948047
    [Google Scholar]
  27. Kundur S. Prayag A. Selvakumar P. Nguyen H. McKee L. Cruz C. Srinivasan A. Shoyele S. Lakshmikuttyamma A. Synergistic anticancer action of quercetin and curcumin against triple‐negative breast cancer cell lines. J. Cell. Physiol. 2019 234 7 11103 11118 10.1002/jcp.27761 30478904
    [Google Scholar]
  28. Schröder L Marahrens P Koch JG Heidegger H Vilsmeier T Phan-Brehm T Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF‑7 and MDA-MB-231 breast carcinoma cells. Oncol Rep 2019 41 1 387 396
    [Google Scholar]
  29. Henidi HA Al-Abbasi FA El-Moselhy MA El-Bassossy HM Al-Abd AM Despite blocking doxorubicin-induced vascular damage, quercetin ameliorates its antibreast cancer activity. Oxid Med Cell Longev 2020 2020 8157640 10.1155/2020/8157640
    [Google Scholar]
  30. Hanikoglu A. Kucuksayan E. Hanikoglu F. Ozben T. Menounou G. Sansone A. Chatgilialoglu C. Di Bella G. Ferreri C. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can. J. Physiol. Pharmacol. 2020 98 3 131 138 10.1139/cjpp‑2019‑0352 31545905
    [Google Scholar]
  31. Zhou Y. Chen D. Xue G. Yu S. Yuan C. Huang M. Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Advances 2020 10 57 34517 34526 10.1039/D0RA04231E 35514369
    [Google Scholar]
  32. Ozkan E. Bakar-Ates F. Potentiation of the effect of lonidamine by quercetin in MCF-7 human breast cancer cells through downregulation of MMP-2/9 mRNA expression. An. Acad. Bras. Cienc. 2020 92 4 e20200548 10.1590/0001‑3765202020200548 33237147
    [Google Scholar]
  33. Mansourizadeh F. Alberti D. Bitonto V. Tripepi M. Sepehri H. Khoee S. Geninatti Crich S. Efficient synergistic combination effect of quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf. B Biointerfaces 2020 191 110982 10.1016/j.colsurfb.2020.110982 32220813
    [Google Scholar]
  34. Liu M. Fu M. Yang X. Jia G. Shi X. Ji J. Liu X. Zhai G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces 2020 196 111284 10.1016/j.colsurfb.2020.111284 32771817
    [Google Scholar]
  35. Patel G. Thakur N.S. Kushwah V. Patil M.D. Nile S.H. Jain S. Kai G. Banerjee U.C. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine 2020 24 102147 10.1016/j.nano.2019.102147 31884040
    [Google Scholar]
  36. Prieto-Vila M. Shimomura I. Kogure A. Usuba W. Takahashi R. Ochiya T. Yamamoto Y. Quercetin inhibits Lef1 and resensitizes docetaxel-resistant breast cancer cells. Molecules 2020 25 11 2576 10.3390/molecules25112576 32492961
    [Google Scholar]
  37. Kıyga E. Şengelen A. Adıgüzel Z. Önay Uçar E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol. Biol. Rep. 2020 47 7 4957 4967 10.1007/s11033‑020‑05641‑x 32638319
    [Google Scholar]
  38. Xu Z. Zhao D. Zheng X. Huang B. Xia X. Pan X. Quercetin exerts bidirectional regulation effects on the efficacy of tamoxifen in estrogen receptor‐positive breast cancer therapy: An in vitro study. Environ. Toxicol. 2020 35 11 1179 1193 10.1002/tox.22983 32530119
    [Google Scholar]
  39. Safi A. Heidarian E. Ahmadi R. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 signaling pathways in MDA-MB-231 breast cancer cell line. Int. J. Mol. Cell. Med. 2021 10 1 11 22 34268250
    [Google Scholar]
  40. Roshanazadeh M. Babaahmadi Rezaei H. Rashidi M. Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line. Iran. J. Basic Med. Sci. 2021 24 7 928 934 34712423
    [Google Scholar]
  41. Cheng H.W. Chiang C.S. Ho H.Y. Chou S.H. Lai Y.H. Shyu W.C. Chen S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release 2021 329 136 147 10.1016/j.jconrel.2020.11.061 33278482
    [Google Scholar]
  42. Hosseinzadeh R. Khorsandi K. Esfahani H.S. Habibi M. Hosseinzadeh G. Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines. Photodiagn. Photodyn. Ther. 2021 34 102326 10.1016/j.pdpdt.2021.102326 33971331
    [Google Scholar]
  43. Chen W.J. Tsai J.H. Hsu L.S. Lin C.L. Hong H.M. Pan M.H. Quercetin blocks the aggressive phenotype of triple-negative breast cancer by inhibiting IGF1/IGF1R-mediated EMT program. Yao Wu Shi Pin Fen Xi 2021 29 1 98 112 10.38212/2224‑6614.3090 35696220
    [Google Scholar]
  44. Qiu D. Yan X. Xiao X. Zhang G. Wang Y. Cao J. Ma R. Hong S. Ma M. To explore immune synergistic function of quercetin in inhibiting breast cancer cells. Cancer Cell Int. 2021 21 1 632 10.1186/s12935‑021‑02345‑5 34838003
    [Google Scholar]
  45. Askar M.A. El-Nashar H.A.S. Al-Azzawi M.A. Rahman S.S.A. Elshawi O.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer 2022 16 11782234221086728 10.1177/11782234221086728 35359610
    [Google Scholar]
  46. Yüksel T.N. Bozgeyi̇k E. Yayla M. The effect of quercetin and quercetin-3-d-xyloside on breast cancer proliferation and migration. Journal of Basic and Clinical Health Sciences 2022 6 2 569 578 10.30621/jbachs.1056769
    [Google Scholar]
  47. An S Hu M. Quercetin promotes TFEB nuclear translocation and activates lysosomal degradation of ferritin to induce ferroptosis in breast cancer cells. Comput Intell Neurosci 2022 2022 5299218 10.1155/2022/5299218
    [Google Scholar]
  48. Rhman M.A. Devnarain N. Khan R. Owira P.M.O. Synergism potentiates oxidative antiproliferative effects of naringenin and quercetin in MCF-7 breast cancer cells. Nutrients 2022 14 16 3437 10.3390/nu14163437 36014942
    [Google Scholar]
  49. Umar S.M. Patra S. Kashyap A. Dev J R A. Kumar L. Prasad C.P. Quercetin impairs HuR-driven progression and migration of triple negative breast cancer (TNBC) cells. Nutr. Cancer 2022 74 4 1497 1510 10.1080/01635581.2021.1952628 34278888
    [Google Scholar]
  50. Yadav N. Tripathi A. Parveen A. Parveen S. Banerjee M. PLGA-quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics 2022 14 7 1326 10.3390/pharmaceutics14071326 35890222
    [Google Scholar]
  51. Mekkawy A.I. Eleraky N.E. Soliman G.M. Elnaggar M.G. Elnaggar M.G. Combinatorial therapy of letrozole-and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells. Pharmaceutics 2022 14 8 1727 10.3390/pharmaceutics14081727 36015353
    [Google Scholar]
  52. Rani Inala M.S. Pamidimukkala K. Amalgamation of quercetin with anastrozole and capecitabine: A novel combination to treat breast and colon cancers – An in vitro study. J. Cancer Res. Ther. 2023 19 Suppl. 1 S93 S105 10.4103/jcrt.JCRT_599_20 37147989
    [Google Scholar]
  53. Przybylski P. Lewińska A. Rzeszutek I. Błoniarz D. Moskal A. Betlej G. Deręgowska A. Cybularczyk-Cecotka M. Szmatoła T. Litwinienko G. Wnuk M. Mutation status and glucose availability affect the response to mitochondria-targeted quercetin derivative in breast cancer cells. Cancers 2023 15 23 5614 10.3390/cancers15235614 38067318
    [Google Scholar]
  54. Tang H. Kuang Y. Wu W. Peng B. Fu Q. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer. Mol. Med. 2023 29 1 127 10.1186/s10020‑023‑00720‑8 37710176
    [Google Scholar]
  55. Almohammad Aljabr B. Zihlif M. Abu-Dahab R. Zalloum H. Effect of quercetin on doxorubicin cytotoxicity in sensitive and resistant human MCF7 breast cancer cell lines. Biomed. Rep. 2024 20 4 58 10.3892/br.2024.1745 38414625
    [Google Scholar]
  56. Bruni A. Pepper A.R. Pawlick R.L. Gala-Lopez B. Gamble A.F. Kin T. Seeberger K. Korbutt G.S. Bornstein S.R. Linkermann A. Shapiro A.M.J. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis. 2018 9 6 595 10.1038/s41419‑018‑0506‑0 29789532
    [Google Scholar]
  57. Young C.D. Anderson S.M. Sugar and fat – That’s where it’s at: Metabolic changes in tumors. Breast Cancer Res. 2008 10 1 202 10.1186/bcr1852
    [Google Scholar]
  58. López-Knowles E. O’Toole S.A. McNeil C.M. Millar E.K.A. Qiu M.R. Crea P. Daly R.J. Musgrove E.A. Sutherland R.L. PI3K pathway activation in breast cancer is associated with the basal‐like phenotype and cancer‐specific mortality. Int. J. Cancer 2010 126 5 1121 1131 10.1002/ijc.24831 19685490
    [Google Scholar]
  59. Cantley L.C. The phosphoinositide 3-kinase pathway. Science 2002 296 5573 1655 1657 10.1126/science.296.5573.1655 12040186
    [Google Scholar]
  60. LoRusso P.M. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J. Clin. Oncol. 2016 34 31 3803 3815 10.1200/JCO.2014.59.0018 27621407
    [Google Scholar]
  61. Csolle M.P. Ooms L.M. Papa A. Mitchell C.A. PTEN and other PtdIns (3, 4, 5) P3 lipid phosphatases in breast cancer. Int. J. Mol. Sci. 2020 21 23 9189 10.3390/ijms21239189 33276499
    [Google Scholar]
  62. Eramo M.J. Mitchell C.A. Regulation of PtdIns(3,4,5) P 3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 2016 44 1 240 252 10.1042/BST20150214 26862211
    [Google Scholar]
  63. Molyneux G. Geyer F.C. Magnay F.A. McCarthy A. Kendrick H. Natrajan R. MacKay A. Grigoriadis A. Tutt A. Ashworth A. Reis-Filho J.S. Smalley M.J. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010 7 3 403 417 10.1016/j.stem.2010.07.010 20804975
    [Google Scholar]
  64. Jones R.A. Campbell C.I. Wood G.A. Petrik J.J. Moorehead R.A. Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene 2009 28 21 2152 2162 10.1038/onc.2009.79 19377512
    [Google Scholar]
  65. Zielinska HA Bahl A Holly JM Perks CM Epithelial-to-mesenchymal transition in breast cancer: A role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? Breast Cancer (Dove Med Press) 2015 7 9 19
    [Google Scholar]
  66. Werner H. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities. Int. J. Mol. Sci. 2023 24 19 14882 10.3390/ijms241914882 37834331
    [Google Scholar]
  67. Miyazono K. Transforming growth factor-.BETA. signaling in epithelial-mesenchymal transition and progression of cancer. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2009 85 8 314 323 10.2183/pjab.85.314 19838011
    [Google Scholar]
  68. Wang W.J. Yao Y. Jiang L.L. Hu T.H. Ma J.Q. Ruan Z.P. Tian T. Guo H. Wang S.H. Nan K.J. Increased LEF1 expression and decreased Notch2 expression are strong predictors of poor outcomes in colorectal cancer patients. Dis. Markers 2013 35 5 395 405 10.1155/2013/983981 24223455
    [Google Scholar]
  69. Dent R. Trudeau M. Pritchard K.I. Hanna W.M. Kahn H.K. Sawka C.A. Lickley L.A. Rawlinson E. Sun P. Narod S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007 13 15 4429 4434 10.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  70. Kubiczkova L. Sedlarikova L. Hajek R. Sevcikova S. TGF-β – An excellent servant but a bad master. J. Transl. Med. 2012 10 1 183 10.1186/1479‑5876‑10‑183 22943793
    [Google Scholar]
  71. Isogai Z. Ono R.N. Ushiro S. Keene D.R. Chen Y. Mazzieri R. Charbonneau N.L. Reinhardt D.P. Rifkin D.B. Sakai L.Y. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 2003 278 4 2750 2757 10.1074/jbc.M209256200 12429738
    [Google Scholar]
  72. Horiguchi M. Ota M. Rifkin D.B. Matrix control of transforming growth factor- Function. J. Biochem. 2012 152 4 321 329 10.1093/jb/mvs089 22923731
    [Google Scholar]
  73. Massagué J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012 13 10 616 630 10.1038/nrm3434 22992590
    [Google Scholar]
  74. Neuzillet C. Tijeras-Raballand A. Cohen R. Cros J. Faivre S. Raymond E. de Gramont A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015 147 22 31 10.1016/j.pharmthera.2014.11.001 25444759
    [Google Scholar]
  75. Principe D.R. Doll J.A. Bauer J. Jung B. Munshi H.G. Bartholin L. Pasche B. Lee C. Grippo P.J. TGF-β: Duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst. 2014 106 2 djt369 10.1093/jnci/djt369 24511106
    [Google Scholar]
  76. Harradine K.A. Akhurst R.J. Mutations of TGFß signaling molecules in human disease. Ann. Med. 2006 38 6 403 414 10.1080/07853890600919911 17008304
    [Google Scholar]
  77. Bierie B. Moses H.L. TGFβ: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 2006 6 7 506 520 10.1038/nrc1926 16794634
    [Google Scholar]
  78. Andrade D. Mehta M. Griffith J. Oh S. Corbin J. Babu A. De S. Chen A. Zhao Y.D. Husain S. Roy S. Xu L. Aube J. Janknecht R. Gorospe M. Herman T. Ramesh R. Munshi A. HuR reduces radiation-induced DNA damage by enhancing expression of ARID1A. Cancers 2019 11 12 2014 10.3390/cancers11122014 31847141
    [Google Scholar]
  79. Kim L.S. Kim J.H. Heat shock protein as molecular targets for breast cancer therapeutics. J. Breast Cancer 2011 14 3 167 174 10.4048/jbc.2011.14.3.167 22031796
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048332611250106075111
Loading
/content/journals/cwhr/10.2174/0115734048332611250106075111
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Anticancer ; breast cancer ; quercetin ; in vitro
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test